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Abstract

Computational technology opens new possibilities towards understanding the complexity of the human brain,
but it requires integrating measurements from different modalities and scales in anatomical context and ex-
posing them in interoperable, actionable form. Especially with growing big data resources, accessing in-
formation from different scales and modalities coherently for visual exploration, reproducible analysis and
application development remains challenging. We present siibra, a tool suite that connects diverse data from
cloud resources to reference atlases and coordinate spaces. It supports different use cases by making contents
accessible through a web viewer, Python library and HTTP API. Using siibra we implemented a Multilevel
Human Brain Atlas linking macro-anatomical concepts and their inter-subject variability with measurements
of the microstructural composition and intrinsic variance of brain regions, building on cytoarchitecture as a
reference and supporting MRI-based and microscopic templates. The atlas is integrated with the EBRAINS
research infrastructure. All software and content are openly accessible.
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Main

Decoding the human brain requires consideration of multiple levels of structural and functional organization,
using measurements obtained at different spatio-temporal scales with complementary methods. To describe
the composition and intrinsic variance of brain regions in conjunction with brain-wide neural network connec-
tivity and inter-subject variability, macro-anatomical concepts need to be linked with microstructural features
at cellular resolution. The integration of such comprehensive information requires reference atlases providing
consistent and accurate definitions of anatomical structures across a range of spatial resolutions and modali-
ties in multiple reference coordinate systems, and a consistent model for diverse representations of locations
in the brain—e.g., brain areas, coordinates, or bounding boxes—that reflect how measurements are linked to
anatomy. Such integration of reference atlases with data sets across scales and modalities constitutes a mul-
tilevel atlas. Its implementation builds on existing concepts, such as those introduced in [55], and imposes
new conceptual and technical difficulties. In particular, it must accommodate rapidly evolving computational
technologies and automated workflows to ensure efficient collection and processing of the comprehensive
information it offers. Although originating from very different data sources, elements of the multilevel at-
las must be exposed in well harmonized, interoperable and actionable formats to make them available in a
computationally scalable fashion.

Ample data resources exist that describe different aspects of brain organization [53], and a broad range of
reference atlases are available reflecting complementary principles of brain organization, typically provided
in the form of MRI-scale image volumes or labelled surface meshes at spatial resolutions in the millime-
ter range derived from in vivo imaging. Integration of information into neuroscience workflows has so far
been mostly addressed by casting high-resolution measurements into data representations for macroscopic
analyses [51, 16], such as interpolated and averaged feature distributions in surface and voxel formats. Such
derivative data make high-resolution features accessible and computable but may reduce the rich regional
variance and spatial specificity encoded in the original measurements. In fact, the neuroscience community
is increasingly motivated to share primary data with full level of detail and enable their reuse [43]. This is
supported by the increasing attention of publishers to this topic, leading to a growing abundance of large
primary data resources on different online repositories. However, accessing and using data resources from
different scales and modalities at their full level of detail remains a technical challenge. An important reason
for this is the lack of coherent spatial and semantic integration. The structural relationships between e.g.,
microscopic measurements from histological studies and whole-brain neuroimaging measurements are often
unclear, and the data may refer to different versions and representations of information in reference atlases.
In addition, links between measurements and brain areas, such as the label indices in a parcellation map, get
easily lost during analysis workflows. Moreover, the consistent interpretation of spatial locations in the brain
requires accounting for localization accuracy, different spatial resolutions, and effects of transformations be-
tween reference spaces. Another difficulty is the fundamental difference in handling big data, such as whole
brain sections at full resolution and 3D volumes from microscopic studies in the Giga- to Terabyte range, as
compared to data being shared in the form of small files.

Progress in obtaining and analyzing large data sets and the need to link the different modalities across spatial
scales imply a paradigm shift from downloading files to interacting with cloud resources and services. Re-
searchers are confronted with new and variable data representations and substantially different tool chains.
Therefore, to enhance usability and facilitate data use, we need software solutions that expose data from large
cloud resources together with classical file-oriented representations in a unified and interoperable fashion and
provide operational principles to connect them with workflows for analysis and modeling.

Here we present siibra ("Software Interfaces for Interacting with BRain Atlases"), a tool suite designed to
tackle these challenges by offering an informatics framework that integrates data from different modalities
and resources with reference atlases spanning macroscopic and microscopic resolutions. The tool suite in-
cludes an interactive 3D web viewer (siibra-explorer), an HTTP API (siibra-api), and a Python library (siibra-
python). The tool suite enables to specify and process various forms of spatial locations in the brain, such
as centers of gravity of measured neuroimaging signals, coordinates of functional activations and bounding
boxes of regions of interest in brain tissue, and assign them to brain areas defined in reference atlases through
multilayered semantic and spatial relationships. This enables anatomical characterization and multimodal
profiling of various forms of locations and regions of interest in the brain. Relationships between data, spatial
locations and brain areas are modeled as observations with a quantifiable degree of uncertainty and evaluated
based on properties such as overlap and correlation of spatial locations and semantic associations according
to accepted taxonomies of brain region hierarchies.


https://doi.org/10.1101/2025.05.20.655042
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.05.20.655042; this version posted May 25, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

We have developed siibra to implement a multilevel atlas of the human brain that is integrated with the
EBRAINS research infrastructure (https://ebrains.eu) and provides interfaces to additional data
repositories. This multilevel atlas combines a complementary selection of existing reference atlases and
coordinate spaces with a broad range of multimodal datasets, supporting voxel and surface-based workflows
for the whole brain while offering access to underlying data at microscopic detail. The reference spaces in-
clude at the macroscopic scale the ICBM 2009¢ nonlinear asymmetric multi-subject and the Colin27 single-
subject average templates [30] as well as surface subspaces (fsaverage and fsaverage6) from the Freesurfer
software suite [20, 28]. These are combined with the BigBrain space at microstructural level [4] which repre-
sents a 3D reconstruction of 7404 histological sections from an individual postmortem human brain with an
isotropic voxel resolution of 20 x 20 x 20um. A central reference of the Multilevel Human Brain Atlas is the
Julich-Brain cytoarchitectonic atlas [5], which includes probabilistic maps of currently almost 300 cortical
and subcortical areas; it captures the regional variance in microstructure based on studies in ten postmortem
brains. Many of these areas are further annotated as detailed 3D maps across the full stack of BigBrain
histological sections [63] using the same methodology in combination with a deep learning workflow [63].
This way, an unambiguous correspondence is established between the in vivo imaging and the ex vivo mi-
croscopic scale, which is independent of spatial relationships established between the reference coordinate
systems and therefore not affected by the inevitable inaccuracies of image registrations. The cerebral cortex
in the BigBrain is further segmented by maps of six isocortical layers based on an automatic classification of
3D cortical intensity profiles [68].

The cytoarchitectonic maps are aligned with maps of superficial as well as long white matter bundles [32, 47]
obtained by clustering streamlines from diffusion weighted imaging of a large number of subjects, as well as
maps of functional modules at different granularities computed from millions of fMRI scans to provide an
efficient reduction and representation of BOLD signals [19]. The data resources connected to the multilevel
atlas include detailed measures of cellular (e.g. cell densities; staining profiles) and molecular (e.g. recep-
tor densities; gene expressions) architecture, parcellation-based structural and functional connectivity from
neuroimaging cohorts, and an extensive collection of high-resolution histological measurements.

