
PRX LIFE 3, 023008 (2025)

Impact of Local Connectivity Patterns on Excitatory-Inhibitory Network Dynamics
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Networks of excitatory and inhibitory (EI) neurons form a canonical circuit in the brain. Seminal theoretical
results on the dynamics of such networks are based on the assumption that synaptic strengths depend on the
type of neurons they connect, but are otherwise statistically independent. Recent synaptic physiology datasets,
however, highlight the prominence of specific connectivity patterns that go well beyond what is expected
from independent connections. While decades of influential research have demonstrated the strong role of the
basic EI cell type structure, the extent to which additional connectivity features influence dynamics remains
to be fully determined. Here we examine the effects of pairwise connectivity motifs on the linear dynamics
in excitatory-inhibitory networks using an analytical framework that approximates the connectivity in terms
of low-rank structures. This low-rank approximation is based on a mathematical derivation of the dominant
eigenvalues of the connectivity matrix, and it predicts the impact on responses to external inputs of connectivity
motifs and their interactions with cell-type structure. Our results reveal that a particular pattern of connectivity,
namely chain motifs, have a much stronger impact on dominant eigenmodes than other pairwise motifs. In
particular, an over-representation of chain motifs induces a strong positive eigenvalue in inhibition-dominated
networks, and it generates a potential instability that requires revisiting the classical excitation-inhibition balance
criteria. Examining the effects of external inputs, we show that chain motifs can on their own induce paradoxical
responses, where an increased input to inhibitory neurons leads to a decrease in their activity due to the recurrent
feedback. These findings have direct implications for the interpretation of experiments in which responses to
optogenetic perturbations are measured and used to infer the dynamical regime of cortical circuits.
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I. INTRODUCTION

Circuits of excitatory and inhibitory (EI) neurons are
believed to form the fundamental components of information-

*Contact author: ivyerosion@gmail.com
†Contact author: srdjan.ostojic@ens.fr

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

processing in the brain [1–4]. Network models of recurrently
connected excitatory and inhibitory units have therefore be-
come an essential tool for understanding neural dynamics and
computation. Such models have helped uncover fundamental
principles such as the role of excitation-inhibition balance
for sustaining irregular activity [5–9], and the importance of
inhibition for stabilizing neural activity [8,10–12] and nor-
malizing responses [13]. A phenomenon that has attracted
particular attention are paradoxical responses, which refer to
situations in which an increase in the external input to the in-
hibitory neurons results in a decrease of their activity because
of recurrent interactions [10–16]. Recent theoretical analyses
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FIG. 1. Schematic of the multipopulation network model.
(a) The network consists of P populations, each represented by a
different color. This population structure defines the statistics of
synaptic connectivity. (b) The corresponding connectivity matrix
consists of P2 blocks. Synaptic weights within each block share iden-
tical statistical properties. (c) Pairs of synapses that share a neuron
can form four different types of second-order motifs. The prevalence
of each motif with respect to chance is quantified by a corresponding
pairwise correlation coefficient. (d) A low-rank approximation of the
connectivity matrix can integrate both the population structure and
the pairwise motif statistics.

have argued that such paradoxical responses to external inputs
can reveal the dynamical regime of the underlying excitatory-
inhibitory network [14,17,18], and these insights have been
used to interpret experimental measurements of responses to
optogenetic perturbations [19–21].

These seminal theoretical results on excitatory-inhibitory
networks, however, are derived via a key simplifying as-
sumption. In standard models, the strength of the synaptic
coupling between any two neurons depends on their types, but
is otherwise assumed to be an independent random variable
uncorrelated across synapses. This assumption is typically
used to reduce a full network to a simpler circuit model that
describes how the mean activities of different populations in-
teract through averaged synaptic weights [Figs. 1(a) and 1(b)].
However, recent synaptic-resolution experimental datasets
from various species and brain areas have revealed the preva-
lence of nontrivial connectivity patterns [22–30]. In particular,
a recently released dataset from mice and humans [23,30]
reported the prominence of second-order motifs—specific
correlations between pairs of synapses, such as reciprocal,
chain, convergent, and divergent motifs [Fig. 1(c)]—that go
well beyond what is expected from independent connections,
and it highlights the need for a theoretical understanding
of the effects of such patterns. The presence of reciprocal
connectivity motifs has long been recognized and exam-
ined within network models [29–33]. Other studies have
argued for the importance of several types of synaptic mo-
tifs working together to determine statistical properties of
network activity, such as average synchrony or correlation
among neurons, and networkwide dimensionality [30,32,34–
40]. In a general theoretical analysis [35], chain motifs—
corresponding to a pattern where neurons with stronger inputs
also have stronger outputs—were found to have a dominant
role in determining population-averaged responses of net-
works to their inputs. Nevertheless, the impact of chain motifs

on excitation-inhibition balance—including central issues of
stability and paradoxical responses—as well as the general
interplay among these motifs and structures established by
cell-type specific connectivity, remain open and intriguing
questions.

In this study, we examine how the interaction between
population structure and synaptic motifs influences recurrent
dynamics and the presence of paradoxical responses. To this
end, we expand a previously introduced theoretical framework
that allows us to reduce large networks of multiple pop-
ulations to a low-dimensional description that incorporates
connectivity statistics beyond the mean via a low-rank approx-
imation [33]. Applying this theory to excitatory-inhibitory
networks with chain motifs, we demonstrate that these con-
nectivity patterns significantly impact the eigenspectrum of
the connectivity matrix, and thereby the overall recurrent dy-
namics. Specifically, an over-representation of chain motifs
creates strong positive feedback even in inhibition-dominated
networks, and therefore leads to a potential instability that
requires revisiting the classical conditions of excitation-
inhibition balance. Moreover, we found that chain motifs
strongly influence the responses of different populations to
external inputs and can control whether the responses are
paradoxical or not. We show that the paradoxical responses
can be equivalently predicted from two approaches: (i) a
low-rank approximation based on the outliers in the eigen-
spectrum; (ii) an effective connectivity matrix that combines
average synaptic weights and the strength of chain motifs.
Altogether, our findings highlight the intricacy of the rela-
tionship between the responses to inputs and the underlying
connectivity, and in particular they sound a note of caution for
interpreting results of experiments in terms of only average
connectivity strengths among E and I cells.

This manuscript is organized as follows. Section II defines
the connectivity and the network model. Section III intro-
duces the general theoretical framework based on a low-rank
approximation of the connectivity, which allows us to ana-
lytically investigate the effects of local motifs, in particular
chain and reciprocal motifs, on recurrent dynamics and re-
sponses to external inputs. Sections IV and V apply this theory
to fully connected and sparse excitatory-inhibitory networks
with chain motifs. In Sec. IV we analyze the influence of
chain motifs on the eigenspectra of these models. In Sec. V
we use these results to study the responses to external inputs
and under what conditions they are paradoxical.

II. NETWORK MODEL

A. Network connectivity

We consider networks of N recurrently connected neurons.
The connectivity is represented by a matrix J, where the
entry Ji j corresponds to the synaptic weight from neuron j to
neuron i. The statistics of network connectivity are then fully
described by the joint distribution P ({Ji j}) of the N2 synaptic
weights.

We assume that the network consists of P nonoverlapping
populations that determine the connectivity statistics as fol-
lows. The connectivity matrix J has a P × P block structure
defined by the populations, where synaptic weights within a
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TABLE I. List of notations.

Notation Description

i, j Single neuron indices
p, q Population indices
Np Number of neurons in population p
αp Fraction of neurons in population p
J0

pq Mean synaptic weight from population q to
population p

σpq Standard deviation of the synaptic weights from
population q to population p

σ Rescaled homogeneous standard deviation of the
synaptic weights

τ c/r
pq Correlation coefficient of the chain/reciprocal

connectivity motifs
c Connection probability in sparse networks
J Excitatory synaptic weights in the sparse EI network
g Relative (mean) strength of inhibitory to excitatory

synapses in (Gaussian) sparse EI network
γ Ratio of inhibitory to excitatory population size

specific block share identical statistical properties [Fig. 1(b)].
We denote as Np the number of neurons in population p, and
αp = Np

N is the corresponding fraction. The main notations are
summarized in Table I.

