TopCysteineDB: A Cysteinome-wide
Database Integrating Structural and
Chemoproteomics Data for Cysteine
Ligandability Prediction ™

Michele Bonus "', Julian Greb ", Jaimeen D. Majmudar ?, Markus Boehm ?,
Magdalena Korczynska?, Azadeh Nazemi?, Alan M. Mathiowetz?, and
Holger Gohlke "%

1 - Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Dusseldorf 40225 Disseldorf, Germany
2 - Pfizer Research & Development, Cambridge, MA 02139, United States
3 - Institute of Bio- and Geosciences (IBG4: Bioinformatics), Forschungszentrum Julich GmbH, 52425 Jdlich, Germany

Correspondence to Holger Gohlke: Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine
University Dusseldorf, 40225 Dusseldorf, Germany. gohlke @ hhu.de, h.gohlke @fz-juelich.de (H. Gohlke)
https://doi.org/10.1016/j.jmb.2025.169196

Edited by Michael Sternberg

Abstract

Development of targeted covalent inhibitors and covalent ligand-first approaches have emerged as a pow-
erful strategy in drug design, with cysteines being attractive targets due to their nucleophilicity and relative
scarcity. While structural biology and chemoproteomics approaches have generated extensive data on
cysteine ligandability, these complementary data types remain largely disconnected. Here, we present
TopCysteineDB, a comprehensive resource integrating structural information from the PDB with chemo-
proteomics data from activity-based protein profiling experiments. Analysis of the complete PDB yielded
264,234 unique cysteines, while the proteomics dataset encompasses 41,898 detectable cysteines
across the human proteome. Using TopCovPDB, an automated classification pipeline complemented
by manual curation, we identified 787 covalent cysteines and systematically categorized other functional
roles, including metal-binding, cofactor-binding, and disulfide bonds. Mapping residue-wise structural
information to sequence space enabled cross-referencing between structural and proteomics data, creat-
ing a unified view of cysteine ligandability. For TopCySPAL, a machine learning model was developed,
integrating structural features and proteomics data, achieving strong predictive performance (AUROC:
0.964, AUPRC: 0.914) and robust generalization to novel cases. TopCysteineDB and TopCySPAL are
freely accessible through a webinterface, TopCysteineDBApp (https://topcysteinedb.hhu.de/), designed
to facilitate exploration of cysteine sites across the human proteome. The interface provides an interactive
visualization featuring a color-coded mapping of chemoproteomics data onto cysteine site structures and
the highlighting of identified peptide sequences. It offers customizable dataset downloads and ligandability
predictions for user-provided structures. This resource advances targeted covalent inhibitor design by
providing integrated access to previously dispersed data types and enabling systematic analysis and pre-
diction of cysteine ligandability.
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Introduction

In recent years, the development of targeted
covalent inhibitors (TCIls) has experienced a
renaissance in drug design [1], offering unique
advantages, including enhanced potency, pro-
longed target engagement, and the potential for
improved selectivity [2-5]. These small-molecule
inhibitors employ electrophilic warheads — func-
tional groups such as acrylamides — that irreversibly
or reversibly form covalent bonds with nucleophilic
amino acid residues in proteins, thereby modulating
their function [6,7].

Among the nucleophilic residues, cysteine
residues stand out due to their unique reactivity
and relatively low abundance [8]. Particularly in
oncology, cysteine-focused covalent inhibitors have
achieved remarkable clinical success by targeting
proteins previously considered undruggable [9],
including sotorasib, which covalently binds the
KRAS®™C mutant [10]. The design of such covalent
drugs critically depends on the strategic selection of
suitable target cysteine residues, which in turn
requires a profound understanding of their ligand-
ability. Consequently, experimental and computa-
tional methods, as well as data resources that
facilitate the assessment of cysteine ligandability,
are of significant interest in medicinal chemistry.

