Hauptseite > Online First > Gate-Defined Single-Electron Transistors in Twisted Bilayer Graphene > print |
001 | 1042705 | ||
005 | 20251009202053.0 | ||
024 | 7 | _ | |a 10.1021/acs.nanolett.4c06492 |2 doi |
024 | 7 | _ | |a 1530-6984 |2 ISSN |
024 | 7 | _ | |a 1530-6992 |2 ISSN |
037 | _ | _ | |a FZJ-2025-02651 |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Rothstein, Alexander |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Gate-Defined Single-Electron Transistors in Twisted Bilayer Graphene |
260 | _ | _ | |a Washington, DC |c 2025 |b ACS Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1759996762_2202 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Bitte Post-print ergänzen |
520 | _ | _ | |a Twisted bilayer graphene (tBLG) near the magic angle is a unique platform where the combination of topology and strong correlations gives rise to exotic electronic phases. These phases are gate-tunable and related to the presence of flat electronic bands, isolated by single-particle band gaps. This enables gate-controlled charge confinements, essential for the operation of single-electron transistors (SETs), and allows one to explore the interplay of confinement, electron interactions, band renormalization, and the moiré superlattice, potentially revealing key paradigms of strong correlations. Here, we present gate-defined SETs in tBLG with well-tunable Coulomb blockade resonances. These SETs allow us to study magnetic field-induced quantum oscillations in the density of states of the source-drain reservoirs, providing insight into gate-tunable Fermi surfaces of tBLG. Comparison with tight-binding calculations highlights the importance of displacement-field-induced band renormalization crucial for future advanced gate-tunable quantum devices and circuits in tBLG including, e.g., quantum dots and Josephson junction arrays. |
536 | _ | _ | |a 5222 - Exploratory Qubits (POF4-522) |0 G:(DE-HGF)POF4-5222 |c POF4-522 |f POF IV |x 0 |
536 | _ | _ | |a 2D4QT - 2D Materials for Quantum Technology (820254) |0 G:(EU-Grant)820254 |c 820254 |f ERC-2018-COG |x 1 |
536 | _ | _ | |a DFG project G:(GEPRIS)535377524 - Quantenpunkte in verdrehtem und proximity-gekoppeltem zweilagigen Graphen (535377524) |0 G:(GEPRIS)535377524 |c 535377524 |x 2 |
536 | _ | _ | |a DFG project G:(GEPRIS)390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769) |0 G:(GEPRIS)390534769 |c 390534769 |x 3 |
536 | _ | _ | |a DFG project G:(GEPRIS)437214324 - Durchstimmbare Twistronics: Lokales Tuning und lokale Detektion topologischer Randzustände und Supraleitung in Zweilagigen-Graphen (437214324) |0 G:(GEPRIS)437214324 |c 437214324 |x 4 |
536 | _ | _ | |a DFG project G:(GEPRIS)471733165 - Moiré-verstärkte Infrarot-Photodetektion und THz-Emission in verdrehten Graphen-Übergittern (471733165) |0 G:(GEPRIS)471733165 |c 471733165 |x 5 |
536 | _ | _ | |a DFG project G:(GEPRIS)534269806 - Terahertz-Quantensensorik mit Zweilagigen-Graphen Quantenpunkten in Resonatoren (534269806) |0 G:(GEPRIS)534269806 |c 534269806 |x 6 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Fischer, Ammon |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Achtermann, Anthony |0 P:(DE-Juel1)201288 |b 2 |u fzj |
700 | 1 | _ | |a Icking, Eike |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Hecker, Katrin |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Banszerus, Luca |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Otto, Martin |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Trellenkamp, Stefan |0 P:(DE-Juel1)128856 |b 7 |u fzj |
700 | 1 | _ | |a Lentz, Florian |0 P:(DE-Juel1)130795 |b 8 |u fzj |
700 | 1 | _ | |a Watanabe, Kenji |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Taniguchi, Takashi |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Beschoten, Bernd |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Dolleman, Robin J. |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Kennes, Dante M. |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Stampfer, Christoph |0 P:(DE-Juel1)180322 |b 14 |e Corresponding author |
773 | _ | _ | |a 10.1021/acs.nanolett.4c06492 |g Vol. 25, no. 16, p. 6429 - 6437 |0 PERI:(DE-600)2048866-X |n 16 |p 6429 - 6437 |t Nano letters |v 25 |y 2025 |x 1530-6984 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1042705/files/revised%2Bcombined%2B-%2Bchanges%2Bnot%2Bhighlighted.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:1042705 |p openaire |p ec_fundedresources |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)201288 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)128856 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)130795 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 11 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 12 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 13 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 14 |6 P:(DE-Juel1)180322 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 14 |6 P:(DE-Juel1)180322 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5222 |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANO LETT : 2022 |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-18 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-18 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b NANO LETT : 2022 |d 2024-12-18 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)HNF-20170116 |k HNF |l Helmholtz - Nanofacility |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a EDITORS |
980 | _ | _ | |a VDBINPRINT |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a I:(DE-Juel1)HNF-20170116 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|