Following a common approach [29,32,34,36–39,41], we
begin by characterizing connectivity through the marginal
distributions P (Ji j = J ) of individual synaptic weights, and
progressively incorporate higher-order correlations. In this
study, we consider the first and second orders, that is, the
marginal distribution of individual synaptic weights and the
pairwise correlations. We denote as motifs correlations be-
tween weights of pairs of synapses that share a neuron
[Fig. 1(c)]. We specifically focus on chain motifs correspond-
ing to correlations between synapses Ji j and Jjk which share
the intermediate neuron j, but i �= k. The strength of chain
motifs can be quantified by the correlation coefficient

τ c
i jk = [Ji jJjk] − [Ji j][Jjk]√

[(Ji j − [Ji j])2][(Jjk − [Jjk])2]
. (1)

This measure of motif strength takes the form of a Pear-
son correlation coefficient, representing the prevalence of
correlations between a pair of synaptic weights compared
to the independent case. Here, and throughout this study,
square brackets denote the average over the full connectivity
distribution.

We contrast the effects of chain motifs with reciprocal
motifs corresponding to correlations τ r

i j between connections
Ji j and Jji [33]:

τ r
i j = [Ji jJji] − [Ji j][Jji]√

[(Ji j − [Ji j])2][(Jji − [Jji])2]
. (2)

Pairs of synapses sharing a neuron can form two additional
types of correlations corresponding to convergent and diver-
gent motifs. We show in Appendix A that, in the limit of large
networks, they do not contribute to the dynamics we study
here.

Because of the assumed population structure, the marginal
distributions P (Ji j ) and the correlation coefficients τ c

i jk and
τ r

i j depend only on the populations p, q, and s to which the
neurons i, j, and k belong, so that

P (Ji j = J ) = f pq(J ), τ c
i jk = τ c

pqs, τ r
i j = τ r

pq. (3)

Here p, q, s ∈ {1, . . . , P} [Figs. 1(a) and 1(b)], and f pq(J ) is
the marginal distribution of synaptic weights from population
q to population p.

The connectivity matrix J can in general be split into a sum
of its mean and random parts

J = J0 + Z, (4)

where J0
i j = [Ji j] are mean connectivity weights, and zi j =

Ji j − [Ji j] is the zero-mean random part [33].
These two parts are characterized by statistics

J0
i j = J0

pq,[
z2

i j

] = σ 2
pq,

[zi jz jk]√[
z2

i j

][
z2

jk

] = τ c
pqs,

[zi jz ji]√[
z2

i j

][
z2

ji

] = τ r
pq, (5)

where neurons with indexes i, j, k belong to populations
p, q, and s, respectively, and i �= k. The mean matrix J0,
therefore, has a P × P block structure, where entries within
each block are identical, so that its rank is R0 � P. In contrast,
the random component Z is in general of rank N . The statistics
of its entries, however, exhibit a blocklike structure, where
variances σ 2

pq and reciprocal correlation coefficients τ r
pq define

P × P matrices, while the chain correlation coefficients τc,pqs

define a P × P × P tensor. Both τ c
pqs and τ r

pq range from −1
to 1. We further simplify the parameters by assuming that the
chain correlation coefficient depends only on the populations
of the presynaptic neurons of the two synapses, consequently
τ c

pqs = τ c
qs.

B. Network dynamics

Our goal is to examine the effects of local connectivity
statistics on the steady-state response to external inputs. We
therefore focus on a simple linear network of rate units, where
the firing rate ri of unit i obeys

τ
d

dt
ri(t ) = −ri(t ) +

N∑
j=1

Ji jr j (t ) + Iext
i (t ). (6)

Here, −ri(t ) is a standard leak term, the second term on the
right-hand side (r.h.s.) is the recurrent input from other units
in the network, and the third term is an external input.

The firing rate dynamics of neurons in vector format can
be written as

τ
d

dt
r(t ) = −r(t ) + Jr(t ) + Iext(t ), (7)

so that the steady-state activity is given by

r∗ = (1 − J)−1Iext. (8)
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Here 1 denotes the N × N identity matrix.
Our aim is to determine how external inputs to different

populations affect the steady-state activity. To this end, we
will examine the response matrix χ, where the entry χi j

represents the change of the steady-state activity of neuron
i resulting from a change in the input current to neuron j:

χi j = dri

dIext
j

. (9)

From Eq. (8) we have

χ = (1 − J)−1. (10)

The diagonal entries of the response matrix, denoted as χii,
represent the activity change of neuron i in response to the
direct external input they receive. When this term is negative,
this indicates that the neuron increases (decreases) its firing
rate with a decrease (increase) in the external excitatory input.
Generalizing the notion of paradoxical responses of inhibitory
neurons [10], we denote any negative diagonal element of the
response function as a paradoxical response.

To examine the relationship between local connectivity
statistics and paradoxical responses to external inputs, we
compare two approaches: (i) responses obtained from a low-
rank approximation based on the dominant eigenmodes of the
random connectivity matrix J [33]; and (ii) a direct approxi-
mation of the average response function in which the random
connectivity matrix J is replaced by a deterministic matrix Jeff

that combines the first- and second-order statistics [35].

III. LOW-RANK APPROXIMATION

To determine how connectivity shapes the response func-
tion of the network, we perform a low-rank approximation of
the connectivity matrix J [Fig. 1(d)]:

J ≈ 1

N

R∑
r=1

m(r)n(r)ᵀ (11)

= 1

N
MNᵀ. (12)

Here m(r) and n(r) for r = 1, . . . , R are N-dimensional
vectors, and M and N are N × R matrices obtained by con-
catenating these vectors.

While there exists a variety of methods for forming a
low-rank approximation, here we use a simple truncated
eigendecomposition, which assumes that the connectivity ma-
trix J is diagonalizable. Specifically, we take the vectors
n(r), m(r) ∈ RN to be, respectively, the rth left and right eigen-
vectors Lr and Rr rescaled by

√
N :

m(r) =
√

NRr, n(r) = λr

√
NLr . (13)

Here, the eigenvectors are ordered by the decreasing absolute
value of their eigenvalue λr , and they obey

JRr = Rrλr, Lᵀ
r J = λrLᵀ

r , Lᵀ
r Rr′ = δrr′ . (14)

Additionally, we impose the constraint that Rr has unit norm.
By retaining only the first R eigenmodes, we obtain a rank-R
approximation that preserves the top R eigenvalues of J.

From Eq. (8), this leads to a low-rank approximation of the
steady-state activity,

r∗ = (1 − MNᵀ/N )−1Iext. (15)

Using the Woodbury matrix identity, the steady-state activity
can be expressed as

r∗ = (1 + M(1 − �)−1Nᵀ/N )Iext, (16)

where � is the R × R diagonal matrix containing the top R
eigenvalues of J.

In the low-rank approximation, the entries of the linear-
response matrix are therefore given by

χi j = δi j + 1

N

R∑
r=1

m(r)
i n(r)

j

1 − λr
, (17)

where δi j is the Kronecker delta. Note that in [35], the re-
sponse function in networks with chain motifs was computed
using a different method, based on a power series expansion
and resumming of the matrix inverse in Eq. (10).

To identify the R dominant eigenmodes of J, we leverage
prior results on the eigenspectra of matrices with a low-rank
plus random structure similar to Eq. (4). For such matrices,
the eigenspectra typically consist of two components in the
complex plane. One component is a continuously distributed
bulk determined by Z, and the other is a set of discrete outliers
controlled by the low-rank structure [42–47]. Previous works
have examined the influence of local connectivity motifs on
the eigenvalue bulk [30,32,48,49]. Here we focus instead on
eigenvalue outliers and their associated eigenvectors. Specifi-
cally, we take the rank R in our low-rank approximation to be
equal to the number of eigenvalue outliers.

In the subsequent section, we identify the impact of
chain and reciprocal motifs on the outlying eigenvalues and
corresponding eigenvectors, and then we use the low-rank
approximation to determine their influence on the steady-state
response of the network.

IV. EIGENVALUE OUTLIERS

In this section, we study the impact of chain motifs on out-
lying eigenvalues of the connectivity matrix. We first outline
the general theory for networks consisting of P populations.
We then apply it to excitatory-inhibitory networks consist-
ing of two populations, and we contrast fully connected and
sparse networks.

A. General approach

To investigate the impact of local motif statistics on eigen-
values, we expand on earlier work on random matrix theory
[33,34,41,43,46,50]. The main steps of the mathematical de-
viations are outlined below; details of the derivation are
provided in Appendix B.