The siibra tool suite facilitates the development of this multilevel atlas by enabling efficient access to all
content for download, interactive exploration and computational processing—despite high spatial resolutions
and a large number of underlying files. It allows tagging all elements of reference atlases and multimodal
data features with comprehensive metadata and expose them in interoperable formats to serve a wide range
of use cases, such as hypothesis-driven exploration, data analysis, and modeling. The software architecture
of siibra makes future integration of additional reference atlases, coordinate systems and data resources into
the framework straightforward.

We here present the tool suite and demonstrate its functionalities using our implementation of the Multilevel
Human Brain Atlas as a challenging use case. By including the underlying executable code or persistent
URLSs with each figure, the present paper also serves as a practical demonstration of how siibra enables fully
reproducible workflows that are easily accessible to all researchers.
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Figure 1 | The siibra tool suite is used to implement a Multilevel Human Brain Atlas integrating cloud-
based reference atlases and datasets from different scales and modalities into an easy-to-use informatics
framework for interactive and computational workflows.

A: Contents of the multilevel atlas—i.e., reference annotations, terminologies, templates and data features—
are curated and stored in cloud repositories, with EBRAINS chosen as the main platform following the
openMINDS metadata framework. We distinguish foundational content, predefined as versioned collections
of configuration files, from dynamic content obtained at runtime using automatic "live queries" to APIs of
selected cloud repositories. B: The tool suite links comprehensive data resources with reference atlases into
the Multilevel Human Brain Atlas. This covers different reference coordinate systems and atlas reference
annotations capturing statistical aspects of inter-subject variability as well as microscopic details of individual
brains. Brain areas and spatial locations are linked with multimodal datasets to collect measurements of brain
organization at different levels. As examples, we illustrate microscopic images capturing brain-wide cell
distributions, connectivity matrices encoding functional or structural connections between brain areas, and
regional quantities such as tables of neurotransmitter receptor densities. The red arrow illustrates a typical
access path from a brain area to a detailed measurement in a relevant dataset, which we cover in detail
in the results section. C: The siibra tool suite is a modular environment consisting of cloud services and
installable software components. It provides access to all contents of the Multilevel Human Brain Atlas in
harmonized, actionable data formats through interactive and programmatic user interfaces to serve a broad
range of neuroscience use cases.
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Results

In the following, we demonstrate how key functionalities of siibra enable the implementation of the Mul-
tilevel Human Brain Atlas, linking reference atlases and comprehensive datasets from cloud resources and
making the underlying data accessible and actionable for neuroscience applications as illustrated in Figure 1.
All data and functionality are openly accessible. References to corresponding executable codes and online
resources are provided throughout the text to ensure reproducibility. The work relies on several key concepts,
whose distinctions are crucial for understanding the presented results and methodology:

1. We distinguish individual reference atlases from the overarching concept of the Multilevel Human
Brain Atlas. The latter combines complementary reference atlases reflecting different principles
of brain organisation, such as the Julich-Brain atlas [5, cytoarchitecture], the deep white matter
bundle atlas [32, fibre architecture], or the atlas of dictionaries of functional modes [19, functional
architecture] (Figure 1B).

2. Following the AtOM ontology model [42], we assume that each individual reference atlas provides
a terminology of brain area definitions, often in hierarchical form. Brain areas are delineated in
images or surfaces of different reference coordinate systems, resulting in annotation sets. Anno-
tations may be given in the form of labelled or statistical maps, reflecting discrete or continuous
annotations respectively. Discrete annotation sets covering the whole brain are often further denoted
as parcellation maps.

3. The siibra tool suite does not store any actual data itself. Instead, all atlas elements and data features
point to published data resources, referred to as siibra content (Figure 1A). We distinguish founda-
tional content linked to siibra through explicit definitions collected in siibra configurations, and
dynamic content obtained by siibra at runtime using live queries, i.e., direct software interfaces to
cloud resources.

Visually guided exploration from full brain networks to cells

The interactive atlas viewer siibra-explorer allows visually guided exploration of brain organisation from the
macroscopic scale of the brain down to individual cell bodies, and can be accessed with any modern web
browser, including mobile touchscreen devices. It integrates very large and detailed image resources (see
Supplementary Information, Table S3) into a 3D visualization of the whole brain. In addition, it embeds cross-
sectional volumetric and surface views into an interactive workflow that allows to navigate reference atlases in
different coordinate systems, and to access multimodal datasets anchored to brain areas or coordinate-based
locations. Cross-sectional views can be adjusted in real-time to display arbitrary oblique cutting planes and
zoom levels, which is crucial for e.g. studying cortical laminar structure of a highly folded cortical surface.
Individual planar views can be maximized to obtain a large field of view, and support layering to co-display
brain region maps with underlying image data.

The first example concerns Betz cells in layer V of the primary motor cortex [5, area 4p], illustrated in
Figure 2. The workflow starts by selecting the MNI Colin27 template and Julich-Brain as reference atlas,
displayed as a cross-planar view combined with a rotatable 3D surface visualization in the corresponding
reference coordinate system (Figure 2A). By maximizing one of the cutting planes, a more focused view
is obtained and can be adjusted to display an oblique sectioning angle (Figure 2B). When switching to the
BigBrain template, precomputed nonlinear spatial transformations are used to preserve location and zoom
level while changing the reference coordinate system (Figure 2C), further described in the "Methods" section.

This mechanism can be used to identify macroscopic structures in MNI space as a starting point for exploring
detailed maps of cytoarchitectonic regions and cortical layers in the BigBrain [68], and finding relevant
microscopic image data at cellular resolution anchored to this coordinate space (Figure 2D). The viewer
allows to select microscopic images and superimpose them with the underlying template, so that they can
be explored at full spatial resolution while keeping linked with the whole brain context (Figure 2E,F). The
multi-layered views can be reused by bookmarking the browser URL or downloading the underlying zoomed-
in data, using the download button on the top right.

Anatomical characterization and multimodal profiling for regions of interest

The siibra tool suite enables the assignment of user-defined regions of interest to brain areas from reference
atlases and facilitates the retrieval of relevant multimodal measurements. This can be used to further char-
acterize these regions in terms of structure, function and connectivity. In the simplest case, locations are
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Figure 2 | Visually guided exploration of brain structure from the whole brain down to individual cells
with siibra-explorer. A, B: Selection of area 4p in the left hemisphere from the Julich-Brain cytoarchi-
tectonic maps [5] in MNI Colin 27 space [30] brings up its probability map which captures the variability
observed in ten postmortem brains. C: When switching to the microscopic BigBrain model as a reference
space [4], the level of detail is significantly increased while siibra-explorer preserves zoom and location.
Additional parcellations and anchored image data, including 1pm scans of BigBrain sections, are revealed.
The parcellation is changed to cortical layer maps [68]. D: A 1um scan of a coronal whole brain section
[62] is found in the proximity and superimposed with the 3D model. E, F: Zooming to full resolution reveals
presence and shape of individual cell bodies of Betz Giant cells, clearly located in layer V. Although here
only illustrated for D, basic metadata and reference links to publications and online resources are provided
for all involved reference templates, atlases and data features. All steps can be reproduced using the following
URLs: A, B, C, D, E, F.

specified as 3D coordinates in a supported reference space (Figure 3A) using siibra’s interactive or program-
matic location definition options. Associated brain regions are then assigned to brain areas from a reference
atlas (Figure 3E) utilizing the available 3D reference maps—e.g. functional, cyto- or fiber architectonic
maps—and distinguishing between incidence, correlation and overlap of structures. In the case of statistical
maps, where each brain area is typically represented by a separate image volume to account for the overlap in
the maps, this might imply to retrieve, load and process several hundred image volumes. To reduce resulting
download times and memory requirements, siibra uses a sparse data representation for statistical maps which
drastically reduces the memory footprint, detailed in the "Methods" section. Associated brain areas can then
be used to run data queries and find multimodal data features connected to these structures as shown in Fig-
ure 3F. During this process, siibra automatically resolves spatial relationships between different reference
spaces and, if necessary, warps coordinates using precomputed diffeomorphic transformations.

