% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@ARTICLE{Rothstein:1042705,
author = {Rothstein, Alexander and Fischer, Ammon and Achtermann,
Anthony and Icking, Eike and Hecker, Katrin and Banszerus,
Luca and Otto, Martin and Trellenkamp, Stefan and Lentz,
Florian and Watanabe, Kenji and Taniguchi, Takashi and
Beschoten, Bernd and Dolleman, Robin J. and Kennes, Dante M.
and Stampfer, Christoph},
title = {{G}ate-{D}efined {S}ingle-{E}lectron {T}ransistors in
{T}wisted {B}ilayer {G}raphene},
journal = {Nano letters},
volume = {25},
number = {16},
issn = {1530-6984},
address = {Washington, DC},
publisher = {ACS Publ.},
reportid = {FZJ-2025-02651},
pages = {6429 - 6437},
year = {2025},
note = {Bitte Post-print ergänzen},
abstract = {Twisted bilayer graphene (tBLG) near the magic angle is a
unique platform where the combination of topology and strong
correlations gives rise to exotic electronic phases. These
phases are gate-tunable and related to the presence of flat
electronic bands, isolated by single-particle band gaps.
This enables gate-controlled charge confinements, essential
for the operation of single-electron transistors (SETs), and
allows one to explore the interplay of confinement, electron
interactions, band renormalization, and the moiré
superlattice, potentially revealing key paradigms of strong
correlations. Here, we present gate-defined SETs in tBLG
with well-tunable Coulomb blockade resonances. These SETs
allow us to study magnetic field-induced quantum
oscillations in the density of states of the source-drain
reservoirs, providing insight into gate-tunable Fermi
surfaces of tBLG. Comparison with tight-binding calculations
highlights the importance of displacement-field-induced band
renormalization crucial for future advanced gate-tunable
quantum devices and circuits in tBLG including, e.g.,
quantum dots and Josephson junction arrays.},
cin = {PGI-9 / JARA-FIT / HNF},
ddc = {660},
cid = {I:(DE-Juel1)PGI-9-20110106 / $I:(DE-82)080009_20140620$ /
I:(DE-Juel1)HNF-20170116},
pnm = {5222 - Exploratory Qubits (POF4-522) / 2D4QT - 2D Materials
for Quantum Technology (820254) / DFG project
G:(GEPRIS)535377524 - Quantenpunkte in verdrehtem und
proximity-gekoppeltem zweilagigen Graphen (535377524) / DFG
project G:(GEPRIS)390534769 - EXC 2004: Materie und Licht
für Quanteninformation (ML4Q) (390534769) / DFG project
G:(GEPRIS)437214324 - Durchstimmbare Twistronics: Lokales
Tuning und lokale Detektion topologischer Randzustände und
Supraleitung in Zweilagigen-Graphen (437214324) / DFG
project G:(GEPRIS)471733165 - Moiré-verstärkte
Infrarot-Photodetektion und THz-Emission in verdrehten
Graphen-Übergittern (471733165) / DFG project
G:(GEPRIS)534269806 - Terahertz-Quantensensorik mit
Zweilagigen-Graphen Quantenpunkten in Resonatoren
(534269806)},
pid = {G:(DE-HGF)POF4-5222 / G:(EU-Grant)820254 /
G:(GEPRIS)535377524 / G:(GEPRIS)390534769 /
G:(GEPRIS)437214324 / G:(GEPRIS)471733165 /
G:(GEPRIS)534269806},
typ = {PUB:(DE-HGF)16},
doi = {10.1021/acs.nanolett.4c06492},
url = {https://juser.fz-juelich.de/record/1042705},
}