Our starting point is the fact that the mean connectivity
matrix J0 of a network with P populations consists of P blocks
and is therefore of rank R0 � P. Therefore, it can be exactly
expressed as

J0 = 1

N

R0∑
r=1

m(r)
0 n(r)ᵀ

0 = 1

N
M0Nᵀ

0 , (18)
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where M0 and N0 are two RN×R0 matrices, and their rth
columns correspond to the right and left eigenvectors m(r)

0 and
n(r)

0 of J0 associated with the nonzero eigenvalue λ0
r . The full

connectivity matrix J [Eq. (4)] can therefore be written as

J = 1

N
M0Nᵀ

0 + Z. (19)

Any eigenvalue λ of J satisfies

det(J − 1λ) = 0. (20)

After substituting Eq. (19) and applying the matrix determi-
nant lemma, the determinant in Eq. (20) can be expressed as

det
(
M0Nᵀ

0 /N + Z − 1λ
)

= det(Z − 1λ) det
(
1 + Nᵀ

0 (Z − 1λ)−1M0/N
)

= det(Z − 1λ)
1

λN
det

(
λ1 − 1

N
Nᵀ

0 (1 − Z/λ)−1M0

)
.

(21)

To apply the matrix determinant lemma, we assumed that
Z − 1λ is invertible, so that the first term on the r.h.s. of
Eq. (21) is nonzero. This is guaranteed if λ is larger than the
radius of the spectrum of Z, which we refer to as the bulk. The
zeros of the second term on the r.h.s. corresponds to potential
eigenvalues generated by the interaction between Z and the
mean connectivity J0. We refer to these eigenvalues as outliers
when they lie outside of the bulk spectrum. Note that if the
random component Z = 0, the second term yields the nonzero
eigenvalues of the pure low-rank mean connectivity J0.

Expanding the matrix inverse (1 − Z/λ)−1 in the second
term of Eq. (21), we introduce the matrix

Q =
∞∑

k=0

Nᵀ
0 ZkM0/(Nλk ). (22)

This expansion converges for eigenvalues λ that are outside of
the bulk because the norm of Z/λ is smaller than unity in this
case. The outliers are then given by the polynomial equation

det(λ1 − Q) = 0. (23)

We focus on the realization-averaged λ, involving the aver-
aging of Eq. (23) and, consequently, the averaging of Eq. (22)
over Z, which we denote with square brackets. As we con-
sider networks with only second-order correlations between
synaptic weights, [Zk] for odd k are zero, and only even
terms remain nonzero. For even k = 2l , we show that in the
limit of large networks, [Z2l ] → [Z2]l , with higher powers
functioning in a subdominant way and thus being negligible
in the following calculations (see Appendix A).

Applying geometric sequence summation in Eq. (22), we
get

[Q] = 1

N
Nᵀ

0

(
1 − [Z2]

λ2

)−1

M0. (24)

The element i, j of [Z2] is given by the pairwise correla-
tions between synapses, and it can be expressed as[

N∑
k=1

zikzk j

]
=

{
N

∑P
q=1 αqσpqσqsτ

c
qs, i �= j,

N
∑P

q=1 αqσpqσqpτ
r
qp, i = j,

(25)

where neurons i and j belong to populations p and s, and αq

represents the fraction of neurons in population q.
Equation (25) shows that diagonal entries of [Z2] are

determined by the strength of reciprocal motifs, while the
nonzero off-diagonal entries are determined by the strength
of chain motifs. Thus, the matrix [Z2] can be decomposed
into a diagonal matrix D ∈ RN×N and a matrix O ∈ RN×N

consisting of P2 blocks with constant entries within blocks
that are determined by the strength of chain-motifs across the
different populations:

[Z2] = D + O. (26)

We further express this block matrix as O = UoVᵀ
o , where

Uo, Vo ∈ RN×Ro , and Ro represents the rank of O, which is
maximally the number of distinct neuron populations P. To
compute the matrix inverse (1 − [Z2]/λ2)−1, we then apply
the Woodbury matrix identity, resulting in(

1 − [Z2]

λ2

)−1

= 1

λ2
A−1Uo

(
1Ro − 1

λ2
Vᵀ

o A−1Uo

)−1

× Vᵀ
o A−1 + A−1,

A−1 = diag

({
λ2

λ2 − Dii

})
, (27)

where 1Ro is an RRo×Ro identity matrix. Substituting the matrix
inverse Eq. (27) into Eqs. (24) and (23) yields a polynomial
equation for the eigenvalue outliers of the connectivity matrix
J as a function of the first- and second-order statistics of
synaptic strengths (see Appendix B for details).

B. Fully connected excitatory-inhibitory networks

1. Definition

We first apply our approach to fully connected networks
with Gaussian-distributed synaptic strengths. We consider
networks consisting of two populations, namely an excitatory
and an inhibitory one, which we denote with indices p, q ∈
{E , I}. Their respective sizes are NE = αE N and NI = αI N .

The marginal distribution f pq of synaptic strengths from
population q to population p is given by

f pq = N
(
J0

pq, σ
2
pq

)
, (28)

where p, q ∈ {E , I}. For simplicity, we set J0
EE = J0

IE = J0

and J0
EI = J0

II = −gJ0, where g is the relative strength of
inhibitory synapses with respect to excitatory ones.

The mean synaptic connectivity J0 is then of rank R0 = 1,
and it can be expressed as J0 = m0nᵀ

0 /N , where

m0 = [1, . . . ]ᵀ

n0 = [NJ0, . . . ,−NgJ0, . . . ]ᵀ. (29)

J0 has a unique nonzero eigenvalue

λ0 = NE J0 − NI gJ0 = (αE − gαI )J0N. (30)

In the following, we will assume that the network is
inhibition-dominated [17–19,51], i.e., that αE − gαI � 0, so
that λ0 � 0. We refer to λ0 as the unperturbed eigenvalue.

We moreover consider a situation in which the variance σ 2
pq

is identical across populations and strong, i.e., proportional to
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FIG. 2. Impact of chain motifs on the eigenvalues of the connectivity matrix for fully connected excitatory-inhibitory networks. (a) Eigen-
spectrum in the complex plane. The spectrum consists of a circular bulk (magnification in inset), within which the eigenvalues are continuously
distributed, and isolated outliers. Inhibition-dominated networks with independent synapses give rise to a single negative outlier λ0 (black
circle). Progressively increasing the strength τ c of chain motifs (from light to dark), this negative outlier (yellow to red) decreases from the
original λ0, while an additional positive outlier emerges and increases (light to dark green). The dots show numerically determined outlying
eigenvalues averaged over 30 networks of N = 1000 neurons. The inset shows the eigenvalue bulk for a single network realization with τ c = 0
(purple) and τ c = 0.1 (blue). (b) Dependence of outlying eigenvalues on the strength τ c of chain motifs and the network size N . Numerically
obtained eigenvalue outliers from 30 network realizations (markers) are shown alongside the theoretical predictions (lines) calculated using
Eq. (34). The dominant negative outlier is depicted in red, while the emergent positive outlier is denoted in green. The gray area indicates the
radius of the eigenvalue bulk in networks with a size of N = 1000, with dashed lines indicating the theoretical values [30]. As a control, we
fix λ0 across networks with different N by scaling the mean synaptic weight J0

pq as 1/N . All parameter values are given in Table II.

1/N , so that the variance of the total input to neurons is O(1).
In this case, we can write

σ 2
pq = σ 2

N
(31)

and refer to the parameter σ 2 as the scaled variance. This
scaling ensures that, in the absence of correlations between
synapses, the connectivity matrix exhibits a random spectrum
of radius independent of N and given by σ [45,52–54]. If
λ0 < −σ , the mean part of the connectivity leads to a negative
outlier [42,45,47,55]. In addition to the first-order statistics,
we will assume that the synaptic strengths exhibit correlations
described by uniform chain-motif statistics τ c and reciprocal-
motif coefficient τ r defined in Eq. (5). Numerical procedures
for generating the corresponding connectivity matrices are
described in Appendix C 1.

The equation for the outlying eigenvalues in this homoge-
neous case is derived in Appendix B 2. In Appendix B 3, we
consider the more general situation in which the variances are
different in blocks connecting different populations.

2. Eigenvalues

Applying the analytical approach outlined in Sec. IV A to
networks featuring homogeneous chain and reciprocal motifs,
in Eq. (25) the N (N − 1) off-diagonal entries in [Z2] are
nonzero, equal, and determined by the chain motif strength τ c,
while the N diagonal entries are determined by the reciprocal
motif strength τ r . Altogether, [Z2] is a sum of a diagonal
matrix and a uniform, unit-rank matrix [Eq. (26)]; substituting
this into Eq. (27) leads to the following equation for eigen-

value outliers:

λ2 − λ0λ − 	2 = 0, (32)

where we assumed λ �= 0, and

	2 = σ 2τ c(N − 1) + σ 2τ r . (33)

This second-order polynomial equation has two solutions,

λ1,2 =
λ0 ∓

√
λ2

0 + 4	2

2
.

