001     1042707
005     20250804115243.0
024 7 _ |a 10.1039/D5TA01651G
|2 doi
024 7 _ |a 2050-7488
|2 ISSN
024 7 _ |a 2050-7496
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02653
|2 datacite_doi
024 7 _ |a WOS:001489149300001
|2 WOS
037 _ _ |a FZJ-2025-02653
082 _ _ |a 530
100 1 _ |a Faka, Vasiliki
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Enhancing ionic conductivity in $Li_{6+ x} Ge_x P_{1−x}S_5Br$: impact of $Li^+$ substructure on ionic transport and solid-state battery performance
260 _ _ |a London ˜[u.a.]œ
|c 2025
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1752743408_5669
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Solid-state batteries have been investigated as efficient energy storage systems due to the increased power and energy densities that they can offer compared to liquid-based batteries. The search for solid electrolytes with high ionic conductivities, sufficient electrochemical and mechanical stability is indispensable. In this work, the $Li_{6+ x} Ge_x P_{1−x}S_5Br$ substitution series is investigated via X-ray and neutron powder diffraction, as well as impedance and solid-state nuclear magnetic resonance spectroscopy. Structural analyses reveal the expansion of the cage-like $Li^+$ substructure with increasing degree of substitution of Ge(IV) for P(V) in $Li_{6+ x} Ge_x P_{1−x}S_5Br$. Solid-state nuclear magnetic resonance spectroscopy measurements reveal the gradual changes in cation environments ($^6Li$ and $^{31}P$) and the effect of Ge(IV) substitution on local $Li^+$ transport. Impedance spectroscopy shows an improvement of ionic conductivity at room temperature up to fivefold for $Li_{6.31}Ge_{0.31}P_{0.69}S_5Br$ and decreasing activation energies. Employing $Li_{6.31}Ge_{0.31}P_{0.69}S_5Br$ as a catholyte in $LiNi_xMn_yCo_zO_2$ based solid-state batteries results in reproducibly higher active material utilization and rate stability in comparison to $Li_6PS_5Br$. This work emphasizes the importance of understanding the $Li^+$ substructure of argyrodites in correlation with the $Li^+$ transport properties to systematically develop highly conductive $Li^+$ solid electrolytes for improved solid-state batteries.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Samanta, Bibek
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lange, Martin A.
|0 P:(DE-Juel1)199741
|b 2
|u fzj
700 1 _ |a Helm, Bianca
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Martinez de Irujo-Labalde, Xabier
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kierdorf, Niklas
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Ketter, Lukas
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Suard, Emmanuelle
|0 0000-0001-5966-5929
|b 7
700 1 _ |a Kraft, Marvin A.
|0 P:(DE-Juel1)192207
|b 8
700 1 _ |a Francisco, Brian E.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Hansen, Michael Ryan
|0 0000-0001-7114-8051
|b 10
|e Corresponding author
700 1 _ |a Zeier, Wolfgang
|0 P:(DE-Juel1)184735
|b 11
|e Corresponding author
|u fzj
773 _ _ |a 10.1039/D5TA01651G
|g p. 10.1039.D5TA01651G
|0 PERI:(DE-600)2702232-8
|p 17452-17466
|t Journal of materials chemistry / A
|v 7
|y 2025
|x 2050-7488
856 4 _ |y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1042707/files/d5ta01651g.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1042707/files/revised_manuscript.pdf
909 C O |o oai:juser.fz-juelich.de:1042707
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)199741
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)192207
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)184735
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2025
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-05
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J MATER CHEM A : 2022
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER CHEM A : 2022
|d 2024-12-05
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-05
920 1 _ |0 I:(DE-Juel1)IMD-4-20141217
|k IMD-4
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-4-20141217
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21