The advent of chemical proteomics, particularly
the development of activity-based protein profiling
(ABPP), has revolutionized the global assessment
of cysteine ligandability in a cellular context [11].
In ABPP, cell or lysate samples are treated with
reactive scout molecules or libraries of warhead-
carrying covalent fragments. By subsequent reac-
tion with a pan-cysteine-reactive iodoacetamide
probe and comparison with an untreated sample,
reactive cysteines can be identified across complex
proteomes [12—15]. This methodology has also
been adapted for proteome-wide covalent ligand
discovery using fragment libraries [16]. The results
of such studies have recently been compiled into
the CysDB database, offering an overview of the
quantitative chemoproteomics data of the human
cysteinome [17].

Interpreting the functional relevance of cysteine
engagement identified through chemoproteomics
requires distinguishing several related concepts. The
interaction of a cysteine with a pan-reactive probe
like iodoacetamide primarily reflects its accessible
reactivity — its intrinsic chemical propensity,
modulated by the local microenvironment (e.g.,
pKz). However, when screening large libraries of
diverse electrophiles [12—14], observing selective
engagement of a cysteine by only a subset of specific
fragments provides strong experimental evidence for
ligandability. Ligandability goes beyond mere reactiv-
ity, incorporating the presence and accessibility of a
suitable binding pocket capable of accommodating a
ligand; a reactive cysteine may not be ligandable if it
lacks such a pocket. Ultimately, the goal in drug devel-

opment is to identify druggable sites. Druggability
builds upon ligandability, further requiring that modu-
lation of the target protein via ligand binding yields a
therapeutic benefit with an acceptable safety profile,
often implying the pocket has characteristics amen-
able to binding optimized, drug-like molecules. Pre-
dicting ligandability, by integrating evidence for
reactivity with structural context, is therefore a key
step towards identifying druggable covalent targets.
Several specialized databases have been developed
for covalent drug discovery. The CovPDB [18] cata-
logs structural information from covalent protein—li-
gand complexes, while CovalentinDB [19] focuses
on covalent inhibitors and their properties, including
protein—ligand interactions in its most recent version
[20]. Other databases include the Cysteinome [21],
¢BinderDB [22], and CovBinderIinDB [23].
Additionally, computational prediction methods
for cysteine ligandability are invaluable to covalent
drug design. Classic physics-based methods like
molecular dynamics simulations have been used
to determine cysteine pK, values [24,25]. However,
these methods require expert users and are compu-
tationally demanding. Consequently, a variety of
data-driven approaches, including modern super-
vised machine learning (ML) algorithms, have been
applied. These differ in the form of the required
input, the features utilized for prediction, the algo-
rithm employed, and the source of the cysteine
ligandability labels. Soylu et al. combined a
sequence-based approach  with  energetic
hydrogen-bond interaction analysis of cysteine sites
to develop Cy-preds [26]. Wang et al. developed
sbPCR, a purely sequence-based support vector
machine (SVM) model to predict hyperreactive cys-
teines based on isotopic tandem orthogonal prote-
olysis (isoTOP)-ABPP-derived ligandability data
[27]. In contrast, Zhang et al. developed an SVM
model based on structural data, incorporating fea-
tures such as solvent accessibility and predicted
pK, values combined with structure-based labels
of cysteine reactivity [28]. Recently, increasingly
sophisticated ML architectures emerged. HyperCys
introduced a stacked model approach combining
structural parameters generated from CovPDB data
with sequence data [29], while DeepCoSI imple-
mented a graph convolutional network architecture
trained on CovalentinDB structural data and pocket
information [30]. The Shen group introduced tree-
based and convolutional neural network (CNN)
models that leveraged structural data and descrip-
tors [31]. Recently, DrugMap has integrated large-
scale isoTOP-ABPP data with CNN-based predic-
tion models that use structural descriptors as well
[15]. Other models aim to predict reactivity changes
influenced by specific factors, such as post-
translational modifications [32]. Further structure-
based machine learning approaches include inter-
pretable models trained on covalent databases
(CovCysPredictor [33]) and random forests using
integrated proteomics and structural data to predict



M. Bonus, J. Greb, J.D. Majmudar, et al.

Journal of Molecular Biology 437 (2025) 169196

reactivity towards specific probes like IAA (CIAA
[34]).