(34)

In the following, we refer to 	 as the eigenvalue perturbation
strength. Since we assumed λ0 � 0, for 	 = 0, λ1 = λ0 and
λ2 = 0. As 	 is increased, λ1 decreases from λ0 and generates
an increasingly negative real outlier, while λ2 increases from
zero and can give rise to a positive real outlier if it emerges
from the bulk of the eigenspectrum. For networks with only
chain motifs, we have

	2 = σ 2τ c(N − 1), (35)

so that the modulus of the perturbed eigenvalues scales as√
τ cN (Fig. 2). In particular, if the network size N is increased

at fixed τ c, the positive eigenvalue emerges from the random
bulk and eventually crosses unity. This implies that positive
chain motif strengths fundamentally induce an instability in
network dynamics, unless they scale inversely with network
size, i.e., τ c ∼ 1/N .

For networks with only homogeneous reciprocal motifs τ r ,
the eigenvalue perturbation is instead independent of network
size and given by

	2 = σ 2τ r . (36)
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Compared to chain motifs, the perturbation term is indepen-
dent of N , so that reciprocal motifs have a much weaker
effect on outlying eigenvalues [33]. This difference can be
traced back to Eq. (26), where reciprocal motifs appear only in
the N diagonal entries of [Z2], while chain motifs determine
the N (N − 1) off-diagonal elements, which leads to a factor
N − 1 in Eq. (35). Convergent and divergent motifs have even
weaker effects on outlying eigenvalues (Fig. 12), as they do
not appear in [Z2], and enter only the averages of higher pow-
ers of Z at the subdominant order in 1/N (Appendix A).

Altogether, the key result of our analysis is therefore that
chain motifs generate a positive outlying eigenvalue that in-
creases with network size, and therefore potentially induces
an instability by pushing the real part of the outliers above 1,
even in otherwise stable, inhibition-dominated networks.

C. Sparse excitatory-inhibitory networks

Next, we turn to sparse excitatory-inhibitory networks and
show that chain motifs induce similar outlying eigenvalues to
fully connected networks. We then examine the conditions
under which sparsity and excitation-inhibition balance can
stabilize the positive outlying eigenvalue.

1. Setup

In sparse networks, only a fraction of possible synap-
tic connections are nonzero. To define sparse networks with
second-order motifs, we start by specifying the first-order
statistics of nonzero connections, then add second-order
statistics, and finally assign synaptic weights to nonzero
connections.

As in standard sparse networks [7,56,57], the first-order
statistics are set by taking any synaptic weight from popula-
tion q to population p to be nonzero with probability cpq and
zero otherwise. Here we assume homogeneous connectivity
probabilities cpq = c across populations. The marginal distri-
bution of nonzero connections is therefore expressed as

Prob(Ji j �= 0) = c,

Prob(Ji j = 0) = 1 − c. (37)

To add chain and reciprocal synaptic motifs, i.e., specific
correlations between synapses, we introduce two supplemen-
tary parameters ρc and ρr that define the joint probabilities of
nonzero connections across pairs of synapses,

Prob(Ji j �= 0, Jjk �= 0) = (1 − δik )ρc + δikρ
r,

Prob(Ji j = 0, Jjk �= 0) = (1 − δik )(c − ρc) + δik (c − ρr ),

Prob(Ji j �= 0, Jjk = 0) = (1 − δik )(c − ρc) + δik (c − ρr ),

Prob(Ji j = 0, Jjk = 0) = (1 − δik )[1 − c − (c − ρc)]

+ δik[1 − c − (c − ρr )]. (38)

We denote the parameters ρc and ρr as the occurrence proba-
bilities for, respectively, chain and reciprocal motifs. Note that
here we implicitly assume a homogeneous motif distribution
across different populations. In this framework, independent
connections correspond to ρc = c2 and ρr = c2.

Finally, we specify synaptic weights for nonzero synapses.
As in the fully connected case, we focus on networks con-
sisting of two populations, an excitatory and an inhibitory

one, with, respectively, NE = αE N and NI = αI N neurons.
For simplicity, we assume that all excitatory and all inhibitory
synapses have identical weights, respectively, J and −gJ [58],
where g represents the ratio of the amplitudes of excitatory
synapses to inhibitory synapses.

In practice, we apply the SONET algorithm [34], see Ap-
pendix C 2.

2. Gaussian approximation

Previous studies have found that when the distribution of
synaptic couplings satisfies the assumptions of the central
limit theorem, the spectral properties of the connectivity ma-
trix are well described by Gaussian connectivity with identical
first two moments [33,45,47,53,59]. To determine the outlying
eigenvalues in sparse networks with chain motifs, we compute
the corresponding first and second moments of the distribution
of synaptic weights, and we insert them into expressions for
the outlying eigenvalues in Gaussian networks. We then com-
pare these analytic predictions with numerical estimations of
outlying eigenvalues in sparse networks.

The means and variances of the distributions of synaptic
weights for the excitatory and inhibitory populations are given
by

J0
EE = J0

EI = cJ, σ 2
EE = σ 2

EI = c(1 − c)J2,

J0
II = J0

IE = −cgJ, σ 2
II = σ 2

IE = c(1 − c)g2J2. (39)

Using the definitions in Eq. (5), the correlation coefficients
of chain motifs between different populations are given by

τ c
EE = (ρc − c2)/[c(1 − c)],

τ c
EI = −(ρc − c2)/[c(1 − c)],

τ c
IE = −(ρc − c2)/[c(1 − c)],

τ c
II = (ρc − c2)/[c(1 − c)]. (40)

Analogously, the correlation coefficients of reciprocal mo-
tifs τ r

pq, p, q ∈ {E , I} are

τ r
EE = (ρr − c2)/[c(1 − c)],

τ r
EI = −(ρr − c2)/[c(1 − c)],

τ r
IE = −(ρr − c2)/[c(1 − c)],

τ r
II = (ρr − c2)/[c(1 − c)]. (41)

In contrast to fully connected networks, in sparse networks
the mean, variances, and correlations of synaptic weights are
therefore not independent parameters, but are jointly con-
trolled by the connection probability c, the E and I synaptic
weights J and −gJ , and the motif occurrence probabilities
ρc and ρr . The relative sign of excitation and inhibition in
particular necessarily implies differences in correlation coef-
ficients across different blocks of the connectivity matrix. In
addition, the variances also vary across different blocks of
the connectivity matrix, while in Sec. IV B we assumed all
those parameters were homogeneous. An over-representation
of EE- and II-type motifs with respect to independent
connectivity (ρc, ρr > c2) yields positive correlation coeffi-
cients τEE = τII := +τ c, while an over-representation of EI-
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FIG. 3. Impact of chain motifs on the eigenvalues of the connectivity matrix for sparsely connected excitatory-inhibitory networks.
(a) Eigenspectrum in the complex plane. Inhibition-dominated networks with independent synapses give rise to a single outlier λ0 (black
circle). Progressively increasing the strength τ c of chain motifs (from light to dark), this negative outlier (yellow to red) decreases from the
original λ0, while an additional positive outlier emerges and increases (light to dark green). The dots show numerically determined outlying
eigenvalues averaged over 30 networks of N = 1500 neurons. The eigenvalue bulk for a single network realization is shown for τ c = 0 (purple)
and τ c = 0.225 (blue). (b) Dependence of outlying eigenvalues on the strength τ c of chain motifs. Numerically obtained eigenvalue outliers
from 30 network realizations (markers) are shown alongside the theoretical predictions (lines). The dominant negative outlier is depicted in
red, while the emergent positive outlier is shown in green. The colored solid lines show the theoretical results calculated using Eqs. (43) and
(44). The red and green asterisks with error bars represent the results numerically obtained from actual sparse networks [same as subplot (a)],
and the gray triangles with error bars represent the results numerically obtained from the equivalent Gaussian networks. The gray area indicates
the radius of the eigenvalue bulk in networks with a size of N = 1500, with dashed lines indicating the theoretical values (see [30] for details).
All parameter values are given in Table II.

and IE-type motifs leads to negative correlation coefficients
τEI = τIE := −τ c.

