001042670 001__ 1042670
001042670 005__ 20250610131449.0
001042670 0247_ $$2doi$$a10.1002/aenm.202403479
001042670 0247_ $$2ISSN$$a1614-6832
001042670 0247_ $$2ISSN$$a1614-6840
001042670 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02639
001042670 0247_ $$2WOS$$aWOS:001395020500001
001042670 037__ $$aFZJ-2025-02639
001042670 082__ $$a050
001042670 1001_ $$0P:(DE-Juel1)207892$$aHaffner-Schirmer, Julian$$b0$$eCorresponding author$$ufzj
001042670 245__ $$aA High Throughput Platform to Minimize Voltage and Fill Factor Losses
001042670 260__ $$aWeinheim$$bWiley-VCH$$c2025
001042670 3367_ $$2DRIVER$$aarticle
001042670 3367_ $$2DataCite$$aOutput Types/Journal article
001042670 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1748326724_32155
001042670 3367_ $$2BibTeX$$aARTICLE
001042670 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001042670 3367_ $$00$$2EndNote$$aJournal Article
001042670 520__ $$aOrganic photovoltaics (OPV) now can exceed 20% power conversion efficiency in single junction solar cells. To close the remaining gap to competing technologies, both fill factor and open-circuit voltage must be optimized. The Langevin reduction factor is a well-known concept that measures the degree to which charge extraction is favored over charge recombination. It is therefore ideally suited as an optimization target in high-throughput workflows; however, its evaluation so far requires expert interaction. Here, an integrated high-throughput workflow is presented, able to obtain the Langevin reduction factor within a few seconds with high accuracy without human intervention and thus suited for autonomous experiments. This is achieved by combining evidence from UV–vis spectra, current–voltage curves, and a novel implementation of microsecond transient absorption kinetics allowing, for the first time, the intrinsic determination of charge absorption cross-sections, which is crucial to reporting stationary charge densities. The method is demonstrated by varying the donor:acceptor ratio of the high performance OPV blend PM6:Y12. The high reproducibility of the method allows to find a strictly exponential relationship between the PM6 exciton energy and the Langevin reduction factor.
001042670 536__ $$0G:(DE-HGF)POF4-1214$$a1214 - Modules, stability, performance and specific applications (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001042670 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001042670 7001_ $$0P:(DE-Juel1)201923$$aLe Corre, Vincent Marc$$b1
001042670 7001_ $$0P:(DE-Juel1)178784$$aForberich, Karen$$b2
001042670 7001_ $$aEgelhaaf, Hans Joachim$$b3
001042670 7001_ $$0P:(DE-Juel1)190775$$aOsterrieder, Tobias$$b4
001042670 7001_ $$0P:(DE-Juel1)196016$$aWortmann, Jonas$$b5
001042670 7001_ $$0P:(DE-Juel1)201377$$aLiu, Chao$$b6
001042670 7001_ $$00000-0002-2259-6736$$aWeitz, Paul$$b7
001042670 7001_ $$0P:(DE-Juel1)180635$$aHeumüller, Thomas$$b8
001042670 7001_ $$00000-0001-9992-5449$$aBornschlegl, Andreas Josef$$b9
001042670 7001_ $$00000-0003-1213-7410$$aWachsmuth, Josua$$b10
001042670 7001_ $$00000-0003-3500-2180$$aDistler, Andreas$$b11
001042670 7001_ $$0P:(DE-Juel1)191164$$aWagner, Michael$$b12
001042670 7001_ $$00000-0003-3678-6538$$aPeng, Zijian$$b13
001042670 7001_ $$aLüer, Larry$$b14$$eCorresponding author
001042670 7001_ $$0P:(DE-Juel1)176427$$aBrabec, Christoph Joseph$$b15$$eCorresponding author
001042670 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.202403479$$gVol. 15, no. 17, p. 2403479$$n17$$p2403479$$tAdvanced energy materials$$v15$$x1614-6832$$y2025
001042670 8564_ $$uhttps://juser.fz-juelich.de/record/1042670/files/Advanced%20Energy%20Materials%20-%202025%20-%20Haffner%E2%80%90Schirmer%20-%20A%20High%20Throughput%20Platform%20to%20Minimize%20Voltage%20and%20Fill%20Factor%20Losses.pdf$$yOpenAccess
001042670 909CO $$ooai:juser.fz-juelich.de:1042670$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001042670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207892$$aForschungszentrum Jülich$$b0$$kFZJ
001042670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201923$$aForschungszentrum Jülich$$b1$$kFZJ
001042670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178784$$aForschungszentrum Jülich$$b2$$kFZJ
001042670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190775$$aForschungszentrum Jülich$$b4$$kFZJ
001042670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196016$$aForschungszentrum Jülich$$b5$$kFZJ
001042670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201377$$aForschungszentrum Jülich$$b6$$kFZJ
001042670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180635$$aForschungszentrum Jülich$$b8$$kFZJ
001042670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191164$$aForschungszentrum Jülich$$b12$$kFZJ
001042670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176427$$aForschungszentrum Jülich$$b15$$kFZJ
001042670 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1214$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001042670 9141_ $$y2025
001042670 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12
001042670 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-12
001042670 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-12
001042670 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-12
001042670 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-12
001042670 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
001042670 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-12$$wger
001042670 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-12
001042670 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV ENERGY MATER : 2022$$d2024-12-12
001042670 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12
001042670 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001042670 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-12
001042670 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2022$$d2024-12-12
001042670 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12
001042670 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12
001042670 920__ $$lyes
001042670 9201_ $$0I:(DE-Juel1)IET-2-20140314$$kIET-2$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
001042670 980__ $$ajournal
001042670 980__ $$aVDB
001042670 980__ $$aUNRESTRICTED
001042670 980__ $$aI:(DE-Juel1)IET-2-20140314
001042670 9801_ $$aFullTexts