001     1042709
005     20250804115221.0
024 7 _ |a 10.1021/acs.chemmater.4c03315
|2 doi
024 7 _ |a 0897-4756
|2 ISSN
024 7 _ |a 1520-5002
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02655
|2 datacite_doi
024 7 _ |a WOS:001477011300001
|2 WOS
037 _ _ |a FZJ-2025-02655
082 _ _ |a 540
100 1 _ |a Pavan, Matilde
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Role and Evolution of $FeS_2$ Cathode Microstructure in Argyrodite-Based All-Solid-State Lithium–Sulfur Batteries
260 _ _ |a Washington, DC
|c 2025
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1752748830_2296
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Support from the Federal Ministry of Education and Research (BMBF) for the project KAROFEST (grant number 03XP0498A)Support within the BMBF projects SoLiS (grant number 03XP0395D) and ProRec (grant number 03XP0537E)
520 _ _ |a All-solid-state lithium–sulfur batteries (ASSLSBs) are emerging as a promising alternative for green energy storage, offering high theoretical capacities and energy densities by using inexpensive materials. To date, ASSLSBs commonly suffer from poor cycle life and sluggish reaction kinetics. A promising active material for ASSLSBs is iron disulfide, $FeS_2$, due to its natural abundance, low cost, and high theoretical capacity (894 $mAh·g^{–1}$) It undergoes a displacement reaction with significant volume changes whose effects can be locally constrained by using small particles. Here, the influence of the positive electrode microstructure on the electrochemical performance of $FeS_2$-based ASSLSBs with Cl-rich argyrodite, $Li_{5.5}PS_{4.5}Cl_{1.5}$, a mechanically soft sulfide solid electrolyte with high ionic conductivity, is investigated. Composites with different microstructures were prepared using three different processing methods (i.e., hand grinding, ball mill, and mini mill). Their impact on the electrochemical performance was evaluated, revealing that homogeneously submicro-structured composites achieve higher capacities (up to 4.28 $mAh·cm^{–2}$) and capacity retention (87.2% at the 50th cycle). Furthermore, finely structured composites enhance the in situ formation of active material from the solid electrolyte and increase its accessible reversible capacity. Ex situ analyses (i.e., SEM-EDS and XPS) at different states of charge show that the morphology of $FeS_2$ evolves forming core–shell like submicro-structures.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Münch, Konrad
|0 0000-0002-8778-9344
|b 1
700 1 _ |a Benz, Sebastian L.
|0 0000-0002-0650-984X
|b 2
700 1 _ |a Bernges, Tim
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Henss, Anja
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zeier, Wolfgang G.
|0 P:(DE-Juel1)184735
|b 5
700 1 _ |a Janek, Jürgen
|0 0000-0002-9221-4756
|b 6
|e Corresponding author
773 _ _ |a 10.1021/acs.chemmater.4c03315
|g Vol. 37, no. 9, p. 3185 - 3196
|0 PERI:(DE-600)1500399-1
|n 9
|p 3185 - 3196
|t Chemistry of materials
|v 37
|y 2025
|x 0897-4756
856 4 _ |y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1042709/files/pavan-et-al-2025-role-and-evolution-of-fes2-cathode-microstructure-in-argyrodite-based-all-solid-state-lithium-sulfur.pdf
909 C O |o oai:juser.fz-juelich.de:1042709
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)184735
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-16
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-16
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM MATER : 2022
|d 2024-12-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEM MATER : 2022
|d 2024-12-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-16
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
920 1 _ |0 I:(DE-Juel1)IMD-4-20141217
|k IMD-4
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-4-20141217
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21