Inserting the expressions for the means in Eqs. (30) yields
an expression of the outlying eigenvalue in the absence of
correlations:

λ0 = cNE J − cNI gJ = (αE − gαI )cJN. (42)

Applying the approach outlined in Sec. IV A to net-
works with heterogeneous variances and correlations leads
to expressions for outlying eigenvalues similar to Eq. (34)
(Appendix B 3),

λ1,2 =
λ0 ∓

√
λ2

0 + 4	2

2
,

(43)

where for chain motifs

	 = JN (αE − gαI )
√

c(1 − c)τ c. (44)

Similarly to fully connected networks, in sparse net-
works chain motifs therefore lead to the emergence of a
positive outlier in inhibition-dominated networks (Fig. 3).
Comparing Eqs. (44) and (35) reveals that in sparse net-
works, the eigenvalue perturbation strength scales with N ,
similarly to fully connected networks, so that the posi-
tive eigenvalue potentially leads to an instability. However,
in sparse excitatory-inhibitory networks, the perturbation
strength also depends on the connection probability strength
c and it necessarily contains two opposing terms given by the
excitation-inhibition balance αE − gαI . In the following, we
will examine how different assumptions on the connectivity
probability and synaptic weights impact the scaling of outly-
ing eigenvalues with the network size N and the stability of
the network.

3. Strongly connected regime

We consider first a scaling limit in which the connection
probability c and chain motif statistic ρc (and therefore τ c)
are independent of N , and the synaptic weight J is of order
1/

√
N . This scaling is analogous to the strongly connected

regime in networks without motifs [57]. The perturbation term
	 in Eq. (44) then scales as

√
N (αE − gαI ). Consequently, the

influence of chain motifs on the eigenvalue outliers amplifies
with the network size [see Fig. 4(a)] and leads to an instability,
similarly to our findings in Gaussian networks.

The growth of the perturbation term 	 can only be limited
if the balance factor αE − gαI scales as 1/

√
N . In the strongly

connected regime, ensuring network stability thus requires

FIG. 4. Dependence of outlying eigenvalues on the network size
N ranging from 1000 to 5000 for sparse excitatory-inhibitory con-
nectivity in two different scaling limits. (a) Networks in the strongly
connected regime with a constant connectivity probability of c = 0.2
and a chain motif probability of τ c = 0.15 (ρc = 0.064). (b) Net-
works in the weakly connected regime with a fixed number of
connections and chain motifs, where CE = 240 and kc

EE = 92 160.
The asterisks with error bars indicate the mean and standard devi-
ation of numerically obtained eigenvalue outliers from 30 network
instances. Other parameters: g = 6.8, γ = 1/4, J = 0.0129.
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tight balance, with αE − gαI approaching zero [9]. This bal-
ance requirement also ensures that λ0, and the negative outlier,
take values independent of network size.

4. Weakly connected regime

We next consider a second type of scaling with network
size, where the connection probability c and chain motif oc-
currence ρc decrease with N in such a way that the number
Cp of incoming synaptic connections for each neuron, the
number of motifs kc

pq, and the synaptic strengths J are fixed
independently of N . This scaling is analogous to the weakly
connected regime in networks without motifs [58]. Here, Cp

represents the number of excitatory (if p = E ) or inhibitory
(if p = I) synapses targeting the same neuron, while kc

pq de-
notes the number of chain motifs originating from neurons in
population q, passing through neurons in population p and ul-
timately targeting an individual neuron. These parameters are
related to the connection probability c and motif occurrence
probability ρc via

Cp = cNp, kc
pq = ρcNpNq, p, q ∈ {E , I}. (45)

The weakly connected regime, therefore, implies that the
connection probability scales as 1/N and motif occurrence
probability scales as 1/N2.

Expressing the eigenvalue perturbation term in Eq. (44) as
a function of these parameters, we get

	 = J

(
1 − g

αI

αE

)√(
kc

EE − C2
E

)
. (46)

In the weakly connected regime, the eigenvalue outliers are
therefore independent of the network size N [Fig. 4(b)]. The
stability of the network in the presence of chain motifs is
therefore ensured without assuming a tight balance between
excitation and inhibition.

V. POPULATION-AVERAGED RESPONSES
TO UNIFORM INPUTS

In this section, we examine how chain motifs affect
steady-state responses to external inputs. We focus on
population-averaged responses to inputs that are uniform over
each population, and specifically examine under which condi-
tions paradoxical responses emerge. To this end, we compare
two methods: (i) predicting responses from a low-rank ap-
proximation of the recurrent connectivity matrix; and (ii)
predicting responses from an effective deterministic matrix
Jeff. We start by outlining the general approach, and then
apply it to fully connected and sparse excitatory-inhibitory
networks.

A. Low-rank approximation

Following the approach introduced in Sec. III, we form
a low-rank approximation of the connectivity matrix J by
truncating its eigendecomposition to keep only modes cor-
responding to the outlying eigenvalues determined in the
previous section. We obtain the corresponding left and
right connectivity vectors numerically. Within this low-rank
approximation, the steady-state response functions of the net-
work are given by Eqs. (15) and (17).

We focus on changes in the average activity of different
populations in response to inputs that can differ among popu-
lations, but are uniform within each population, so that Iext

j =
Iext
q for all j in population q. Averaging Eq. (17) over the

connectivity distribution, the mean response χpq of a neuron i
in population p to a uniform input to neurons in population q
can be expressed as

χpq :=
⎡
⎣∑

j∈Nq

χi j

⎤
⎦ (47)

= δpq + αq

R∑
r=1

ap
mr a

q
nr

1 − λr
. (48)

In the large network limit (Np → ∞), where [·] stands for
averaging over connectivity. For any vector x ∈ RN , ap

x is the
mean value of its entries within population p:

ap
x = [xi] for i in population p. (49)

When averaging Eq. (17), we assumed that m(r)
i and n(r)

j

are uncorrelated for i �= j so that [m(r)
i n(r)

j ] = [m(r)
i ][n(r)

j ] =
ap

mr a
q
nr .

Equation (48) shows that the mean values ap
mr and aq

nr are
the only statistics of connectivity vectors m(r) and n(r) that
affect population-averaged responses to uniform inputs. We
determine these values numerically by averaging entries of
numerically obtained eigenvectors.

B. Effective connectivity approximation

An alternative approach is to directly average the response
function in Eq. (10) over realizations of the random connectiv-
ity [35]. We show in Appendix D that, at leading order in N ,
the average response is equivalent to the response generated
by the effective connectivity matrix

Jeff = J0 + [Z2]. (50)

This effective connectivity is a deterministic matrix consisting
in general of P × P blocks. Within each block, all entries
are equal and given by a combination of the mean synap-
tic strength between two populations and the strength of
chain and reciprocal motifs that determine the entries of [Z2]
[Eq. (25)]. Jeff is therefore a low-rank matrix, of rank at most
P2, and equivalent to a P × P matrix. The response predicted
by Jeff can then be analyzed using methods developed for
deterministic connectivity matrices [10,15].

C. Fully connected Gaussian excitatory-inhibitory networks

We start by examining the effect of chain motifs on re-
sponses in fully connected, Gaussian excitatory-inhibitory
networks defined in Sec. IV B.

In inhibition-dominated networks, we find that the eigen-
spectrum contains either one or two outliers depending on the
strength of chain motifs τ c (Fig. 2). The resulting low-rank
approximation is therefore of rank 1 or 2. We refer to the
connectivity vectors corresponding to the negative outlier as
m(1) and n(1). When the connectivity motifs induce a second
outlier, we refer to the additional connectivity vectors as m(2)

and n(2).
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FIG. 5. Impact of chain motifs on population-averaged mean of entries on connectivity vectors for Gaussian networks. (a),(b) Population-
averaged mean values of entries m(r)p

i on the right connectivity vectors. Subplots (a) and (b), respectively, show the mean values for p = E
and p = I . (c),(d) Population-averaged mean values of entries n(r)p

i on the left connectivity vectors. Subplots (c) and (d), respectively, show the
mean values for p = E and p = I . The insets show the distribution of the mean values of the elements in the connectivity vectors corresponding
to the eigenvalues in the bulk (red: excitatory population; blue: inhibitory population). The additional eigenvalue emerges from the bulk when
τ c = 0.011. Other network parameters are shown in Table II.

Figure 5 shows the mean values of the entries of the
connectivity vectors onto excitatory and inhibitory neurons.
Increasing τ c has a weak effect on the mean values of m(1)

[Figs. 5(a) and 5(b)], which remain close to their unperturbed
values, but a stronger effect on the mean of n(1) within the
excitatory population [Fig. 5(c)]. Remarkably, chain motifs
induce comparable mean values for the connectivity vectors
m(2) and n(2) corresponding to the second outlier. In contrast,
eigenvectors corresponding to eigenvalues in the bulk of the
eigenspectrum have zero mean (insets in Fig. 5).