While recent efforts integrate structural and
proteomics data for specific reactivity predictions
[34], a resource offering systematically annotated,
PDB-wide structural classifications combined with
multiple large-scale chemoproteomics datasets to
facilitate broad structure- and ML-based ligandabil-
ity prediction on the human cysteinome-scale is still
needed. Here, we present TopCysteineDB, a
resource linking these two essential data types,
and use it to establish a cysteine structure-
ligandability relationship that improves our ability
to predict covalent ligandability. Initially, we per-
formed a nuanced, PDB-wide classification of cova-
lent cysteine site structures using TopCovPDB, an
automated algorithm analyzing the local residue
environment, complemented by extensive manual
curation. This resulted in a high-quality dataset of
covalently modified cysteines. This approach is
more comprehensive than specialized databases
like CovPDB, yet it effectively distinguishes highly
relevant structural evidence for ligandability, e.g.,
TCl—protein complexes, from less relevant struc-
tures, such as artifact- or cofactor-bound cysteines,
which may not be resolved in less detailed datasets.
Next, mapping the residue-wise structural informa-
tion to the UniProt sequence space enabled the
interconnection of all structural data for each unique
cysteine. This yielded a global classification of a
cysteine’s ligandability, integrated across all exper-
imentally observed structural states. This way, the
structural flexibility of the residue environment and
especially changes upon covalent engagement
were captured. Additionally, the mapping allows
for cross-referencing ligandability data from exten-
sive chemoproteomics experiments with structural
information, providing further relevant and compa-
rable ligandability data for the human cysteinome.
By integrating these complementary data types,
our approach enhances the identification of pat-
terns associated with cysteine ligandability. Conse-
quently, predictive models generated using the
resulting database are expected to align well with
factors determining covalent druggability.

Accordingly, we developed the ML model
TopCySPAL (Cysteine  Structure—Proteomics-
Augmented Ligandability predictor) that followed a
combined label strategy based on structural and
ABPP ligandability data, with a particular focus on
label quality and accounting for uncertainty in
negative labels. Here, the structure-based
features used were a combination of structural
descriptors of the cysteine environment and state-
of-the-art SaProt residue embeddings [35]; SaProt
residue embeddings are vector representations of
individual amino acid residues in proteins enabling
the capture of residue-level biochemical and spatial
features for downstream tasks. TopCysteineDB is
accessible via an interactive web interface featuring
a uniquely integrative visualization of the available

ligandability data mapped onto classified protein
structures as well as the predictive capabilities of
TopCySPAL.

Results & Discussion

TopCysteineDB: A data resource that links
structural and proteomics data

Integration of structural and proteomics data for a
comprehensive cysteine ligandability resource. Top
CysteineDB integrates two complementary data
types: experimental structural information from the
PDB and chemoproteomics data from three large-
scale isoTOP-ABPP studies [12-14] (Figure 1A,
Figure 1B). To enable a systematic analysis of cys-
teine ligandability across these experiments, an
SQL database was designed that efficiently cross-
references each datapoint to a unique cysteine in
the UniProt sequence space. For the structure data-
set, the PDB and UniProt residue numberings were
mapped using residue-level SIFTS data [36,37].
Analyzing the entire PDB yielded 192,716 struc-
tures, corresponding to 264,234 unique cysteines
(Figure 1C). Of these, 58,505 structures were of
human origin covering 58,494 cysteines across
7,631 unique human proteins, indicating that cur-
rently 22% of the human cysteinome (58,494 out
of a total of 262,566 cysteines identified in the refer-
ence proteome) is structurally resolved. The pro-
teomics dataset encompasses 41,898 detectable
human cysteines (16% cysteinome coverage)
across 9,319 unique proteins (45% of the human
proteome) based on ~4.5 million competition ratio
(CR) measurements from three comprehensive
isoTOP-ABPP studies [12—14]. Of these, 9,427 cys-
teines were identified as “ABPP-ligandable” (Com-
petition Ratio (CR) > 4). While current coverage
differs from larger resources like CysDB (62,888
cysteines) or DrugMap (78,523 cysteines), this
database substantially covers the druggable human
cysteinome combined with closely integrated struc-
tural information, featuring a reliable mapping
between experimental cysteine site structures and
UniProt sequence space. TopCysteineDB's modu-
lar architecture enables continuous integration of
new proteomics datasets, ensuring high-quality
data curation.