The current set of data features in the Multilevel Human Brain Atlas are grouped into the categories cellular,
molecular, fibres, functional, connectivity and macrostructure. An overview is provided in the Supplemen-
tary Information, Table S3. Their content includes combinations of image, tabular and numerical array data.
Tabular data structures include cortical density measures from histological labelings, "fingerprints" encoding
means and standard deviations of densities from tissue samples, structural and functional connectivity ma-
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Figure 3 | Anatomical characterization and multimodal profiling of regions of interest. siibra accepts
user-defined location specifications in the form of reference space coordinates with optional certainty quan-
tifiers (A) or feature maps from imaging experiments (B). Feature maps are typically separated into cluster
components to obtain clearly localized regions of interest (ROIs) (C). Any region of interest in image form
can be used to run spatial feature queries and extract multimodal data features co-localized with ROIs (D). In
addition, locations of interest are assigned to brain areas using probabilistic maps from functional, cyto- or
fiber architectonic reference atlases (E), distinguishing incidence, correlation and overlap of structures. The
resulting associated brain areas reveal additional multimodal data features characterizing the ROIs (F). The
Figure can be reproduced using the notebook available at ht tps://siibra-python.readthedocs.
io/en/vl/examples/tutorials/2025-paper—fig3.html.

trices, or external data such as gene expression levels from the Allen human brain microarray data [33, 1].
Connectivity matrices are parcellation-grouped numbers and lengths of streamlines obtained from tractog-
raphy of diffusion MRI data as well as correlations of resting-state and task-specific functional time series
extracted from different neuroimaging cohorts. Image features include tissue sections, volumes of interest
from high-resolution imaging experiments, and in vivo neuroimaging scans. Histological image data are typ-
ically anchored to the BigBrain template, since it provides the necessary level of detail to embed microscopy
data. Links between data features and atlas elements are further discussed in the "Methods" section.

In addition to coordinates, a region of interest may be specified by an image volume (Figure 3 B), e.g., an
activation map from a functional neuroimaging study. By processing segments or certain intensity ranges,
images can be directly used for spatial feature queries (Figure 3 C) to access spatially anchored datasets such
as co-registered 2D and 3D image data, or regional quantities in tabular form such as local gene expressions
retrieved from the Allen human brain atlas [33, 1]. For anatomical assignment, siibra computes correlation
and overlap measures between the input image and brain area annotations in a reference atlas. In many cases it
is advisable to split such feature maps into cluster components before computing the assignment (Figure 3 C).
The given example uses hierarchical density-based clustering [13] of points sampled from the input image,
based on an implementation in scikit-learn (RRID:SCR_002577) which is available through the PointSet
class in siibra-python.!

"Note that siibra also uses image-based assignment to brain regions for processing coordinates with significant lo-
calization uncertainty. This is realized automatically by converting uncertain coordinates into a 3D image of a Gaussian
blob with corresponding kernel size.
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As aresult, for a given region of interest and a selected parcellation terminology, siibra implements two as-
sessments. The first is an anatomical assignment of the region of interest, represented by a list of associated
brain areas qualified by means of probabilities, spatial overlap or correlation, and their possible probabilistic
maps in the corresponding coordinate space. The second is a multimodal profile, represented by a com-
pilation of data features which characterize the region of interest. To support the FAIR principles of data
organization, the underlying data elements are exposed in interoperable community formats and explicitly
linked to the resource from which the information is retrieved. For example, tabular data are exposed as
pandas DataFrames for optimal compatibility with common statistics and spreadsheet tools, while 3D images
are exposed as NIfTI image objects which are supported by almost any neuroscience application.

In addition to the shown programmatic solution, siibra-explorer offers an interactive way to carry out a similar
workflow using only a web browser, documented at https://siibra-explorer.readthedocs.
io/en/stable/advanced/superimposing_local_files/. This is possible by drag-and-drop
of an image volume from the user’s local computer onto the browser window. Assuming the volume is
provided in NIfTI format and pre-aligned to the selected reference coordinate system, siibra-explorer will
display it as an adjustable semitransparent overlay on top of the selected reference atlas, allowing direct vi-
sual assessment of overlap between brain areas and peaks or clusters depicted in the input image. Relevant
data features can then be selected and downloaded from the side panel of siibra-explorer. The principle is vi-
sualized in a screencast video included in the documentation of siibra-explorer. However, the reproducibility
of this viewer-based solution depends on the local environment, and is not supported per se in siibra.

Multimodal comparison of brain areas

A common use case for the aforementioned anatomical assignment and multimodal profiling is to compare
architectural features in different regions of interest. We demonstrate the principle by characterizing two
cortical areas from the Julich-Brain atlas in terms of cell and neurotransmitter densities, gene expressions,
and functional connectivity. As an example, data features of area 44 of Broca’s region (IFG) were compared
with those of the primary visual cortex (hOc1/BA17/V1), both in the left hemisphere. The same principle can
be applied to other brain areas and reference atlases, as well as to user-defined regions of interest. Retrieval
of all information is implemented using siibra-python in a Python notebook included in the documentation.
The feature plots displayed in Figure 4 allow for several interesting observations:

1. The two regions show distinct cortical architecture, revealed by different cell body distributions in
cortical patches extracted from 1pm resolution scans of the BigBrain (Figure 4 A). Anatomically
guided extraction of image data is covered in more detail below.

2. Average cell body densities across cortical layers differ between the areas, with overall higher values
in the visual cortex, in particular the granular layers II and IV (Figure 4 B, top).

3. Receptor densities for selected monogenetic receptors (M1, M2, M3, D1, 5-HT1A, 5-HT2) show
many similarities between area 44 and area hOcl, but also some notable differences such as a notably
higher density of the M2 receptor in hOc1 (Figure 4 B, middle in hOc1 ). These receptors represent
a subset of up to 19 available receptors, here reduced to those encoded by a single gene.

4. The expression patterns of genes coding for the selected monogenetic receptors (Figure 4 B, bottom)
match well to the respective receptor densities (Figure 4 B, middle), which is in line with earlier
studies highlighting such covariation between the modalities [71]. Gene expressions were retrieved
by siibra from the Allen human brain atlas API [33, 1].

