Home > Publications database > A High Throughput Platform to Minimize Voltage and Fill Factor Losses > print |
001 | 1042670 | ||
005 | 20250610131449.0 | ||
024 | 7 | _ | |a 10.1002/aenm.202403479 |2 doi |
024 | 7 | _ | |a 1614-6832 |2 ISSN |
024 | 7 | _ | |a 1614-6840 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2025-02639 |2 datacite_doi |
024 | 7 | _ | |a WOS:001395020500001 |2 WOS |
037 | _ | _ | |a FZJ-2025-02639 |
082 | _ | _ | |a 050 |
100 | 1 | _ | |a Haffner-Schirmer, Julian |0 P:(DE-Juel1)207892 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a A High Throughput Platform to Minimize Voltage and Fill Factor Losses |
260 | _ | _ | |a Weinheim |c 2025 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1748326724_32155 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Organic photovoltaics (OPV) now can exceed 20% power conversion efficiency in single junction solar cells. To close the remaining gap to competing technologies, both fill factor and open-circuit voltage must be optimized. The Langevin reduction factor is a well-known concept that measures the degree to which charge extraction is favored over charge recombination. It is therefore ideally suited as an optimization target in high-throughput workflows; however, its evaluation so far requires expert interaction. Here, an integrated high-throughput workflow is presented, able to obtain the Langevin reduction factor within a few seconds with high accuracy without human intervention and thus suited for autonomous experiments. This is achieved by combining evidence from UV–vis spectra, current–voltage curves, and a novel implementation of microsecond transient absorption kinetics allowing, for the first time, the intrinsic determination of charge absorption cross-sections, which is crucial to reporting stationary charge densities. The method is demonstrated by varying the donor:acceptor ratio of the high performance OPV blend PM6:Y12. The high reproducibility of the method allows to find a strictly exponential relationship between the PM6 exciton energy and the Langevin reduction factor. |
536 | _ | _ | |a 1214 - Modules, stability, performance and specific applications (POF4-121) |0 G:(DE-HGF)POF4-1214 |c POF4-121 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Le Corre, Vincent Marc |0 P:(DE-Juel1)201923 |b 1 |
700 | 1 | _ | |a Forberich, Karen |0 P:(DE-Juel1)178784 |b 2 |
700 | 1 | _ | |a Egelhaaf, Hans Joachim |b 3 |
700 | 1 | _ | |a Osterrieder, Tobias |0 P:(DE-Juel1)190775 |b 4 |
700 | 1 | _ | |a Wortmann, Jonas |0 P:(DE-Juel1)196016 |b 5 |
700 | 1 | _ | |a Liu, Chao |0 P:(DE-Juel1)201377 |b 6 |
700 | 1 | _ | |a Weitz, Paul |0 0000-0002-2259-6736 |b 7 |
700 | 1 | _ | |a Heumüller, Thomas |0 P:(DE-Juel1)180635 |b 8 |
700 | 1 | _ | |a Bornschlegl, Andreas Josef |0 0000-0001-9992-5449 |b 9 |
700 | 1 | _ | |a Wachsmuth, Josua |0 0000-0003-1213-7410 |b 10 |
700 | 1 | _ | |a Distler, Andreas |0 0000-0003-3500-2180 |b 11 |
700 | 1 | _ | |a Wagner, Michael |0 P:(DE-Juel1)191164 |b 12 |
700 | 1 | _ | |a Peng, Zijian |0 0000-0003-3678-6538 |b 13 |
700 | 1 | _ | |a Lüer, Larry |b 14 |e Corresponding author |
700 | 1 | _ | |a Brabec, Christoph Joseph |0 P:(DE-Juel1)176427 |b 15 |e Corresponding author |
773 | _ | _ | |a 10.1002/aenm.202403479 |g Vol. 15, no. 17, p. 2403479 |0 PERI:(DE-600)2594556-7 |n 17 |p 2403479 |t Advanced energy materials |v 15 |y 2025 |x 1614-6832 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1042670/files/Advanced%20Energy%20Materials%20-%202025%20-%20Haffner%E2%80%90Schirmer%20-%20A%20High%20Throughput%20Platform%20to%20Minimize%20Voltage%20and%20Fill%20Factor%20Losses.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1042670 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)207892 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)201923 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)178784 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)190775 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)196016 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)201377 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)180635 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)191164 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 15 |6 P:(DE-Juel1)176427 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-121 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Photovoltaik und Windenergie |9 G:(DE-HGF)POF4-1214 |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-12 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0 |0 LIC:(DE-HGF)CCBYNC4 |2 HGFVOC |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2024-12-12 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-12 |
915 | _ | _ | |a IF >= 25 |0 StatID:(DE-HGF)9925 |2 StatID |b ADV ENERGY MATER : 2022 |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-12 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-12 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV ENERGY MATER : 2022 |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-12 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IET-2-20140314 |k IET-2 |l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IET-2-20140314 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|