Structure-based classification pipeline enables
systematic analysis of cysteine-partner interac-
tions. To establish a comprehensive
understanding of cysteine ligandability across the
available experimental structural data, we
developed TopCovPDB, an automated
classification pipeline  that  systematically
categorizes cysteines based on their interaction
partners in protein structures. The pipeline
analyzes structural contacts to identify distinct
types of cysteine site structures/modifications,
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Figure 1. TopCysteineDB. (A) Workflow for the generation of TopCysteineDB, a relational SQL database
integrating cysteine ligandability evidence from the PDB and iso-TOP-ABPP experiments by mapping comprehensive
annotated structural data (TopCovPDB) to the UniProt sequence space. See text for details. (B) Number of unique
cysteine sites by structural classifications based on the TopCovPDB workflow after manual curation. (C) Venn
diagram depicting the overlap of unique cysteines included in the database: with a PDB entries (light green), with
covalent ligand-complex structures (green), belonging to the human cysteinome (light blue, part of the human
reference proteome), detected by ABPP experiments (blue), and identified as ABPP-ligandable (dark blue, CR > 4).

including disulfide bonds (63,911), metal-binding resolve ambiguous cases with less definitive
(18,015), iron-sulfur cluster-binding (3,432), and interaction geometry.

cofactor-binding (2,010) cysteines (Figure 1B). For comprehensive coverage of the structural
Importantly, cysteines that form covalent bonds cysteine space, we opted not to apply the rigorous
with partners that do not belong to these  thresholds utilized in CovPDB (e.qg.,
predefined categories are classified as covalent, resolution < 2.5 A) [18]. The TopCovPDB classifi-
typically indicating interactions with covalent cation revealed 787 covalent cysteines, 285 of
small-molecules. In the absence of any covalent human origin across 692 unique proteins (235
interaction partner, cysteines are classified as  human proteins). While this number exceeds the
non-covalent. To ensure the high quality of these 309 unique cysteines in CovPDB (115 human cys-
classifications, particularly for the covalent class of  teines; across 290 proteins, 91 of human origin), it
cysteines crucial for drug design applications, remains lower than the 1,133 cysteines (778 pro-
9,175 automatically generated classifications were  teins) reported in LigCys3D [31], likely due to our
reviewed in a thorough manual curation. This more stringent manual curation and fine-grained
curation was essential to verify that cysteines distinction between covalent sites and other modifi-
classified as covalent were not binding to  cations (Figure 1B). Importantly, our dataset addi-
cofactors, metal ions, or iron-sulfur clusters and to tionally includes 151,076 non-covalent cysteines
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(36,959 proteins), providing negative dataset exam-
ples crucial for ML applications.

Cross-validation. The overlap between
structural and proteomics data provides valuable
opportunities for cross-validation. A total of 14,736
cysteines (3,841 proteins) are structurally resolved
and detectable in proteomics experiments. For
3,167 cysteines (1,648 proteins) there is
experimental evidence of ligandability. 132
cysteines (117 proteins) are structurally classified
as covalent and detectable in proteomics
experiments, with 65 of these (63 proteins)
showing experimental evidence of ligandability
(Figure 1C).

The machine learning model TopCySPAL
enables accurate ligandability prediction

To predict potentially ligandable cysteines, we
developed the ML model TopCySPAL that
integrates structural features with proteomics data.
While recent approaches have shown promise,
they typically rely on single data modalities. For
instance, the LigCys3D database and the
corresponding ML model DeepCys [31] employ
purely structure-based labels. In contrast, our
approach creates a more integrated training dataset
by interconnecting structural and proteomics data in
TopCysteineDB: Positive labels were assigned to
unique cysteines either classified as covalent based
on structural evidence (classified covalent in any
structure) or by showing chemoproteomics evi-
dence of ligandability; negative labels were only
assigned when other unique cysteines in the same
protein demonstrated either structural evidence of
covalent binding or were detectable in proteomics
experiments, indicating that all cysteines have been
analyzed in a ligandability experiment (structural or
proteomics-based) but the cysteine of interest was
not found to be ligandable. Finally, for detectable
cysteines lacking experimental structural informa-
tion, the dataset has been supplemented with
AlphaFoldDB [38] structures.