5. Functional connectivity profiles extracted from the HCP data [67] show distinct characteristic re-
lationships for the two regions. For V1, we see strong connectivity into the hierarchy of higher
order visual areas, following the organisation of the dorsal and ventral streams. For area 44 left, we
observe strong temporal correlation with 44 right and 45, which together build the Broca region,
as well as to the frontal pole, in correspondence with the known anatomy of the arcuate fasciculus
[15].

Here, we focus on summarizing observations to demonstrate key software functionalities, and refrain from
delving into a deeper neuroscientific discussion, which would require additional analyses and statistical tests.

Anatomically guided reproducible extraction of microscopy data

Besides retrieving of precomputed data features, siibra allows dynamic extraction of high-resolution image
data from cloud image resources. For example, image intensities in the BigBrain model [4] can be interpreted
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Figure 4 | Multimodal comparison of two cortical brain areas. The figure shows maps and multimodal re-
gional measurements obtained using siibra-python for language area IFG 44 and primary visual region hOcl,
as defined in the cytoarchitectonic reference atlas [5]. A: Probabilistic maps in MNI asymmetric space, to-
gether with representative cortical image patches at 1um resolution that were automatically extracted from
scans of BigBrain sections [62, image contrast slightly increased] (cf. Figure 5). The image patches display
clearly the differences in laminar structure of the two regions. B: Average densities of a selection of mono-
genetic neurotransmitter receptors [58] and cell bodies [22, 21], as well as expressions of a selection of genes
coding for these receptors [33, 1]. C: Functional connectivity profiles referring to temporal correlation of
fMRI time series of several hundred subjects from the Human Connectome Project [25, 67]. We show the
strongest connections per brain area for the average connectivity patterns. The Figure can be reproduced us-
ing the notebook available at https://siibra-python.readthedocs.io/en/vl/examples/
tutorials/2025-paper—-fig4.html.

as optical cell densities and thus provide a resource for studying basic aspects of cytoarchitecture. At an
isotropic voxel resolution of 20 x 20 x 20pm, the BigBrain constitutes almost 1 TByte of image data, making
it infeasible for many users to download and process the complete dataset. Using siibra-explorer, BigBrain
can be viewed at full resolution by zooming in with the mouse wheel, such as the example region of interest
bookmarked at https://atlases.ebrains.eu/viewer/go/bigbrain_precs_example. By
hiding the parcellation map,” the image data can be observed at full resolution (cf. Figure 2C).

However, interactive viewing of image data alone is not the preferred approach for performing reproducible
studies and does not scale to large experiments that leverage the potential of big data resources. For this
purpose, siibra-python can identify and fetch image data from cloud resources in an efficient and reproducible
way. The underlying strategy is to specify a volume of interest using a bounding box or selecting a brain area
from a reference atlas, then use siibra-python to identify relevant image datasets and extract the image parts
intersecting the volume of interest. This process is facilitated by automatic handling of different coordinate
spaces for the query, allowing fetching of data from multiple coordinate spaces using customized resolutions
and fields of view, with automatic computation of the spatial metadata arising from this extraction process.
The example in Figure 5 demonstrates how a cortical patch at 1pum resolution is automatically identified
and fetched by selecting a cytoarchitectonic brain area. The resulting data is provided as a NIfTI image
annotated with the appropriate transformation matrix into the BigBrain reference coordinate system. As such
the fetched data is suitable for downstream analysis tasks such as cell segmentation, and for combination with
other image data referring to supported reference coordinate systems.

2The parcellation map may be hidden by clicking the "eye" icon near the parcellation selector, or the "y" key.
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Figure 5 | Anatomically guided reproducible extraction of full resolution image data from cloud re-
sources. siibra-python allows implementing reproducible workflows for sampling microscopy data from
anatomically defined regions of interest. The code example on the left retrieves the probabilistic map of
area 4p in the right motor cortex from the cytoarchitectonic atlas [5] (A; 1l. 2-3), and uses it to sample rel-
evant cortical patches from high-resolution scans of whole-brain tissue sections in BigBrain space [4, 62]
(B; 1. 4). To define an oriented cortical image patch, siibra automatically loads and intersects cortical layer
surface meshes [68] with each relevant section image (C). It then finds points on the intersected layer IV
surface with high relevance according to the probability map of the motor area (D). The different coordi-
nate systems in this process are automatically handled using nonlinear transformations as detailed in the
"Methods" section. For a given point on the layer IV surface, siibra finds the closest 3D cortical profile
in the layer maps to obtain information about orientation and thickness of the cortex at the chosen posi-
tion. The 3D profile is projected to the respective image plane and used to define a rectangular patch. The
full resolution image data inside the cortical patch is then fetched from the underlying cloud resource (E;
L. 5). The resulting patch can be readily used to extract cell body instances and compute quantitative density
measures using state-of-the-art instance segmentation models, resulting in cell densities as published in a
recent data collection (Figure 4B, e.g. [22]). The Figure can be reproduced using the notebook available at
https://siibra-python.readthedocs.io/en/v1/examples/tutorials/2025-paper-fig5.html.

Expansion with new contents

By maintaining a strict separation from the software, the siibra tool suite allows the content of the Multi-
level Human Brain Atlas to continue to expand. In particular, any terminology, parcellation map, reference
template or data feature exposed by siibra points to an external resource which contains the actual data (Fig-
ure 1A). This can be a file on a public data repository such as EBRAINS, a segment of a cloud image volume,
a local file provided by the user, or data that is dynamically retrieved from a cloud service. We distinguish
foundational content, defined as json specifications in a configuration, from dynamically retrieved content
obtained through siibra’s live queries, and local content provided by users on their own system. These dif-
ferent routes are reflected in the software design (Figure 6 A-C) and result in the following alternative ways
for expanding the Multilevel Human Brain Atlas:

1. New foundational contents are added to siibra’s configuration by creating specification files. This
allows flexible addition of different object types from any accessible data resource. For adding spec-
ifications to the default configuration of the Multilevel Human Brain Atlas, a change request can be
submitted at https://github.com/FZJ-INM1-BDA/siibra-configurations. Lo-
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cal installations of siibra-python can use custom configuration repositories, which allow to clone an
existing configuration to a local computer add new specification files directly.?

2. Dynamic content can be made discoverable in siibra live queries by sharing it on a supported
cloud service. For example, when releasing a public dataset on EBRAINS, information about
its anatomical location will be modelled according to the openMINDS SANDS metadata model
(RRID:SCR_023498) and stored in the EBRAINS Knowledge Graph (RRID:SCR_017612). This
allows siibra’s EBRAINS live query to match it with atlas elements and include it automatically. To
connect new cloud services, siibra-python can be extended with new live queries.

3. Local content, including both reference atlases and data features, can be added ad-
hoc in siibra-python using various utility functions, such as in Figure 5C. For ex-
ample, users may add a custom parcellation map or an image volume to query
data features, demonstrated for the AICHA atlas [38] in the code example available
at https://siibra-python.readthedocs.io/en/vl/examples/02_maps_and_
templates/007_adding_custom_parcellation.html. In siibra-explorer, user sup-
plied NIfTI volumes can be visualized on top of existing reference atlases by drag-and-drop onto
the browser window, as illustrated in the documentation at https://siibra—-explorer.
readthedocs.io/en/stable/advanced/superimposing local files/. Assum-
ing it has been pre-aligned to the respective reference coordinate space, the file is co-visualized in
the browser while solely remaining on the user’s local system.

