001042716 001__ 1042716
001042716 005__ 20250627204348.0
001042716 0247_ $$2doi$$a10.1103/PRXLife.3.023008
001042716 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02662
001042716 037__ $$aFZJ-2025-02662
001042716 082__ $$a570
001042716 1001_ $$0P:(DE-HGF)0$$aShao, Yuxiu$$b0$$eCorresponding author
001042716 245__ $$aImpact of Local Connectivity Patterns on Excitatory-Inhibitory Network Dynamics
001042716 260__ $$aCollege Park, MD$$bAmerican Physical Society$$c2025
001042716 3367_ $$2DRIVER$$aarticle
001042716 3367_ $$2DataCite$$aOutput Types/Journal article
001042716 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1751023823_28641
001042716 3367_ $$2BibTeX$$aARTICLE
001042716 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001042716 3367_ $$00$$2EndNote$$aJournal Article
001042716 520__ $$aNetworks of excitatory and inhibitory (EI) neurons form a canonical circuit in the brain. Seminal theoretical results on the dynamics of such networks are based on the assumption that synaptic strengths depend on the type of neurons they connect, but are otherwise statistically independent. Recent synaptic physiology datasets, however, highlight the prominence of specific connectivity patterns that go well beyond what is expected from independent connections. While decades of influential research have demonstrated the strong role of the basic EI cell type structure, the extent to which additional connectivity features influence dynamics remains to be fully determined. Here we examine the effects of pairwise connectivity motifs on the linear dynamics in excitatory-inhibitory networks using an analytical framework that approximates the connectivity in terms of low-rank structures. This low-rank approximation is based on a mathematical derivation of the dominant eigenvalues of the connectivity matrix, and it predicts the impact on responses to external inputs of connectivity motifs and their interactions with cell-type structure. Our results reveal that a particular pattern of connectivity, namely chain motifs, have a much stronger impact on dominant eigenmodes than other pairwise motifs. In particular, an over-representation of chain motifs induces a strong positive eigenvalue in inhibition-dominated networks, and it generates a potential instability that requires revisiting the classical excitation-inhibition balance criteria. Examining the effects of external inputs, we show that chain motifs can on their own induce paradoxical responses, where an increased input to inhibitory neurons leads to a decrease in their activity due to the recurrent feedback. These findings have direct implications for the interpretation of experiments in which responses to optogenetic perturbations are measured and used to infer the dynamical regime of cortical circuits.
001042716 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001042716 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001042716 536__ $$0G:(GEPRIS)430157073$$aDFG project G:(GEPRIS)430157073 - Evolutinäre Konvergenz hierarchischer Informationsverarbeitung (430157073)$$c430157073$$x2
001042716 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001042716 7001_ $$0P:(DE-Juel1)156459$$aDahmen, David$$b1
001042716 7001_ $$0P:(DE-HGF)0$$aRecanatesi, Stefano$$b2
001042716 7001_ $$0P:(DE-HGF)0$$aShea-Brown, Eric$$b3
001042716 7001_ $$0P:(DE-HGF)0$$aOstojic, Srdjan$$b4
001042716 773__ $$0PERI:(DE-600)3167959-6$$a10.1103/PRXLife.3.023008$$gVol. 3, no. 2, p. 023008$$n2$$p023008$$tPRX life$$v3$$x2835-8279$$y2025
001042716 8564_ $$uhttps://juser.fz-juelich.de/record/1042716/files/PRXLife.3.023008.pdf$$yOpenAccess
001042716 909CO $$ooai:juser.fz-juelich.de:1042716$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001042716 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156459$$aForschungszentrum Jülich$$b1$$kFZJ
001042716 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001042716 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001042716 9141_ $$y2025
001042716 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001042716 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-30
001042716 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001042716 920__ $$lyes
001042716 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x0
001042716 980__ $$ajournal
001042716 980__ $$aVDB
001042716 980__ $$aUNRESTRICTED
001042716 980__ $$aI:(DE-Juel1)IAS-6-20130828
001042716 9801_ $$aFullTexts