The initial dataset comprised 343,722 samples
(47,221 positive, 296,501 negative), derived from
proteins with both structural characterization and
proteomics data. Protein structures were grouped
by AlphaFoldDB [38] clusters [39] to prevent
homology-based data leakage, ensuring that all
structures of a unique cysteine were kept in a single
split/fold (see Sl section 1.2 for details). To prevent
bias from overrepresented proteins, we limited each
unique cysteine to 32 structural instances, resulting
in 17,062 positive and 152,203 negative samples.
While Shen et al. [31] explicitly analyzed conforma-
tional variability by binning structures according to
solvent-accessible surface area (SASA) values
(9,992 positive structures from 1,133 unique cys-
teines and 10,267 negative structures from 3,084
unique cysteines), our sampling approach with mul-

tiple structural instances similarly captures struc-
tural diversity while avoiding overrepresentation.
To address the inherent uncertainty in negative
labels, we employed a Positive-Unlabeled (PU)
learning framework [40] for learning classifiers from
fewer labeled positive examples with many uncer-
tain negative ones, which resulted in a final training
set of 17,062 positive examples from 1,465 unique
cysteines and 76,102 high-confidence negative
examples from 8,444 unique cysteines.

For each cysteine site structure, SaProt
embeddings [35] and a set of structural descriptors
(such as SASA, secondary structure classifications,
and neighboring residue atom types, counts, and
distances), calculated using Biotite [41,42] and
DSSP [43] (see Sl Section 1.2.1.1 for details), were
generated, on which jointly an XGBoost model was
trained (Figure 2A). Subsequent recursive feature
elimination using SHAP values [44] identified an
optimal set of 196 features (160 embedding dimen-
sions, 36 structural descriptors) that maintained
92% of the full model performance while further pre-
venting overfitting by an 86% reduction in feature
dimensionality. The final model TopCySPAL
achieved strong performance metrics across
cross-validation folds (area under the receiver oper-
ating characteristic curve (AUROC): 0.964 + 0.008
(mean = SD), area under the precision-recall curve
(AUPRC): 0.922 + 0.010, precision: 0.949 + 0.019,
recall: 0.748 + 0.029, F, score: 0.836 + 0.019) and
maintained this performance on the held-out test
set (AUROC: 0.964, AUPRC: 0.914, precision:
0.923, recall: 0.736) (Figure 2B).

To assess the relative contributions of the
different feature types, ablation studies were
performed. A model trained using only SaProt
embeddings achieved high performance (AUROC:
0.963, AUPRC: 0.906) on the test set, while a
model trained using only the structural descriptors
also showed predictive power (AUROC: 0.901,
AUPRC: 0.803). The combined TopCySPAL
model modestly outperformed both individual
models (AUROC: 0.964, AUPRC: 0.914),
particularly improving the AUPRC. This suggests
that while embeddings capture the majority of the
predictive signal, explicit structural features
provide complementary information that refines
the predictions, aligning with the observation that
interpretable structural descriptors were among
the most important features.

It is important to interpret these performance
metrics in the context of the inherent uncertainty
associated with negative labels in ligandability
prediction. Cysteines labeled as negative
(primarily based on non-detectability in proteomics
assays) may not be truly non-ligandable but
simply may have not been observed to interact
under the specific experimental conditions tested
so far. Standard classification metrics, calculated
against this potentially noisy ground truth, may
therefore underestimate the model’s ability to
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Figure 2. Machine learning pipeline and TopCySPAL model performance for cysteine ligandability prediction. (A)
PDB and AlphaFold Database (AFDB) structures were processed to generate two types of cysteine features: SaProt
embeddings (1,280 features) and structural descriptors (140 features). The term “StrucD” refers to the computational
workflow generating the structural descriptors as detailed in S| section 1.2.1.1. The dataset was split into training
(80%) and test (20%) sets using FoldSeek-based AFDB clusters [39] to prevent homology-based data leakage.
Training data underwent Positive-Unlabeled (PU) learning with 30 independent XGBoost classifier bags to refine
negative labels. Feature selection using SHAP-based RFECYV led to 196 optimal features. The final XGBoost model
was evaluated on the held-out test set and an independent inference-like test set. (B) Distribution of model
performance metrics across 5-fold cross-validation (box plots), with individual fold values shown as yellow dots and
held-out test set performance as blue stars. AUROC: area under the ROC curve, AUPRC: area under the precision-
recall curve, MCC: Matthews correlation coefficient, k: Cohen’s kappa. (C) Example prediction on an AFDB structure
of splicing factor SF3B1 (O75533), one of 13 proteins from the inference-like test set. Cysteines are colored according
to red: predicted ligandable “1”, black: predicted non-ligandable “0”. The ABPP-ligandable cysteine C1111 [45,46]
was correctly identified, with additional cysteines (C677 and C1244) predicted as potentially ligandable. The box at
the bottom refers to the overall result on the inference-like test set.