In addition to the Multilevel Human Brain Atlas presented here, siibra can be used for brains of other
species without advanced programming skills. It has been successfully applied to set up the macaque
brain atlas [7, 56, 61] available at https://atlases.ebrains.eu/viewer/go/mebrains, the
Waxholm Space Atlas of the Sprague Dawley Rat Brain [41, 57, 59, 40] available at https://
atlases.ebrains.eu/viewer/go/rat, and the Allen mouse brain atlas [69] available at https:
//atlases.ebrains.eu/viewer/go/mouse. A minimal configuration for a new atlas requires three
json specifications, namely 1) a terminology of brain areas, 2) a reference coordinate system with an anatom-
ical template in volume or surface form, and 3) a parcellation map in volume or surface form defined in
the same coordinate system. This implies to host at least two image volumes or surface meshes on a web-
accessible resource.

Discussion

The development of a Multilevel Human Brain Atlas atlas covering the scales from cells and fibres up to the
macrostructure of the entire organ requires novel conceptual and technical solutions. To exploit the full po-
tential of large-scale, high-resolution measurements from modern imaging techniques, the operationalization
of such a system inevitably requires instruments for handling big data resources.

We have solved this challenge by using the siibra tool suite to implement an openly accessible and inter-
operable Multilevel Human Brain Atlas. The tool suite facilitated a systematic technical realization of the
atlas by linking complex multimodal datasets with reference parcellations in different coordinate systems,
including full-resolution image data from microscopic experiments. We use cytoarchitecture as a fundamen-
tal principle of brain organisation in the atlas, because it provides an adequate spatial scale and represents a
common reference modality for neuroscientific findings. The use of probabilistic maps for assigning regions
of interest to brain areas defined in reference atlases is encouraged, as a statistical treatment is crucial for
modeling common uncertainties of in vivo analyses. Being designed as a distributed system that can connect
to a multitude of configurable cloud resources, siibra embraces the rapid growth in high-throughput imaging
techniques and increasing availability of big data repositories. The tool suite is well integrated and supported
by the EBRAINS research infrastructure which allowed us to connect it with a broad compilation of datasets,
tools and online services. At the time of writing, the Multilevel Human Brain Atlas provides access to more
than seven terabytes of multimodal datasets in the form of 2D and 3D images, tables and numerical arrays,
but its design allows for continuous expansion with new instances of reference atlases and data features.

The siibra tool suite offers accessibility to user groups with different programming skills: Non-programmers
can engage interactively via a web browser, computationally adept neuroscientists can utilize scripting and

3While not described in this article, it is possible to deploy the full tool suite including siibra-explorer and siibra-api
on a local machine using siibra-compose (https://github.com/fzj-inml-bda/siibra-compose). In this
case, content added to the local configuration becomes immediately available in the local instance of siibra-explorer.
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workflow construction in Python, and professional programmers can leverage a web API for application de-
velopment. The versatility therefore spans from neuroimaging and artificial intelligence to computational
neuroscience and clinical applications. This has been demonstrated in first studies applying siibra success-
fully, e.g. for modeling whole brain dynamics with regional heterogeneity [64] and investigating structure-
function relationships [72].

In either form, siibra assumes minimal technical requirements. The online viewer can be accessed with
common web browsers, including mobile devices, and co-display user-supplied NIfTI files with atlas con-
tent without uploading them. The Python client can be installed with established package managers from
https://pypil.org/project/siibra and provides a broad range of documented code examples
at https://siibra-python.readthedocs.io/en/vl/examples.html. Because content is
separated from software, installation of the Python client requires only minimal storage space. Following
a lazy data fetching strategy, siibra downloads only requested data elements to gradually build up a config-
urable local data cache according to user needs. For operating the system in commercial or clinical environ-
ments with restricted network policies, siibra can be setup for offline use by cloning the configuration to a
local computer, pre-populating the cache explicitly and deploying the API and viewer components as local
network services.

The development of the Multilevel Human Brain Atlas using siibra was closely integrated with ongoing com-
munity efforts in metadata standardization, resulting in foundational atlas content being curated according to
the openMINDS metadata framework (RRID:SCR_023173), and fundamental design principles in siibra fol-
lowing the AtOM ontology model [42]. The current version of siibra puts a focus on foundational data
resources established in EBRAINS by the Human Brain Project [3], but it is designed from ground up to
interface more broadly with a growing portfolio of neuroscience community resources. Upcoming releases
of siibra will link with recently proposed repositories for collecting file-based MRI-scale reference templates
and parcellations [60, 16, 44, 17] and online resources for additional data modalities such as human cell
morphologies [65] and functional measurements [52]. The integration of such data resources on the basis
of siibra live queries is much facilitated by the growing adoption of the BIDS standard [31] and its recently
proposed extensions for other data modalities (e.g. [11]).

As big data and Al increasingly become central pillars of neuroscientific research [23, 35], we face the chal-
lenge of how to involve researchers in complex reasoning and discovery processes. The combination of big
data visualization (in siibra-explorer) and systematic data processing (in siibra-python) provides new oppor-
tunities for designing visual analytics (VA) workflows [66, 18, 48]. These aim to combine purely data-driven
exploration with human cognitive, perceptual and reasoning abilities by building visually supported loops of
data extraction, hypothesis building, and inference. With the advent of Al and big data, visual analytics is
expected to gain increasing interest in the neuroscience community in the future. Software solutions such as
siibra are key enablers of such developments.

From a technical perspective, siibra covers core principles of data aggregation systems [12, 14] by addressing
the collection, processing, and combination of data from multiple sources to better enable downstream tasks
such as hypothesis generation, analytics, modeling and inference, and by solving problems such as redun-
dancy, inconsistencies, and varying data formats. In brain research, addressing these informatics challenges is
crucial for harnessing data in large-scale, data-driven models like Al foundation models, anatomically accu-
rate simulations, and digital twins, paving the way for new research questions to be explored. Of course, data
aggregation systems play a crucial field in other fields. Although siibra was implemented for neuroscientists
in the first place, the key aspects of its implementation are not specific to this field. With moderate adaptions
of the code, it could serve as a basis for building atlases of other organs such as the heart or kidney, and more
generally for data aggregation of systems with a strong 3D topographical organisation which are described
by images and tabular content at multiple scales.

In conclusion, the siibra tool suite introduces a highly configurable informatics framework for building mul-
tilevel atlases of different species and organs, which 1) provides three levels of operability with an API, a
web viewer and a python library; 2) enables the handling of large image datasets ("big data" capabilities);
3) provides interoperability with distributed data resources and community tools - thus making atlas data
actionable; 4) supports the FAIR principles; and 5) is designed in a flexible way to address the continuous
expansion with content. It is supported by the EBRAINS research infrastructure, and open for contributions
from the community.
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Methods

In the following we describe relevant methods and technical principles applied in the siibra tool suite, on
which the presented results are based. These include modularization of the software, separation of code
from contents, and strategies that enable the use of large image datasets and locations in different reference
coordinate systems.

