001042707 001__ 1042707
001042707 005__ 20250804115243.0
001042707 0247_ $$2doi$$a10.1039/D5TA01651G
001042707 0247_ $$2ISSN$$a2050-7488
001042707 0247_ $$2ISSN$$a2050-7496
001042707 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02653
001042707 0247_ $$2WOS$$aWOS:001489149300001
001042707 037__ $$aFZJ-2025-02653
001042707 082__ $$a530
001042707 1001_ $$0P:(DE-HGF)0$$aFaka, Vasiliki$$b0
001042707 245__ $$aEnhancing ionic conductivity in $Li_{6+ x} Ge_x P_{1−x}S_5Br$: impact of $Li^+$ substructure on ionic transport and solid-state battery performance
001042707 260__ $$aLondon ˜[u.a.]œ$$bRSC$$c2025
001042707 3367_ $$2DRIVER$$aarticle
001042707 3367_ $$2DataCite$$aOutput Types/Journal article
001042707 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1752743408_5669
001042707 3367_ $$2BibTeX$$aARTICLE
001042707 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001042707 3367_ $$00$$2EndNote$$aJournal Article
001042707 520__ $$aSolid-state batteries have been investigated as efficient energy storage systems due to the increased power and energy densities that they can offer compared to liquid-based batteries. The search for solid electrolytes with high ionic conductivities, sufficient electrochemical and mechanical stability is indispensable. In this work, the $Li_{6+ x} Ge_x P_{1−x}S_5Br$ substitution series is investigated via X-ray and neutron powder diffraction, as well as impedance and solid-state nuclear magnetic resonance spectroscopy. Structural analyses reveal the expansion of the cage-like $Li^+$ substructure with increasing degree of substitution of Ge(IV) for P(V) in $Li_{6+ x} Ge_x P_{1−x}S_5Br$. Solid-state nuclear magnetic resonance spectroscopy measurements reveal the gradual changes in cation environments ($^6Li$ and $^{31}P$) and the effect of Ge(IV) substitution on local $Li^+$ transport. Impedance spectroscopy shows an improvement of ionic conductivity at room temperature up to fivefold for $Li_{6.31}Ge_{0.31}P_{0.69}S_5Br$ and decreasing activation energies. Employing $Li_{6.31}Ge_{0.31}P_{0.69}S_5Br$ as a catholyte in $LiNi_xMn_yCo_zO_2$ based solid-state batteries results in reproducibly higher active material utilization and rate stability in comparison to $Li_6PS_5Br$. This work emphasizes the importance of understanding the $Li^+$ substructure of argyrodites in correlation with the $Li^+$ transport properties to systematically develop highly conductive $Li^+$ solid electrolytes for improved solid-state batteries.
001042707 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001042707 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001042707 7001_ $$0P:(DE-HGF)0$$aSamanta, Bibek$$b1
001042707 7001_ $$0P:(DE-Juel1)199741$$aLange, Martin A.$$b2$$ufzj
001042707 7001_ $$0P:(DE-HGF)0$$aHelm, Bianca$$b3
001042707 7001_ $$0P:(DE-HGF)0$$aMartinez de Irujo-Labalde, Xabier$$b4
001042707 7001_ $$0P:(DE-HGF)0$$aKierdorf, Niklas$$b5
001042707 7001_ $$0P:(DE-HGF)0$$aKetter, Lukas$$b6
001042707 7001_ $$00000-0001-5966-5929$$aSuard, Emmanuelle$$b7
001042707 7001_ $$0P:(DE-Juel1)192207$$aKraft, Marvin A.$$b8
001042707 7001_ $$0P:(DE-HGF)0$$aFrancisco, Brian E.$$b9
001042707 7001_ $$00000-0001-7114-8051$$aHansen, Michael Ryan$$b10$$eCorresponding author
001042707 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang$$b11$$eCorresponding author$$ufzj
001042707 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/D5TA01651G$$gp. 10.1039.D5TA01651G$$p17452-17466$$tJournal of materials chemistry / A$$v7$$x2050-7488$$y2025
001042707 8564_ $$yRestricted
001042707 8564_ $$uhttps://juser.fz-juelich.de/record/1042707/files/d5ta01651g.pdf$$yOpenAccess
001042707 8564_ $$uhttps://juser.fz-juelich.de/record/1042707/files/revised_manuscript.pdf$$yOpenAccess
001042707 909CO $$ooai:juser.fz-juelich.de:1042707$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001042707 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)199741$$aForschungszentrum Jülich$$b2$$kFZJ
001042707 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192207$$aForschungszentrum Jülich$$b8$$kFZJ
001042707 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b11$$kFZJ
001042707 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001042707 9141_ $$y2025
001042707 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
001042707 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-05
001042707 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-05
001042707 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-05
001042707 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-05
001042707 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-05
001042707 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ MATER CHEM A : 2022$$d2024-12-05
001042707 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-05
001042707 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001042707 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2022$$d2024-12-05
001042707 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-05$$wger
001042707 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-05
001042707 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-05
001042707 9201_ $$0I:(DE-Juel1)IMD-4-20141217$$kIMD-4$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001042707 980__ $$ajournal
001042707 980__ $$aVDB
001042707 980__ $$aUNRESTRICTED
001042707 980__ $$aI:(DE-Juel1)IMD-4-20141217
001042707 9801_ $$aFullTexts