distinguish truly inert sites from those with future  covering 13 proteins from highly relevant families
ligandable potential. Our use of PU learning aimed (e.g., E3 ligases, transcription factors, splicing
to mitigate this by focusing training on higher-  factors) (see Table SI-1, Figure 2C). These
confidence negatives. Ultimately, the model’s goal  cysteines exhibited proteomics evidence of
is to generalize beyond current observations and  covalent engagement that was unknown to the
identify potentially novel ligandable sites, a  model and had been independently validated by
capability supported by its strong performance on corresponding alanine- or serine-mutants, the
the independent inference-like test set (Table Sl-1). measurement of binding characteristics to the

Notably, TopCySPAL successfully identified 11 identified target, or other complementary
out of 13 ABPP-ligandable cysteines in a second experiments. For the shown example protein
inference-like test set derived from literature
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SF3B1 (0O75533), the model correctly identified
C1111 [45,46], confirming TopCySPAL's ability to
narrow down true positives in noisy non-targeted
chemoproteomics approaches, thereby aiding
decision-making in covalent drug discovery. In addi-
tion, C677 and C1244 were predicted to be ligand-
able, suggesting their potential as covalent drug
targets and warranting further investigation. The
false-negative cases involved zinc-binding cys-
teines in RNF126 [47] and RNF4 [48], highlighting
both the model’s ability to recognize the negatively
labeled metal-binding signature and potential limita-
tions in the overall classification in unusual cases
where typical metal-binding cysteines can engage
in covalent interactions with TCls.

Analysis of feature importance post training
revealed that predictions rely on a combination of
structural descriptors that match chemical intuition
and specific embedding dimensions. The most
influential features included side-chain solvent
accessibility, secondary structure assignment at
the cysteine site, and the atomic density within 6
A, and the key embedding dimensions are 805,
732, 1025, 1266, 638, 595, and 1083. This
combination enables the model to capture
complex patterns associated with cysteine
ligandability while maintaining physical plausibility,
as the highest-ranking structural descriptors align
with established chemical and structural principles
of cysteine reactivity. The balanced importance of
both interpretable structural descriptors and
learned embedding features provides confidence
in the model's decision-making process,
demonstrating the value of integrating both local
structural properties and broader sequence-based
patterns.

Web interface provides access to integrated
cysteine data and predicted ligandability

TopCysteineDB is freely accessible via a web
interface generated by the streamlit-based Python
package TopCysteineDBApp
(https://topcysteinedb.hhu.de/), designed to
facilitate the exploration of cysteine sites across
the human proteome (Figure 3A). The
implemented backend enables efficient SQL
queries against TopCysteineDB, the retrieval of
selected cysteine site structures from the PDB or
AlphaFoldDB, reliable sequence-structure
mapping using TopUniPDBMapper (see Sl
Section 1.2), and ligandability predictions using
TopCySPAL (features are calculated using
Foldseek, SaProt, Biotite, and DSSP; see SI
Section 1.2). The application’s server can be run
locally or operated on a remote machine and
permits user interaction with a frontend that
consists of four pages. Besides the initial “Home”
page, users can browse, filter, and download
protein-specific  datasets of structural and

