001     1042708
005     20250804115148.0
024 7 _ |a 10.1021/acs.chemmater.5c00627
|2 doi
024 7 _ |a 0897-4756
|2 ISSN
024 7 _ |a 1520-5002
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02654
|2 datacite_doi
024 7 _ |a WOS:001492363800001
|2 WOS
037 _ _ |a FZJ-2025-02654
082 _ _ |a 540
100 1 _ |a Newnham, Jon A.
|0 0000-0002-8408-7232
|b 0
245 _ _ |a Correlation between the Coherence Length and Ionic Conductivity in $LiNbOCl_4$ via the Anion Stoichiometry
260 _ _ |a Washington, DC
|c 2025
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1751550603_29320
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Bundesministerium für Bildung und Forschung (BMBF) funding under the FESTBATT cluster of competence (project 03XP0430F)
520 _ _ |a $LiNbOCl_4$ is a recently reported material with high $Li^+$ conductivities of ∼10 $mS·cm^{–1}$ at room temperature. Here, we explore how changing the anion ratio and the $Li^+$ content in the $Li_{1–x}NbO_{1–x}Cl_{4+x}$ series (−0.4 ≤ x ≤ 0.2) affects the ionic conductivity of the material. In doing so, we find that the maximum coherence length and ionic conductivity of $LiNbOCl_4$ are highly dependent on the $O^{2–}$/$Cl^–$ anion ratio in the material. Specifically, we show that, while an amorphous phase fraction of $LiNbOCl_4$ remains constant throughout the substitution series, any excess of $O^{2–}$ results in a rapid decrease in the maximum coherence length of the crystaline fraction in each sample. Through a combination of diffraction and spectroscopic techniques, we show that this occurs because the $O^{2–}$ anions cannot exist on the terminal sites of the $[NbOCl_4]_∞^{–}$ chains in the material, even when it is made with an excess of $O^{2–}$ resulting in a shortening of those chains. In contrast, it was observed that $Cl^–$ can occupy the bridging sites resulting in a dependence of the coherence length to the anion ratio. As such, the ionic conductivity of $LiNbOCl_4$ can be maximized by controlling the maximum coherence length in the material through the anion ratio. Notably, we achieved high ionic conductivities for $LiNbOCl_4$ consistent with literature reports only when the material was slightly $Li^+$ and $O^{2–}$ deficient, suggesting that the literature samples may also have been off-stoichiometry. In addition, we highlight the features missing from the current structural models of $LiNbOCl_4$ including the presence of mixed $Cl^–$/$O^{2–}$ sites, even in the stoichiometric material, which were previously thought to not exist. Finally, we show that slightly reducing the $Li^+$ and $O^{2–}$ contents in $LiNbOCl_4$ also translates to higher capacities when it is used as a catholyte in solid-state batteries. These findings show the importance of careful control of the stoichiometry in $LiNbOCl_4$ to optimize its properties and highlights the potential of $LiNbOCl_4$ for use as a catholyte in solid-state batteries.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kondek, Jędrzej
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hartel, Johannes
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Rosenbach, Carolin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Li, Cheng
|0 P:(DE-Juel1)172659
|b 4
700 1 _ |a Faka, Vasiliki
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gronych, Lara
|0 0009-0005-3180-3994
|b 6
700 1 _ |a Glikman, Dana
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Schreiner, Florian
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Wind, Domenik D.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Braunschweig, Björn
|0 0000-0002-6539-1693
|b 10
700 1 _ |a Hansen, Michael Ryan
|0 0000-0001-7114-8051
|b 11
|e Corresponding author
700 1 _ |a Zeier, Wolfgang G.
|0 P:(DE-Juel1)184735
|b 12
|e Corresponding author
773 _ _ |a 10.1021/acs.chemmater.5c00627
|g p. acs.chemmater.5c00627
|0 PERI:(DE-600)1500399-1
|n 11
|p 4130-4144
|t Chemistry of materials
|v 37
|y 2025
|x 0897-4756
856 4 _ |u https://juser.fz-juelich.de/record/1042708/files/revised_manuscript.pdf
|y Published on 2025-05-20. Available in OpenAccess from 2026-05-20.
909 C O |o oai:juser.fz-juelich.de:1042708
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)184735
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-16
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM MATER : 2022
|d 2024-12-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEM MATER : 2022
|d 2024-12-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-16
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
920 1 _ |0 I:(DE-Juel1)IMD-4-20141217
|k IMD-4
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-4-20141217
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21