Modeling spatial entities in different reference coordinate systems

In line with community ideas [2, 42], siibra distinguishes semantic atlas elements such as reference coordi-
nate systems and terminologies from their spatial representations as annotations sets or reference templates.
This is a prerequisite for using the same anatomical concepts in processes operating at different spatial scales
or topological layouts. For example, the same atlas terminology can be realized by annotation sets in differ-
ent reference coordinate systems, thereby resulting in multiple representations of the same brain area with
different coordinate system, spatial resolution or data format. Similarly, a reference coordinate system can be
represented by different reference datasets (i.e., templates) with specific resolution and representation of the
underlying anatomy as an image volume or surface.

In general, points in different reference coordinate systems are related by nonlinear coordinate transfor-
mations. This association is not unique and generally inaccurate, since different mathematical models
and optimization strategies for the transformation result in different solutions. For the Multilevel Human
Brain Atlas, we used diffeomorphisms constrained with cortical folding patterns [50, 45] to obtain a precise
alignment between reference coordinate systems in regions where sulci can be used as landmarks. These
transformations are exposed through a web service (https://github.com/HumanBrainProject/
hbp-spatial-backend) which siibra uses to transform coordinates between reference coordinate sys-
tems when querying data features or comparing spatial objects. All spatial entities in siibra-python reflect
instances of locations such as points, point clouds or bounding boxes (Figure 6). Examples of these three
types of instances are centroids of brain areas, bounding boxes of volumes of interest, contact points of elec-
trodes, peaks of fMRI activations maps, or the currently selected view in siibra-explorer. Since any such
location object is uniquely associated with a reference coordinate system, coordinate projections can be car-
ried out automatically, thus allowing to apply most spatial operations in siibra safely to objects from different
reference coordinate spaces. This principle has been demonstrated in the results for cortical image patch
sampling, where the bounding box of a brain area in MNI space is automatically transferred to BigBrain
space for finding high-resolution image data (Figure 5) and a set of vertices in BigBrain space is evaluated
by a probability map in MNI space.

Linking data features to atlas elements

The localization of data features with respect to atlas elements can take various forms with different lev-
els of precision. In a human brain atlas, this is particularly influenced by the high inter-subject variability
resulting in significant uncertainties when relating spatial locations measured in different brains. The most
accurate localization is possible for measurements obtained in the same brain, where e.g. image registration
can provide adequate alignments. For different brains, an accurate correspondence can be achieved if the data
allows reliable histological identification of the underlying brain area. This principle is used extensively for
the Multilevel Human Brain Atlas: Cytoarchitectonic maps are being used as a preferred reference to localize
foundational data features such as neurotransmitter receptor and cell densities according to cytoarchitectonic
criteria of the tissue samples. This provides an intrinsic definition of anatomical locations, directly grounded
in properties contained in the measurement, and therefore independently verifiable. For other datasets such
as in vivo neuroimaging or physiological recordings, the assignment often has to rely on projections of coor-
dinates. This can be seen as an extrinsic transfer of the localization to the data, which is not uniquely defined
and less verifiable.

To capture different forms of anatomical correspondence between atlas elements and data features, siibra tags
anatomical locations with semantic relationships to brain areas from a reference parcellation, with spatial lo-
cations such as points, lines, or bounding boxes in a reference coordinate space, or combinations thereof.
As such it implements basic principles of the Locare workflow proposed for representing locations in 3D
brain atlases [9]. The semantic or spatial location specifications can be further refined by certainty quantifi-
cations such as information about containedness and overlap of brain structures, accuracy of coordinates, or
hierarchical dependencies between child and parent areas in an atlas terminology.
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Figure 6 | High-level illustration of siibra-python’s system architecture. The siibra-python library models
elements of reference atlases and spatial locations to enable assignment of regions of interest to brain areas,
and implements queries for retrieving anatomically localized data features from cloud resources. A: Atlas
elements include reference coordinate spaces and parcellations with corresponding terminologies, which are
stored in standardized form in data repositories such as EBRAINS and linked to siibra through configuration
files. The library provides efficient and reproducible retrieval of maps and templates at different spatial reso-
lutions in interoperable formats such as NIfTI. B: Users can specify regions of interest by providing images,
coordinates, geometric shapes or textual annotations, which siibra assigns to brain areas via probabilistic
reference maps. Resulting assignments can be accessed and reused as pandas DataFrames. C: Regions of
interest and brain areas can then be used to run queries to cloud repositories to obtain customized multimodal
profilings. Foundational datasets are linked to siibra in the form of configuration files, and complemented
with dynamic content resulting from API calls ("live queries"), currently including interfaces to EBRAINS
and the Allen microarray data for gene expressions in the human brain [33, 1]. D: Data queries result in data
features, which can be considered as enriched links between anatomical locations in siibra and files published
on the respective online resource. The links can be accessed in the form of URLs and DOIs together with a
qualification of their anatomical anchoring to the atlas. E: By fetching from a data feature, siibra provides
access to the underlying data in interoperable formats such as NIfTT images, pandas DataFrames, or numpy
arrays for simple reuse. Following a lazy loading scheme, data is retrieved from the cloud resource only when
required, and then cached for future requests.

As a result, siibra can query many forms of data features in a unified fashion by providing an anatomical
concept (such as a brain area or volume of interest) and a modality for the requested data features. When
evaluating such a query, siibra uses all available information to compute a qualification for each matched
data feature. This enables an adequate assessment of the relevance and accuracy of retrieved measurements
with regard to a given analysis task. A practical example of this principle can be reproduced using the note-
book available at https://siibra-python.readthedocs.io/en/vl/examples/03_data_
features/000_matchings.html.

Modular software architecture

The siibra tool suite consists of an interactive 3D web viewer (siibra-explorer), an HTTP API (siibra-api)
and a Python library (siibra-python).* Following a modular software design, these components share most
of their functionality while addressing different user scenarios. The core functionality is implemented in
siibra-python, a Python package suitable for scripting, interactive notebooks and development of compu-
tational workflows. The key elements of the system architecture are illustrated in Figure 6. It models

*A command line client and Matlab® library are being developed as well, but not covered in this contribution.
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various elements of reference atlases, coordinate-based locations, data features and queries; and provides
functionalities for loading, matching and processing these entities. Since contents are managed separately
from the software, efficient retrieval of data from cloud resources becomes an essential aspect of the pack-
age. Various data fetching mechanisms are implemented for files, multi-resolution images and metadata,
following a lazy loading strategy to ensure that only actually requested elements are transferred. The pack-
age documentation is hosted at https://siibra-python.readthedocs.io and automatically up-
dated with new releases. It contains a comprehensive collection of documented and tested code examples
which demonstrate typical use cases, including the executable codes to reproduce the figures in our results.
These are complemented by a growing collection of more comprehensive tutorial notebooks available at
https://github.com/FZJ-INM1-BDA/siibra-tutorials, developed for workshops and user
trainings.

The functionalities of siibra-python are exposed as a RESTful API for application development (siibra-
api). This HTTP interface focuses on the processing of HTTP requests and efficient serialization of si-
ibra objects and method calls using FastAPI as a web framework, and implements type-hinting via Ope-
nAPL A production instance is deployed, documented and openly accessible for application developers at
https://siibra—-api.apps.ebrains.eu/v3_0/docs.