proteomics data via the “Datasets” page.
Moreover, the “Visualization” page uniquely
combines visualization of protein structures with
the available proteomics data, allowing
researchers to examine the classified cysteine site
structures and simultaneously assess
corresponding reactivity information in its three-
dimensional context (Figure 3B). Utilizing the
cross-referenced nature of the available residue-
wise data in combination with the flexible py3Dmol
visualization capabilities [49], a highly customizable
viewer has been created that allows for a color-
coded mapping of ligandability information onto a
protein structure of choice. The style settings of
chains, surfaces, cysteine-, neighboring- and
hetatm-residues can be adapted. Protein sequence
parts corresponding to peptides detected in the pro-
teomics experiments can be highlighted. For a
selected cysteine site, a comprehensive overview
of the available proteomics data across all quanti-
fied ligands is provided. Visualized protein struc-
tures and ligands can be downloaded in common
file formats. Finally, ligandability predictions by Top-
CySPAL on both existing and uploaded PDB and
AlphaFold structures can be performed on the “Pre-
diction” page.

Conclusion
TopCysteineDB  represents a  significant
advancement in understanding cysteine

ligandability by bridging structural biology and
chemoproteomics data. Through the combination
of our TopCovPDB classification pipeline with
extensive manual curation we have created a
high-quality dataset that provides unprecedented
granularity in distinguishing different types of
covalent modifications while maintaining broad
coverage of the human cysteinome. The close
integration of diverse structural information and
proteomics data combined with state-of-the-art
embeddings and physics-based descriptors
enabled the development of the machine learning
model TopCySPAL, which shows strong predictive
performance. The model’s transferable nature was
demonstrated by the successful validation on
independently confirmed ABPP-ligandable
cysteines, showcasing its practical utility for drug
discovery applications supporting the identification
of potentially novel ligandable cysteine sites.
Through its interactive web interface,
TopCysteineDB makes the wealth of integrated
data easily accessible to researchers, offering
both comprehensive visualization tools and
predictive capabilities. This resource contributes to
the field of covalent ligand discovery by providing
integrated access to previously dispersed data
types, thereby enabling systematic identification
and validation of novel cysteine targets across the
human proteome. While the current focus has
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Figure 3. Interface of the TopCysteineDB webserver. (A) Schematic representation of the TopCysteineDBApp
that enables user interaction with TopCysteineDB and TopCySPAL. See text for details. (B) Screenshot of the color-
coded proteomics activity mapping accessible via the “Visualization” page, exemplified for a user-selected structure of
glutathione S-transferase omega-1 (PDB ID 1EEM). The viewer can be customized via the sidebar settings. The
maximum CR values known for the structurally resolved cysteines 32 (classified as “covalent”; highly reactive,
yellow), 90, 112 (not reactive, violet), 192, and 237 (moderately reactive, blue-green) are indicated by colors (see
color scale) corresponding to CR values between 1 and >4 (expressed as activity between “0%” and “95%”). The
covalent “GSH” ligand identified by TopCovPDB is highlighted in green. For cysteine 112, the label has been activated
by hovering over the residue. The protein region flanking this residue has been identified via a user-provided peptide
sequence and is highlighted in dark blue.
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been on human proteins due to the available
proteomics data, our approach should be
extendable to the analysis of microbial or other
pathogen targets, opening possibilities for broader
therapeutic applications.

Materials & Methods

TopCysteineDB: A comprehensive database of
cysteine site structures and cysteine
ligandability

TopCysteineDB  integrates  structural and
chemoproteomics data in an SQLite database
linking protein structures, cysteine sites, and
experimental chemoproteomics measurements.
Using our automated pipeline TopCovPDB, we
systematically classified cysteine sites based on
their interaction partners, followed by manual
curation. For detailed methodology, see SI
Section 1.1.

Prediction of cysteine ligandability

We developed TopCySPAL (Cysteine Structure—
Proteomics-Augmented Ligandability predictor),
combining structural descriptors and protein
embeddings with proteomics data. The model
achieved strong performance (AUROC: 0.964,
AUPRC: 0.914) and successfully identified 12/13

independently validated ABPP-ligandable
cysteines. For detailed methodology, see SI
Section 1.2.

Interface

TopCysteineDB is accessible through a web
interface (https://topcysteinedb.hhu.de) enabling

interactive visualization and ligandability
prediction. For detailed methodology, see SI
Section 1.3.
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