1. Response to uniform inputs

We first analyze the impact of chain motifs on the average
response χp of neurons in population p to a uniform input to
all neurons in the network.

From Eq. (48), the low-rank approximation for χp is given
by

χp = 1 +
R∑

r=1

ap
mr

1 − λr

⎛
⎝ ∑

q∈{E ,I}
αqaq

nr

⎞
⎠. (51)

To assess the accuracy of this approximation, we com-
pare it with the steady-state response obtained using the full
connectivity matrix J [Eq. (10)]. We contrast these values
with a prediction based solely on the mean connectivity J0 =
m0nᵀ

0 /N , for which aE
m0

= aI
m0

= 1, aE
n0

= NJ0 and aI
n0

=
−NgJ0 [Eq. (29)], so that

χE = χI = 1

1 − λ0
(52)

with λ0 = (αE − gαI )J0N [Eq. (30)].
While the mean connectivity J0 predicts accurately the

mean response of random networks without correlations be-
tween synapses, we find that including chain motifs strongly
amplifies the response of both excitatory and inhibitory pop-
ulations (Fig. 6). This amplification is well captured both
by the low-rank approximation and the effective connectiv-
ity Jeff. The accuracy of the low-rank approximation can be
explained by the fact that the eigenmodes that correspond to
the bulk eigenvalues that were not included in the low-rank
description have zero mean components, and therefore do not

contribute to the population-averaged response [see the insets
in Figs. 5(b) and 5(c)].

Within the low-rank approximation, we can distinguish
the contributions to the response of the two unit-rank terms
(Fig. 6, colored lines). This decomposition reveals that the

FIG. 6. Impact of chain motifs on the response to uniform
external inputs in fully connected Gaussian excitatory-inhibitory net-
works: mean response χE of the excitatory population as a function
of the strength τ c of chain motifs, which is homogeneous across
all blocks of the connectivity matrix. The asterisks with error bars
show the mean and s.d. of population-averaged responses in 30
realizations of the full connectivity [Eq. (10)]. The lines represent
the predictions of the low-rank approximation in Eq. (51), where the
ap

x were obtained numerically by diagonalizing the full connectivity
matrix. The gray dashed line is the prediction obtained from the mean
connectivity J0 [Eq. (52)], while the orange dashed line is the predic-
tion obtained from the effective connectivity Jeff. The colored light
lines show the respective contributions of the two unit-rank terms
in the low-rank approximation of the response [Eq. (51)]. Red and
green denote, respectively, the modes corresponding to the negative
and positive outliers. Inset: outlying eigenvalues as a function of τ c,
compared to the bulk of the radius. The positive outlier emerges from
the bulk for τ c = 0.011. All network parameters are given in Table II.
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FIG. 7. Impact of chain motifs on the mean response χpq of
population p to uniform inputs to population q, in fully connected
Gaussian excitatory-inhibitory networks. (a) χEE ; (b) χIE ; (c) χEI ;
(d) χII . The asterisks with error bars show the mean and s.d. of
population-averaged responses in 30 realizations of the full connec-
tivity [Eq. (10)]. The orange dashed lines represent the predictions
of the effective connectivity Jeff, while the black triangle in (d) is
the prediction of the transition point using the stability of the E-E
subnetwork. The solid lines represent the predictions of the low-
rank approximation [Eq. (48)], with colored lines indicating the
contributions from the two unit-rank terms (red: negative outlier;
green: positive outlier). In Eq. (48), ap

x were obtained numerically by
diagonalizing the full connectivity matrix. The strength τ c of chain
motifs is homogeneous across all blocks of the connectivity matrix.
The mean connectivity parameters were chosen such that χII > 0
for τ c = 0, i.e., the network is in the nonparadoxical regime in the
absence of inputs. All network parameters are given in Table II.

unit-rank term associated with the negative outlying eigen-
value has minimal influence on the amplification induced by
chain motifs. Conversely, the amplification is due to the sec-
ond term that corresponds to the newly emerging eigenmode
with a positive outlier. The amplification is therefore specific
to the outlier induced by chain motifs. In contrast, networks
featuring only reciprocal motifs do not give rise to this out-
lier, and therefore, there is no noticeable amplification as τ r

increases [Figs. 13(a) and 13(b)].

2. Paradoxical responses

We next use the low-rank approximation to examine the
mean responses χpq of population p to uniform inputs to
population q. Figure 7 shows that chain motifs strongly mod-
ulate all components of this response matrix. Focusing on
the diagonal entries, we denote the response of population
p as paradoxical if χpp < 0, i.e., if it responds in a direc-
tion opposite to the input it receives. Figure 7(d) shows that
increasing the strength of chain motifs changes the sign of
χII from positive to negative, thereby switching the response
of inhibitory neurons from nonparadoxical in the absence of
chain motifs to paradoxical as τ c is increased.

In networks without correlations between synapses, pre-
vious works have shown that the sign of the response of
the inhibitory population is controlled by the strength of the
excitatory feedback [10,12,13]. Within our framework, the
responses in an uncorrelated network are well predicted by
using the mean connectivity J0 = m0nT

0 /N in Eq. (48), which
leads to

χII = 1 − NE J0

1 − λ0
. (53)

A paradoxical response of the inhibitory population cor-
responds to NE J0 > 1, in agreement with previous results
[10,12,13]. As the chain motif strength τ c is gradually in-
creased, the change in the response is dominated by the second
term in the low-rank approximation in Eq. (48):

χII = 1 + αI aI
m1

aI
n1

1 − λ1
+ αI aI

m2
aI

n2

1 − λ2
. (54)

For the inhibitory population, the eigenvector statistics
[Fig. 5(d)] show that this second term is negative because
aI

n2
< 0 and aI

m2
> 0. Starting from a nonparadoxical regime

with NE J0 < 1 and χII > 0, as τ c is increased, this negative
term progressively reduces the value of the response function
and eventually leads to a change in the sign of χII [Fig. 7(d)].

For parameter values used in Fig. 7, this change of sign is
specific to the response χII of the inhibitory population. How-
ever, because of the large mean values of the unit-rank term
corresponding to the positive outlier, τ c strongly modulates
all components of the response.

Our results, therefore, show that the strength of chain mo-
tifs can control whether the network is in a paradoxical regime
or not.

We next examine the paradoxical responses from the per-
spective of effective connectivity, which in this case has a
unit-rank structure, and is given by

Jeff
i j =

{
J0 + σ 2τ c, j ∈ NE ,

−gJ0 + σ 2τ c, j ∈ NI .
(55)

Using this effective connectivity and Eq. (10), we accurately
predict the response function χp, χpq of the full network (or-
ange dashed lines in Figs. 6 and 7).

Importantly, for an equivalent deterministic network de-
fined by Jeff, the paradoxical response of the inhibitory neuron
population is determined by the stability of the E-E subnet-
work Jeff

EE [15], which is made up only of synapses from
excitatory to excitatory neurons. The only nonzero eigenvalue
of this subnetwork is λeff

EE = NE (J0 + σ 2τ c). The inhibitory
population will respond paradoxically if this eigenvalue is
greater than 1 and the E-E subnetwork becomes unstable
[15]. Therefore, for NE J0 < 1, the eigenvalue of the E-E
subnetwork crosses 1 for τ c = ( 1

NE
− J0)/σ 2, and this crite-

rion predicts well the appearance of paradoxical inhibitory
responses in the full network (Fig. 7, black triangle).

D. Sparse excitatory-inhibitory networks

We found that chain motifs have a major impact on re-
sponses in fully connected networks. We next investigated to
which extent these results extend to sparse networks, where
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FIG. 8. Impact of chain motifs on population-averaged mean of entries on connectivity vectors for sparse networks (red and green) and
their Gaussian approximations (orange and blue). (a),(b) Population-averaged mean values of entries m(r)p

i on the right connectivity vectors.
Subplots (a) and (b), respectively, show the mean values for p = E and p = I . (c),(d) Population-averaged mean values of entries n(r)p

i on
the left connectivity vectors. Subplots (c) and (d), respectively, show the mean values for p = E and p = I . The insets show the distribution
of the mean values of the elements in the connectivity vectors corresponding to the eigenvalues in the bulk (red: excitatory population; blue:
inhibitory population). An additional eigenvalue emerges from the bulk τ c

EE = 0.11. For other network parameters, see Table II.

only a fraction of possible synaptic connections are nonzero,
and the strength of chain motifs is controlled by the occur-
rence probability ρc [Eq. (38)], which then induces different
values of the correlation coefficients τ c

pq in different blocks of
the connectivity matrix [Eq. (39)]. More specifically, sparse
networks with a uniform occurrence ρc of chain motifs exam-
ined in Sec. IV C lead to correlation coefficients τ c

pq that obey
τ c

EE = τ c
II = −τ c

EI = −τ c
IE [Eq. (39)].

