001042709 001__ 1042709
001042709 005__ 20250804115221.0
001042709 0247_ $$2doi$$a10.1021/acs.chemmater.4c03315
001042709 0247_ $$2ISSN$$a0897-4756
001042709 0247_ $$2ISSN$$a1520-5002
001042709 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02655
001042709 0247_ $$2WOS$$aWOS:001477011300001
001042709 037__ $$aFZJ-2025-02655
001042709 082__ $$a540
001042709 1001_ $$0P:(DE-HGF)0$$aPavan, Matilde$$b0
001042709 245__ $$aRole and Evolution of $FeS_2$ Cathode Microstructure in Argyrodite-Based All-Solid-State Lithium–Sulfur Batteries
001042709 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2025
001042709 3367_ $$2DRIVER$$aarticle
001042709 3367_ $$2DataCite$$aOutput Types/Journal article
001042709 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1752748830_2296
001042709 3367_ $$2BibTeX$$aARTICLE
001042709 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001042709 3367_ $$00$$2EndNote$$aJournal Article
001042709 500__ $$aSupport from the Federal Ministry of Education and Research (BMBF) for the project KAROFEST (grant number 03XP0498A)Support within the BMBF projects SoLiS (grant number 03XP0395D) and ProRec (grant number 03XP0537E)
001042709 520__ $$aAll-solid-state lithium–sulfur batteries (ASSLSBs) are emerging as a promising alternative for green energy storage, offering high theoretical capacities and energy densities by using inexpensive materials. To date, ASSLSBs commonly suffer from poor cycle life and sluggish reaction kinetics. A promising active material for ASSLSBs is iron disulfide, $FeS_2$, due to its natural abundance, low cost, and high theoretical capacity (894 $mAh·g^{–1}$) It undergoes a displacement reaction with significant volume changes whose effects can be locally constrained by using small particles. Here, the influence of the positive electrode microstructure on the electrochemical performance of $FeS_2$-based ASSLSBs with Cl-rich argyrodite, $Li_{5.5}PS_{4.5}Cl_{1.5}$, a mechanically soft sulfide solid electrolyte with high ionic conductivity, is investigated. Composites with different microstructures were prepared using three different processing methods (i.e., hand grinding, ball mill, and mini mill). Their impact on the electrochemical performance was evaluated, revealing that homogeneously submicro-structured composites achieve higher capacities (up to 4.28 $mAh·cm^{–2}$) and capacity retention (87.2% at the 50th cycle). Furthermore, finely structured composites enhance the in situ formation of active material from the solid electrolyte and increase its accessible reversible capacity. Ex situ analyses (i.e., SEM-EDS and XPS) at different states of charge show that the morphology of $FeS_2$ evolves forming core–shell like submicro-structures.
001042709 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001042709 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001042709 7001_ $$00000-0002-8778-9344$$aMünch, Konrad$$b1
001042709 7001_ $$00000-0002-0650-984X$$aBenz, Sebastian L.$$b2
001042709 7001_ $$0P:(DE-HGF)0$$aBernges, Tim$$b3
001042709 7001_ $$0P:(DE-HGF)0$$aHenss, Anja$$b4
001042709 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang G.$$b5
001042709 7001_ $$00000-0002-9221-4756$$aJanek, Jürgen$$b6$$eCorresponding author
001042709 773__ $$0PERI:(DE-600)1500399-1$$a10.1021/acs.chemmater.4c03315$$gVol. 37, no. 9, p. 3185 - 3196$$n9$$p3185 - 3196$$tChemistry of materials$$v37$$x0897-4756$$y2025
001042709 8564_ $$yRestricted
001042709 8564_ $$uhttps://juser.fz-juelich.de/record/1042709/files/pavan-et-al-2025-role-and-evolution-of-fes2-cathode-microstructure-in-argyrodite-based-all-solid-state-lithium-sulfur.pdf$$yOpenAccess
001042709 909CO $$ooai:juser.fz-juelich.de:1042709$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001042709 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b5$$kFZJ
001042709 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001042709 9141_ $$y2025
001042709 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
001042709 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-16
001042709 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-16
001042709 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001042709 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
001042709 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM MATER : 2022$$d2024-12-16
001042709 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM MATER : 2022$$d2024-12-16
001042709 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-16
001042709 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
001042709 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001042709 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
001042709 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-16
001042709 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
001042709 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-16$$wger
001042709 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
001042709 9201_ $$0I:(DE-Juel1)IMD-4-20141217$$kIMD-4$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001042709 980__ $$ajournal
001042709 980__ $$aVDB
001042709 980__ $$aUNRESTRICTED
001042709 980__ $$aI:(DE-Juel1)IMD-4-20141217
001042709 9801_ $$aFullTexts