Hauptseite > Publikationsdatenbank > Correlation between the Coherence Length and Ionic Conductivity in $LiNbOCl_4$ via the Anion Stoichiometry > print |
001 | 1042708 | ||
005 | 20250804115148.0 | ||
024 | 7 | _ | |a 10.1021/acs.chemmater.5c00627 |2 doi |
024 | 7 | _ | |a 0897-4756 |2 ISSN |
024 | 7 | _ | |a 1520-5002 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2025-02654 |2 datacite_doi |
024 | 7 | _ | |a WOS:001492363800001 |2 WOS |
037 | _ | _ | |a FZJ-2025-02654 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Newnham, Jon A. |0 0000-0002-8408-7232 |b 0 |
245 | _ | _ | |a Correlation between the Coherence Length and Ionic Conductivity in $LiNbOCl_4$ via the Anion Stoichiometry |
260 | _ | _ | |a Washington, DC |c 2025 |b American Chemical Society |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1751550603_29320 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Bundesministerium für Bildung und Forschung (BMBF) funding under the FESTBATT cluster of competence (project 03XP0430F) |
520 | _ | _ | |a $LiNbOCl_4$ is a recently reported material with high $Li^+$ conductivities of ∼10 $mS·cm^{–1}$ at room temperature. Here, we explore how changing the anion ratio and the $Li^+$ content in the $Li_{1–x}NbO_{1–x}Cl_{4+x}$ series (−0.4 ≤ x ≤ 0.2) affects the ionic conductivity of the material. In doing so, we find that the maximum coherence length and ionic conductivity of $LiNbOCl_4$ are highly dependent on the $O^{2–}$/$Cl^–$ anion ratio in the material. Specifically, we show that, while an amorphous phase fraction of $LiNbOCl_4$ remains constant throughout the substitution series, any excess of $O^{2–}$ results in a rapid decrease in the maximum coherence length of the crystaline fraction in each sample. Through a combination of diffraction and spectroscopic techniques, we show that this occurs because the $O^{2–}$ anions cannot exist on the terminal sites of the $[NbOCl_4]_∞^{–}$ chains in the material, even when it is made with an excess of $O^{2–}$ resulting in a shortening of those chains. In contrast, it was observed that $Cl^–$ can occupy the bridging sites resulting in a dependence of the coherence length to the anion ratio. As such, the ionic conductivity of $LiNbOCl_4$ can be maximized by controlling the maximum coherence length in the material through the anion ratio. Notably, we achieved high ionic conductivities for $LiNbOCl_4$ consistent with literature reports only when the material was slightly $Li^+$ and $O^{2–}$ deficient, suggesting that the literature samples may also have been off-stoichiometry. In addition, we highlight the features missing from the current structural models of $LiNbOCl_4$ including the presence of mixed $Cl^–$/$O^{2–}$ sites, even in the stoichiometric material, which were previously thought to not exist. Finally, we show that slightly reducing the $Li^+$ and $O^{2–}$ contents in $LiNbOCl_4$ also translates to higher capacities when it is used as a catholyte in solid-state batteries. These findings show the importance of careful control of the stoichiometry in $LiNbOCl_4$ to optimize its properties and highlights the potential of $LiNbOCl_4$ for use as a catholyte in solid-state batteries. |
536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Kondek, Jędrzej |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Hartel, Johannes |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Rosenbach, Carolin |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Li, Cheng |0 P:(DE-Juel1)172659 |b 4 |
700 | 1 | _ | |a Faka, Vasiliki |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Gronych, Lara |0 0009-0005-3180-3994 |b 6 |
700 | 1 | _ | |a Glikman, Dana |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Schreiner, Florian |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Wind, Domenik D. |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Braunschweig, Björn |0 0000-0002-6539-1693 |b 10 |
700 | 1 | _ | |a Hansen, Michael Ryan |0 0000-0001-7114-8051 |b 11 |e Corresponding author |
700 | 1 | _ | |a Zeier, Wolfgang G. |0 P:(DE-Juel1)184735 |b 12 |e Corresponding author |
773 | _ | _ | |a 10.1021/acs.chemmater.5c00627 |g p. acs.chemmater.5c00627 |0 PERI:(DE-600)1500399-1 |n 11 |p 4130-4144 |t Chemistry of materials |v 37 |y 2025 |x 0897-4756 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1042708/files/revised_manuscript.pdf |y Published on 2025-05-20. Available in OpenAccess from 2026-05-20. |
909 | C | O | |o oai:juser.fz-juelich.de:1042708 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)184735 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-16 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CHEM MATER : 2022 |d 2024-12-16 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b CHEM MATER : 2022 |d 2024-12-16 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-16 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-16 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-16 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-16 |
920 | 1 | _ | |0 I:(DE-Juel1)IMD-4-20141217 |k IMD-4 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|