001     1042670
005     20250610131449.0
024 7 _ |a 10.1002/aenm.202403479
|2 doi
024 7 _ |a 1614-6832
|2 ISSN
024 7 _ |a 1614-6840
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02639
|2 datacite_doi
024 7 _ |a WOS:001395020500001
|2 WOS
037 _ _ |a FZJ-2025-02639
082 _ _ |a 050
100 1 _ |a Haffner-Schirmer, Julian
|0 P:(DE-Juel1)207892
|b 0
|e Corresponding author
|u fzj
245 _ _ |a A High Throughput Platform to Minimize Voltage and Fill Factor Losses
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1748326724_32155
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Organic photovoltaics (OPV) now can exceed 20% power conversion efficiency in single junction solar cells. To close the remaining gap to competing technologies, both fill factor and open-circuit voltage must be optimized. The Langevin reduction factor is a well-known concept that measures the degree to which charge extraction is favored over charge recombination. It is therefore ideally suited as an optimization target in high-throughput workflows; however, its evaluation so far requires expert interaction. Here, an integrated high-throughput workflow is presented, able to obtain the Langevin reduction factor within a few seconds with high accuracy without human intervention and thus suited for autonomous experiments. This is achieved by combining evidence from UV–vis spectra, current–voltage curves, and a novel implementation of microsecond transient absorption kinetics allowing, for the first time, the intrinsic determination of charge absorption cross-sections, which is crucial to reporting stationary charge densities. The method is demonstrated by varying the donor:acceptor ratio of the high performance OPV blend PM6:Y12. The high reproducibility of the method allows to find a strictly exponential relationship between the PM6 exciton energy and the Langevin reduction factor.
536 _ _ |a 1214 - Modules, stability, performance and specific applications (POF4-121)
|0 G:(DE-HGF)POF4-1214
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Le Corre, Vincent Marc
|0 P:(DE-Juel1)201923
|b 1
700 1 _ |a Forberich, Karen
|0 P:(DE-Juel1)178784
|b 2
700 1 _ |a Egelhaaf, Hans Joachim
|b 3
700 1 _ |a Osterrieder, Tobias
|0 P:(DE-Juel1)190775
|b 4
700 1 _ |a Wortmann, Jonas
|0 P:(DE-Juel1)196016
|b 5
700 1 _ |a Liu, Chao
|0 P:(DE-Juel1)201377
|b 6
700 1 _ |a Weitz, Paul
|0 0000-0002-2259-6736
|b 7
700 1 _ |a Heumüller, Thomas
|0 P:(DE-Juel1)180635
|b 8
700 1 _ |a Bornschlegl, Andreas Josef
|0 0000-0001-9992-5449
|b 9
700 1 _ |a Wachsmuth, Josua
|0 0000-0003-1213-7410
|b 10
700 1 _ |a Distler, Andreas
|0 0000-0003-3500-2180
|b 11
700 1 _ |a Wagner, Michael
|0 P:(DE-Juel1)191164
|b 12
700 1 _ |a Peng, Zijian
|0 0000-0003-3678-6538
|b 13
700 1 _ |a Lüer, Larry
|b 14
|e Corresponding author
700 1 _ |a Brabec, Christoph Joseph
|0 P:(DE-Juel1)176427
|b 15
|e Corresponding author
773 _ _ |a 10.1002/aenm.202403479
|g Vol. 15, no. 17, p. 2403479
|0 PERI:(DE-600)2594556-7
|n 17
|p 2403479
|t Advanced energy materials
|v 15
|y 2025
|x 1614-6832
856 4 _ |u https://juser.fz-juelich.de/record/1042670/files/Advanced%20Energy%20Materials%20-%202025%20-%20Haffner%E2%80%90Schirmer%20-%20A%20High%20Throughput%20Platform%20to%20Minimize%20Voltage%20and%20Fill%20Factor%20Losses.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1042670
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)207892
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)201923
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)178784
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)190775
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)196016
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)201377
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)180635
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)191164
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)176427
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1214
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-12
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-12
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-12
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ADV ENERGY MATER : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERGY MATER : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-2-20140314
|k IET-2
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IET-2-20140314
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21