Finally, the web viewer siibra-explorer implements an interactive user interface on top of siibra-api—
focusing on visualization and user interactions while reusing the underlying functionalities from siibra-
python. It uses Angular as a reactive programming framework, neuroglancer [49] as a visualization backbone
for very large multi-resolution volumetric images, and ThreeJS for rendering of brain surfaces. The surface
view is automatically activated when selecting the freesurfer space, and provides white matter, pial and in-
flated surface representations. The viewer can be accessed from common web browsers, including mobile
devices with touch inputs such iOS or Android tablets.

The production instance of the viewer provides access to the Multilevel Human Brain Atlas presented in this
paper and is available at https://atlases.ebrains.eu/viewer. To track the community interest
in the atlas, we record the numbers of unique returning visitors per month on this instance, which has been
increasing over a timescale of 4 years from about 400 (summer 2020) to about 1300 (summer 2024).

Documentation for siibra-explorer is hosted at https://siibra-explorer.readthedocs.io/
en/latest/. It provides a guided quick tour to help users getting started, which is automatically launched
on first use and can later be accessed via the help menu.

To keep the development of siibra-explorer focused on its core requirements while still allowing flexible ad-
dition of functionalities, the viewer supports the implementation of plugins similar to the add-on mechanisms
offered by modern web browsers. This has been used to create an interactive implementation of the JuGEx
workflow [10], which can be accessed from the plugin menu when selecting the MNI 152 reference space.
The plugin architecture has also been used successfully by researchers to integrate a workflow for learning
gene regulatory networks with Bayesian networks [8].

Separation of content from code

A fundamental design principle of siibra is separation of content from software—an important prerequisite
for extensibility.

Specification files The foundational content elements such as parcellation maps, reference templates and
data features are connected to siibra through specification files maintained outside the codebase. These
specifications follow a set of simple schemata maintained in the config_schema folder of siibra-python.
Typically, a specification file defines 1) minimal metadata entries such as identifier, name, and modality, 2)
pointers to an external metadata management system such as the EBRAINS Knowledge Graph providing
extended metadata, 3) an anatomical reference such as a coordinate-based location or a brain area name
from a reference atlas, and 4) URLs and format specifiers that identify the underlying data, such as im-
age or tabular data files stored on a cloud resource. The specification of a basic image data feature, taken
from the configuration at https://github.com/FZJ-INM1-BDA/siibra-configurations/
tree/vl/features/images/sections/cellbody, is displayed in the Supplementary Informa-
tion, Figure S1. While some specifications such as for parcellation maps are more comprehensive, it shows
the typical style and organisation of the format. A more complete documentation of siibra specifications is
available as part of the code at https://github.com/FZJ-INM1-BDA/siibra-python/tree/
vl/config_schema.
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Configurations Foundational content specifications are collected into configurations by packaging json
files into a zip container, git repository, or folder on a file system. Configurations can be hosted both on a
local machine or on a cloud service. The default configuration of siibra provides the foundational content
of the Multilevel Human Brain Atlas. It is maintained at https://github.com/FZJ—-INM1-BDA/
siibra-configurations, continuously updated by the maintainers and open for extension requests by
the community. Local installations of siibra can use alternative or extended configuration repositories with
customized content, ensuring well-defined maintenance, extension and customization of atlas contents.

Live Queries Foundational content specified in configurations is extended by dynamic content from siibra
live queries—software interfaces implemented in siibra-python for connecting to APIs of suitable cloud ser-
vices and translating their responses into siibra specifications at runtime. Implementing live queries assumes
external repositories to provide a stable API and to return sufficient metadata and common access URLs to
generate specifications as described above. So far, siibra includes live queries to the EBRAINS Knowledge
Graph (RRID:SCR_017612) for discovering anatomically anchored datasets, to the Allen Human Brain At-
las [33, 1] for accessing microarray data localized in MNI space, and to cloud image resources, e.g. [62], for
sampling high-resolution image data as demonstrated in Figure 5.

Support of the FAIR principles

Most foundational content in siibra’s default configuration points to curated datasets in EBRAINS, sup-
porting the FAIR principles for data sharing [70]. Registration in the EBRAINS Knowledge Graph
(RRID:SCR_017612) ensures findability, as it provides each content element an individual DOI, links it
with rich metadata, and offers comprehensive faceted search interfaces. The search paths offered by the
Knowledge Graph are further complemented by siibra in terms of more advanced anatomical navigation
and atlas-guided processing. Accessibility of rich metadata is provided for atlas content through their DOIs,
which are exposed by siibra and allow direct online access to original dataset pages including comprehensive
data descriptors. The siibra tool suite adds additional entry points for retrieval by forwarding the metadata,
offering download links in siibra-explorer, and implementing efficient data fetching capabilities in siibra-
python. By promoting the openMINDS metadata framework (RRID:SCR_023173) used by the EBRAINS
Knowledge Graph (RRID:SCR_017612), siibra further supports interoperability and reusability. Instead of
establishing a different knowledge representation, siibra specification schemas only serve as a summary and
reference pointer to the established representations and terminologies in EBRAINS. By explicitly subjecting
the content of each foundational atlas element to the professional data curation offered by EBRAINS, a com-
prehensive description of the content with attributes accepted by the community is ensured. Interoperability
is further optimized by exposing the retrieved contents from the underlying dataset in highly interoperable
formats. For example, in siibra-python, fetched image data is exposed as NiftilImage image objects via
NiBabel (RRID:SCR_002498), fetched tabular data as Pandas (RRID:SCR_018214) DataFrames, and more
general numerical data such as vertex lists as NumPy (RRID:SCR_008633) arrays (Figure 3). This makes it
straightforward to use the data with popular tools such as e.g. NiLearn (RRID:SCR_001362), itksnap, Napari
(RRID:SCR_022765) and MatPlotLib (RRID:SCR_008624), and integrate it in common analysis workflows.

Unified access to small and big image volumes

A central design goal of siibra is to unify access to small and "big" image data, e.g. to handle images in the
range of a few hundred Megabytes up to Terabyte scale in a consistent fashion while hiding the complexity
of their different access paths as cloud volumes or downloadable files. This has been realized by support-
ing both conventional local and web-hosted NIfTT files as well as multi-resolution chunk formats such as
the neuroglancer precomputed tile format through the same user-level functionality. The heterogeneity of
these data types is hidden behind a common interface in siibra-python which provides image data in NIfTI
format with appropriate spatial metadata independently of its original format and origin. When accessing
content elements with conventional "small" 3D image data, siibra will load and forward the original image
data in unmodified form. When fetching from a large multi-resolution image resource, siibra will either
return an appropriately downscaled version or require to specify a region of interest that results in a feasi-
ble download size (Figure S5E). In any case, the involved cropping or scaling will be reflected in the spatial
metadata of the resulting NIfTI object, so that the fetched data remains appropriately localized in its original
reference space. This way, siibra can convert large whole-brain image resources stored on cloud resources
into actionable data structures as required by the user. This principle can be reproduced using the notebook
available at https://siibra-python.readthedocs.io/en/vl/examples/02_maps_and_
templates/004_access_bigbrain.html.
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Memory-efficient representation of sparse regional maps