As for fully connected networks, we approximate the
sparse connectivity matrix with a low-rank matrix obtained
by keeping only the eigenmodes corresponding to the out-
lying eigenvalues determined in Sec. IV C. We compute the
corresponding eigenvectors by numerically diagonalizing the
sparse connectivity matrix, and then compare their statistics
(Fig. 8) with predictions of perturbation theory for Gaussian
networks with identical first- and second-order connectivity
statistics (Sec. IV C 2, Fig. 8). Note that these eigenvectors
are in general not sparse, so that the low-rank approximation
of a sparse connectivity matrix is in general not sparse [59].

Similarly to fully connected networks, increasing the over-
all strength of chain motifs by increasing ρc amplifies the
response χp to uniform inputs across the network (Fig. 9).
This effect is well captured both by the effective connectivity
and by a rank-2 approximation, which shows that the ampli-
fication here is also due to the positive outlier emerging from
the bulk of the eigenspectrum (Fig. 9, colored lines).

Inspecting the mean responses χpq of population p to
uniform inputs in population q, however, revealed important
differences between sparse networks (Figs. 10 and 15) and
fully connected networks (Fig. 7). Indeed, in sparse networks,
the mean response of individual populations appeared to
change in a direction opposite to fully connected networks
when the strength of chain motifs is increased by increasing
ρc. In particular, the mean response of inhibitory neurons
to its inputs increases with τ c := τ c

EE = τ c
II = −τ c

EI = −τ c
IE

[Fig. 10(d)], while in fully connected networks it decreases
[Fig. 7(d)]. In sparse networks, chain motifs can therefore
induce a transition from paradoxical inhibitory responses to
nonparadoxical responses (χII in Fig. 15), while in fully con-
nected networks the situation is the opposite. This difference
can be traced back to the mean values ap

mr and ap
nr of the

FIG. 9. Impact of chain motifs on the mean response χE of ex-
citatory neurons to uniform external inputs in sparse networks, as a
function of strength of chain motifs, which is heterogeneous across
blocks of the connectivity matrix, with τ c = τ c

EE = τ c
II = −τ c

EI =
−τ c

IE . The asterisks with error bars show the mean and s.d. of χE

in 30 realizations of the full sparse network. The triangles with error
bars show the mean and s.d. of χE in 30 realizations of the equivalent
Gaussian approximation. The lines represent the predictions of the
low-rank approximation in Eq. (11), where the ap

x were obtained nu-
merically by diagonalizing the sparse connectivity matrix. The gray
dashed line is the prediction obtained from the mean connectivity
J0 [Eq. (52)], the orange dashed line is the prediction obtained from
the effective connectivity Jeff. The colored light lines illustrate the
respective contributions of the two unit-rank terms in the low-rank
approximation of the response of the sparse networks. Red and green
denote, respectively, the modes corresponding to the negative and
positive outliers. Inset: outlying eigenvalues as a function of τ c,
compared to the bulk of the radius. The positive outlier emerges from
the bulk for τ c = 0.11 (vertical dash-dot line). For other network
parameters, see Table II.
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FIG. 10. Impact of chain motifs on the mean response χpq of
population p to uniform inputs to population q, in sparse excitatory-
inhibitory networks. The subplots show the same quantities as in
Fig. 7. The mean connectivity parameters were chosen such that
χII > 0 for τ c = 0. All network parameters are given in Table II.

entries of connectivity vectors that determine the responses
χpq through Eq. (48). Specifically, the mean values aE

n2
and

aE
n2

of the second connectivity vector onto the excitatory and
inhibitory populations have opposite signs in sparse networks
[Figs. 14, 8(c), and 8(d)] compared to fully connected net-
works [Figs. 5(c) and 5(d)].

E. Effects of chain motif heterogeneity on paradoxical responses

To understand the origin of seemingly opposite effects of
chain motifs on paradoxical responses in sparse and fully
connected networks, we note that in fully connected networks
we used homogeneous, positive τ c, while for sparse networks
with a uniform chain motif occurrence ρc, the correlation
coefficients are different across blocks of the connectivity
matrix, with τ c

EE = τ c
II positive and τ c

EI = τ c
IE negative. We

hypothesized that this difference may lead to the distinct de-
pendences of the responses χpq to the strength of chain motifs.
To investigate this possibility, we computed the responses χII

in Gaussian networks where the chain motif strengths were
not homogeneous across blocks of the connectivity matrix,
but were instead determined by two parameters τ c

EE/II and
τ c

EI/EI such that τ c
EE = τ c

II = τ c
EE/II and τ c

EI = τ c
IE = τ c

EI/EI
(Fig. 11). This analysis reconciled the findings in Figs. 7 and

FIG. 11. Impact of the heterogeneity of chain motifs on the response to external inputs. (a) Response χII of inhibitory neurons as a function
of τ c

EE/II = τ c
EE = τ c

II and τ c
EI/IE = τ c

EI = τ c
IE for the fully connected Gaussian approximation of sparse networks. The green line corresponds

to homogeneous chain motifs (τ c
EE = τ c

II = τ c
EI = τ c

IE ), for which the response is shown in Fig. 7. The brown line corresponds to the occurrence
of homogeneous chain motifs ρC , leading to τ c

EE = τ c
II = −τ c

EI = −τ c
IE , for which the response is shown in Fig. 10. The yellow line shows the

prediction for networks with τ c
EI/IE = 0. Coordinates (squares) with a dashed border indicate the first value of τ c

EI/IE that results in a paradoxical
effect as τ c

EI/IE gradually increases, while under a fixed τ c
EE/II . The orange dashed line represents the theoretical prediction for the boundary

between the paradoxical and the nonparadoxical regime using Jeff and Eq. (10), and the orange solid line represents the prediction using the
stability of the EE subnetwork Jeff

EE [Eq. (58)]. (b) Response function χEI and (c) response function χII in sparse networks and corresponding
fully connected Gaussian approximations with τ c

EI/IE = 0. Details of subplots (b) and (c) are identical to Fig. 10. The other network parameters
are identical to Fig. 10.
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10: increasing jointly τ c
EE/II = τ c

EI/IE leads to a decreasing
response χII (green line in Fig. 11), while setting τ c

EE/II =
−τ c

EI/IE instead leads to an increase of χII with the strength of
chain motifs (brown line in Fig. 11). We moreover predicted
that setting τ c

EI/IE = 0 and increasing τ c
EE/II would lead to a

decreasing χII , and therefore a switch from a nonparadoxical
to a paradoxical response (yellow line and frame in Fig. 11).
We directly verified this prediction in sparse networks by
setting ρc

EI/IE = c2 and therefore zero correlation coefficients
τ c

EI/IE = 0, while maintaining τ c
EE/II = τ c > 0 and gradually

increasing this value [Figs. 11(b) and 11(c)].
We can alternatively use the effective connectivity to ex-

amine paradoxical responses in networks with heterogeneous
variances and chain motifs. In this more general case, the
explicit expression for Jeff is given by

Jeff
i j =

{
cJ + αEσ 2

Eτ c
EE + αIσIσEτ c

IE , j ∈ E ,

−cgJ + αEσEσIτ
c
EI + αIσ

2
I τ c

II , j ∈ I.
(56)

We find that this effective connectivity predicts accurately the
response functions in the full, sparse network [orange dashed
lines in Figs. 9, 10, and 11(b)].

We next investigated to which extent the stability of the
E-E subnetwork of Jeff predicts paradoxical responses of the
inhibitory population in the full network. The connectivity of
the E-E subnetwork is given by

Jeff
EE = (

cJ + αEσ 2
Eτ c

EE + αIσIσEτ c
IE

)
eeᵀ, e ∈ RNE (57)

and it has only one nonzero eigenvalue:

λeff
EE = NE

(
cJ + αEσ 2

Eτ c
EE + αIσIσEτ c

IE

)
. (58)

For the sparse network with a uniform occurrence ρc, we have
τ c = τ c

EE/II = −τ c
EI/IE (Figs. 9 and 10), so that the eigenvalue

is

λeff
EE = NE cJ + α2

E N2J2c(1 − c)τ c(1 − gγ ). (59)

With an initial condition of NE cJ < 1 and an inhibition-
dominant network (1 − gγ < 0), the eigenvalue remains
negative as τ c is increased, predicting correctly that the re-
sponse of the inhibitory population remains nonparadoxical.

