001042708 001__ 1042708
001042708 005__ 20250804115148.0
001042708 0247_ $$2doi$$a10.1021/acs.chemmater.5c00627
001042708 0247_ $$2ISSN$$a0897-4756
001042708 0247_ $$2ISSN$$a1520-5002
001042708 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02654
001042708 0247_ $$2WOS$$aWOS:001492363800001
001042708 037__ $$aFZJ-2025-02654
001042708 082__ $$a540
001042708 1001_ $$00000-0002-8408-7232$$aNewnham, Jon A.$$b0
001042708 245__ $$aCorrelation between the Coherence Length and Ionic Conductivity in $LiNbOCl_4$ via the Anion Stoichiometry
001042708 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2025
001042708 3367_ $$2DRIVER$$aarticle
001042708 3367_ $$2DataCite$$aOutput Types/Journal article
001042708 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1751550603_29320
001042708 3367_ $$2BibTeX$$aARTICLE
001042708 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001042708 3367_ $$00$$2EndNote$$aJournal Article
001042708 500__ $$aBundesministerium für Bildung und Forschung (BMBF) funding under the FESTBATT cluster of competence (project 03XP0430F)
001042708 520__ $$a$LiNbOCl_4$ is a recently reported material with high $Li^+$ conductivities of ∼10 $mS·cm^{–1}$ at room temperature. Here, we explore how changing the anion ratio and the $Li^+$ content in the $Li_{1–x}NbO_{1–x}Cl_{4+x}$ series (−0.4 ≤ x ≤ 0.2) affects the ionic conductivity of the material. In doing so, we find that the maximum coherence length and ionic conductivity of $LiNbOCl_4$ are highly dependent on the $O^{2–}$/$Cl^–$ anion ratio in the material. Specifically, we show that, while an amorphous phase fraction of $LiNbOCl_4$ remains constant throughout the substitution series, any excess of $O^{2–}$ results in a rapid decrease in the maximum coherence length of the crystaline fraction in each sample. Through a combination of diffraction and spectroscopic techniques, we show that this occurs because the $O^{2–}$ anions cannot exist on the terminal sites of the $[NbOCl_4]_∞^{–}$ chains in the material, even when it is made with an excess of $O^{2–}$ resulting in a shortening of those chains. In contrast, it was observed that $Cl^–$ can occupy the bridging sites resulting in a dependence of the coherence length to the anion ratio. As such, the ionic conductivity of $LiNbOCl_4$ can be maximized by controlling the maximum coherence length in the material through the anion ratio. Notably, we achieved high ionic conductivities for $LiNbOCl_4$ consistent with literature reports only when the material was slightly $Li^+$ and $O^{2–}$ deficient, suggesting that the literature samples may also have been off-stoichiometry. In addition, we highlight the features missing from the current structural models of $LiNbOCl_4$ including the presence of mixed $Cl^–$/$O^{2–}$ sites, even in the stoichiometric material, which were previously thought to not exist. Finally, we show that slightly reducing the $Li^+$ and $O^{2–}$ contents in $LiNbOCl_4$ also translates to higher capacities when it is used as a catholyte in solid-state batteries. These findings show the importance of careful control of the stoichiometry in $LiNbOCl_4$ to optimize its properties and highlights the potential of $LiNbOCl_4$ for use as a catholyte in solid-state batteries.
001042708 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001042708 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001042708 7001_ $$0P:(DE-HGF)0$$aKondek, Jędrzej$$b1
001042708 7001_ $$0P:(DE-HGF)0$$aHartel, Johannes$$b2
001042708 7001_ $$0P:(DE-HGF)0$$aRosenbach, Carolin$$b3
001042708 7001_ $$0P:(DE-Juel1)172659$$aLi, Cheng$$b4
001042708 7001_ $$0P:(DE-HGF)0$$aFaka, Vasiliki$$b5
001042708 7001_ $$00009-0005-3180-3994$$aGronych, Lara$$b6
001042708 7001_ $$0P:(DE-HGF)0$$aGlikman, Dana$$b7
001042708 7001_ $$0P:(DE-HGF)0$$aSchreiner, Florian$$b8
001042708 7001_ $$0P:(DE-HGF)0$$aWind, Domenik D.$$b9
001042708 7001_ $$00000-0002-6539-1693$$aBraunschweig, Björn$$b10
001042708 7001_ $$00000-0001-7114-8051$$aHansen, Michael Ryan$$b11$$eCorresponding author
001042708 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang G.$$b12$$eCorresponding author
001042708 773__ $$0PERI:(DE-600)1500399-1$$a10.1021/acs.chemmater.5c00627$$gp. acs.chemmater.5c00627$$n11$$p4130-4144$$tChemistry of materials$$v37$$x0897-4756$$y2025
001042708 8564_ $$uhttps://juser.fz-juelich.de/record/1042708/files/revised_manuscript.pdf$$yPublished on 2025-05-20. Available in OpenAccess from 2026-05-20.
001042708 909CO $$ooai:juser.fz-juelich.de:1042708$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001042708 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b12$$kFZJ
001042708 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001042708 9141_ $$y2025
001042708 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
001042708 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-16
001042708 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-16
001042708 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
001042708 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001042708 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM MATER : 2022$$d2024-12-16
001042708 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM MATER : 2022$$d2024-12-16
001042708 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-16
001042708 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
001042708 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
001042708 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-16
001042708 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
001042708 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-16$$wger
001042708 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
001042708 9201_ $$0I:(DE-Juel1)IMD-4-20141217$$kIMD-4$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001042708 980__ $$ajournal
001042708 980__ $$aVDB
001042708 980__ $$aUNRESTRICTED
001042708 980__ $$aI:(DE-Juel1)IMD-4-20141217
001042708 9801_ $$aFullTexts