Statistical maps associate 3D points in a reference coordinate space with continuous weights reflecting the
likelihood of a brain area being present at that location [2]. Processing such statistical parcellation maps
e.g. for probabilistic assignment (Figure 3) thus might imply retrieving and loading one image volume per
brain area. For Julich-Brain this amounts to loading approximately 300 3D volumes in MNI space, which
results in long download times for the initial data fetching and may quickly exceed the working memory
capacity of standard computers. To avoid these problems, siibra implements an alternative data structure to
minimize memory consumption. The structure exploits that statistical region maps often encode only a small
fraction of the brain volume, thus mostly containing zeros and effectively forming an extremely sparse 4D
array over all brain areas. The main idea is to replace these sparsely populated 3D volumes by an index
which stores only the nonzero weights. This is modelled by two data structures, which may be understood
as a "spatial" dictionary with coordinate-based keys (see Supplementary Information; Figure S2): The first
structure is a single 3D array matching the original voxel dimensions of the maps. This array structure
allows efficient spatial queries with bounding boxes or image masks. Elements of the array are zero if
the corresponding voxel is not associated with any brain area in the parcellation, or hold a numerical key
otherwise. The numerical keys are indices to the second structure, a list containing the statistical weights of
the corresponding voxel statistical maps concerned. The structure reimplements all functions of conventional
parcellation maps, including data fetching and assignment of coordinates to brain areas.
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2 {

3 "@id": "73clfa55-d099-4854-8cda-c9a403c6080a--2049edd77495c906938563662c3 |
— 45cee",

4 "Qtype": "siibra/feature/section/v0.1",

5 "name": "#102: selected 1 micron scans of BigBrain histological sections
— (vi.0)",

6 "modality": "cell body staining",

7 "ebrains": {

8 "openminds/DatasetVersion": "73cl1fa55-d099-4854-8cda-c%9a403c6080a",

9 "openminds/Dataset": "95f07031-34f0-40£f0-a170-£91b5d08d0d5"

10 Y,

11 "space": {

12 "@id":
— "minds/core/referencespace/v1.0.0/al1655099-82f1-420f-a3c2-fe80fd4c8588"

13 Y,

14 "providers": {

15 "neuroglancer/precomputed": "https://lum.brainatlas.eu/registered_secti
— ons/bigbrain/B20_0102/precomputed"

16 b

17 "boundingbox": {

18 "Qtype": "siibra/location/boundingbox/v0.1",

19 "space": {

20 "@id":
— "minds/core/referencespace/v1.0.0/al1655b99-82f1-420f-a3c2-fe80£fd4c8588"

21 Y,

2 "coordinates": |

23 [

24 -70.6766833333333,

25 -67.9895,

26 -58.7877833333333

27 1s

28 [

29 68.4433166666667,

30 -67.96950000000001,

31 62.112216666666704

32 ]

33 ]

34 }

35 }

Figure S1 | Specification of a typical image data feature. The specification is given as a json file and de-
scribes a 2D section anchored to the BigBrain reference space [62]. The original file is part of siibra’s default
configuration available at https://github.com/FZJ-INM1-BDA/siibra-configurations/
tree/vl/features/images/sections/cellbody. It follows the schema section/v0.1
defining text fields for dataset name and modality, as well as URLs to relevant openMINDS metadata en-
tities of the corresponding dataset in EBRAINS. The actual content is identified by the URL to the multi-
resolution image data in neuroglancer precomputed format, and associated with the BigBrain reference space
using a unique identifier. Using this information, siibra is able to extract detailed metadata and access the full
resolution image data as demonstrated in Figure 2D-F and Figure SE.
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Figure S2 | Representation of sparse statistical parcellation maps used in siibra. A: Three hypothetical
statistical maps for different brain areas "I'", "J" and "K", represented as simplistic arrays of 3 x 3 x 3 voxels
with only a few nonzero weights each. B: The statistical maps are converted into one single array storing
indices to all "occupied” voxel coordinates, together with a list of the map weights associated with these
voxels. The weights for a given voxel are stored in the list as a dictionary which maps from the corresponding
brain area to the weight.
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Category Modality/Type Source Description ~ GiB
cytoarchitecture [5] Julich-Brain probabilistic maps of cortical 3
and subcortical areas
fibre architecture [32] Probabilistic maps of superficial and white 1
maps matter bundles
function [19] statistical maps of functional modules 1
cortical layers [68] BigBrain maps of isocortical layers 1
Microscopy [4] BigBrain histological 3D reconstruction 260
templates MRI [34] MNI Colin 27 1
MRI [29] ICBM 2009c nonl. asym. 1
Surface [27] Freesurfer fsaverage and fsaverage6 1
Cortical cell e.g. [22] | Image patches at 1um resolution with cell 10
distributions segmentations & layer annotations
Cortical staining [68] 163828 profiles in left BigBrain hemisphere 1
profile
Cell-body stained | [62, 4] 145 coronal whole-brain sections at 1um 4500
cellular whole brain section resolution
features Cell-body stained | [36] 2 volumes of interest in occipital lobe 410
volume of interest scanned at 1um
Phase-contrast to- | [26] Reconstructed density of a hippocampal tis- 61
mography sue volume
LSFM [54] Human brain cell census for BA 44/45 58
Receptor  density | [58, Average densities of up to 16 receptors in 1
molecular fingerprint 73] 42 brain regions
features Cortical  receptor | [58, 107 profiles of 16 receptors across 7 brain 1
density profile 73] regions
3D-PLI [6] Fibre orientation maps of a hippocampus 2070
fibre from 3D Polgrized Light Imaging .
architecture DTI Whole brain post-mortem fractional 35
anisotropy and RGB maps at 200pum
Blockface [6] Blockface reconstruction of a human hip- 1
pocampus
MRI [6] T2 weighted MRI of a human hippocampus 1
macro- MRI Ultra-highfield anatomical MRI of a post- 107
anatomy mortem brain at 200pum and 150um
MRI [46] Ultra-highfield anatomical MRI of human 6
brainstem
Streamline counts [39] Streamline counts of 821 subjects from 2 1
cohorts averaged for 3 parcellations
Streamline lengths | [39] Streamline lengths of 821 subjects from 2 1
. cohorts averaged for 3 parcellations
fr?;?ii(;t;wty Functional [39] Resting-state connectivity of 821 subjects 5
connectivity from 2 cohorts
Functional [37] Anatomo-functional connectivity of 613 1
connectivity patients, 39 features
functional BOLD time series [24] Streamline counts of 821 subjects averaged 6
for 3 parcellations

Table S3 | Snapshot of foundational content in the Multilevel Human Brain Atlas. The table sum-
marizes the set of foundational data specified in the default siibra configuration of the Multilevel Human
Brain Atlas at the time of writing, including maps, templates and multimodal data features. The amount of
data features that can actually be accessed is larger due to dynamic content obtained through live queries
(Figure 1A) as well as continuous extension of the foundational content in siibra’s default configuration.
The reported version of the configuration is available at https://github.com/FZJ-INM1-BDA/
siibra-configurations/tree/vl.
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