However, when setting τ c
EI/IE = 0, the eigenvalue takes

the form λeff
EE = NE cJ + α2

E N2J2c(1 − c)τ c
EE/II , and leads

to a paradoxical inhibitory response as τ c
EE/II is increased

[Fig. 11(b), black triangle]. Furthermore, this stability crite-
rion for the E-E subnetwork accurately predicts the transition
boundary between paradoxical and nonparadoxical responses
in the τ c

EE/II − τ c
EI/EI plane [Fig. 11(a)].

More generally, in the two-population networks we con-
sider, chain motifs are specified by four independent param-
eters τ c

EE , τ c
II , τ

c
EI , and τ c

IE . Figures 16 and 17 illustrate the
effects on the low-rank approximation of varying each of
these parameters independently. In particular, negative val-
ues of chain motifs can induce pairs of complex-conjugate
eigenvalues.

VI. DISCUSSION

Our findings demonstrate that chain motifs, a particular
type of correlation between weights of pairs of synapses,
exert a dominant impact on the dynamics in networks of

recurrently connected neurons. Specifically, our mathemati-
cal analyses reveal that even a weak over-representation of
chain motifs leads to the emergence of isolated eigenmodes
distinct from networks with uncorrelated synaptic weights. In
inhibition-dominated networks, these additional eigenmodes
are associated with a positive eigenvalue that reflects positive
feedback induced by chain motifs. This positive feedback
leads to a potential instability that requires revisiting the clas-
sical balance conditions.

The positive eigenmode generated by chain motifs strongly
contributes to population-averaged responses to external in-
puts. In particular, we show that through this eigenmode,
chain motifs can induce paradoxical responses in networks
where such responses are not expected based on mean con-
nectivity alone [10,15,19,60,61]. Conversely, in inhibition-
stabilized networks that exhibit paradoxical responses in the
absence of correlations between synapses, chain motifs can
shift the dynamics towards nonparadoxical responses. Mean
connectivity, therefore, does not predict the nature of the
responses when chain motifs are present. Remarkably, we
find instead that the response to external inputs is accurately
predicted by a deterministic effective matrix Jeff [Eq. (50)],
in which the mean synaptic strengths are corrected by the
strength of chain and reciprocal motifs. In particular, para-
doxical responses correspond to networks where the effective
excitatory subnetwork defined by Jeff is unstable by itself [15].

Our results for the impact of chain motifs on responses to
inputs were therefore obtained by comparing two approaches:
(i) a low-rank approximation based on the outliers in the
spectrum of the full, random connectivity matrix J; (ii) an
approximation of the response using an effective deterministic
connectivity Jeff. The two approaches provide complementary
pictures and have different strengths and weaknesses. The
low-rank approximation can in principle be applied to net-
works with arbitrary connectivity structure. It preserves the
dominant eigenvalues of the full connectivity, and is therefore
expected to capture transient dynamics. However, it relies on
the knowledge of the statistics of eigenvectors, which are in
general not accessible analytically. The effective connectiv-
ity approach instead directly maps a large, random network
with correlated synapses onto a classical deterministic net-
work where each population is represented by one variable.
A key difference with previous studies is that the connectivity
weights in the effective deterministic network correspond to
combinations of mean connectivity and motif strengths in
the original random network. It is important to note that the
effective connectivity matrix does not accurately capture the
outliers in the eigenspectrum of the full connectivity matrix
(Appendix D). While it predicts correctly the steady-state
response, in general the effective connectivity is not expected
to reproduce transient dynamics. Moreover, its form is specific
to a connectivity structure based on pairwise motifs.

An over-representation of chain motifs means that neurons
with stronger inputs also have stronger outputs than expected
by chance. This is precisely the case in the fully connected
networks we investigated, where synaptic weights are contin-
uous. In sparse networks, all synapses of a given type have the
same strength, hence an over-representation of chain motifs
means that neurons that receive more incoming synapses send
out more outgoing synapses. This pattern is related, but not
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equivalent, to network hubs. The concept of “hubs” used in
network science is generally based on the degree of individual
nodes in a network [62]. In many examples, including biologi-
cal neuronal networks, the degree distribution is heavy-tailed,
meaning that a small number of nodes exhibit disproportion-
ately high connectivity, and such nodes are called “hubs.”
An over-representation of chain motifs implies a heavy-tailed
degree distribution and therefore the existence of hub neurons
with both high in-degree and high out-degree.

Previous works have examined the effects of connectivity
motifs on the continuous bulk of the spectrum [30–32,49,63].
Here, we focus instead on eigenmodes corresponding to
eigenvalues that lie outside of the bulk. While the abundance
of all four motif types along with the variance were found to
significantly impact the spectral radius of the bulk [30,32], our
results show that connectivity motifs have very distinct effects
on the outliers, with chain motifs most dominantly shaping
their behavior and determining the steady-state responses to
external inputs.

Each connectivity eigenvalue is associated with a corre-
sponding eigenvector and shapes the dynamics in this direc-
tion in the N-dimensional space of neurons. Since eigenvalues
are densely packed in the connectivity bulk spectrum, many
of these directions a priori play an important role in shaping
the collective dynamics of neural circuits. However, when the
spectral radius of the bulk approaches the line of instability at
Re(λ) = 1, the most positive eigenvalues close to instability
dominate the dynamics, yielding a dimensionality of neural
activity that is much lower than the number of neurons in
the circuit [30]. The impact of a mode in the bulk on the
overall network activity thereby continuously degrades with
distance to the instability line, as reflected by smooth covari-
ance spectra [32]. Outlier eigenvalues instead each determine
a one-dimensional activity component that is weighing much
differently for the overall network behavior due to the sepa-
ration from the other eigenvalues. Their associated dynamics
can thus be captured by a low-rank approximation and identi-
fied by a larger gap in the covariance spectrum.

The present paper, with its emphasis on spectral prop-
erties of networks, complements allied studies on the role
of connection motifs on network dynamics [30–40]. Perhaps
most related to the present paper is [35], which expresses the
response function for similar linearized rate networks in terms
of a sequence of motif cumulants, which are the occurrences
of motif structures at levels over and above what one would
expect from the occurrence of their constituent parts. This
leads to a general strong role for chains in particular over
and above other motifs. The present paper shares this em-
phasis on the importance of chain motifs, but arrives at this
conclusion via different methods based on explicit computa-
tions of eigenvalues based on correlations among connections
rather than the cumulant-based techniques of [35]. Moreover,
here we focus on distinct questions: the impact of chain mo-
tifs on stability and paradoxical responses in the ubiquitous
setting of balanced E-I networks, and the general interplay
among synaptic motifs and larger-scale, low-rank connectivity
patterns established by cell-type-specific connectivity proba-
bilities.

For the sake of analytical tractability, our study is based
on a number of simplifying assumptions. We considered only

linear, rate-based dynamics, while previous works outlined
the effects of the nonlinearity on paradoxical responses, in
particular in supralinear-stabilized networks of excitatory and
inhibitory neurons [12–14,64,65]. Although a full nonlinear
analysis of N-dimensional networks with correlated synapses
is in general untractable, networks with low-rank connectivity
allow for an exact low-dimensional reduction even in the
presence of nonlinearities [42,66,67]. Applying the low-rank
approximation of correlated connectivity to supralinear stabi-
lized networks is therefore an interesting direction for future
research. Beyond rate-based models, numerical simulations of
integrate-and-fire networks with low-rank connectivity struc-
ture suggest that the analytical insights from rate networks
extend to spiking networks [68].

In this work, we focused on networks of only two popula-
tions, with the additional constraint that the mean connectivity
J0 is of unit rank. As a consequence, the mean connectivity
induces a single eigenmode, which in inhibition-dominated
networks corresponds to a negative outlying eigenvalue. Our
key result is that in this situation, chain motifs lead to an
additional eigenmode with a positive outlying eigenvalue.
Relaxing the unit-rank constraint and increasing the number
of populations leads to additional nontrivial eigenmodes of
the mean connectivity J0, and additional outlying eigenvalues
induced by chain motifs. Systematically mapping the resulting
eigenspectrum configurations is left for future work. It would
be particularly interesting to examine the effects of multi-
ple inhibitory subtypes and their interactions with synaptic
motifs.

How large is a given value of τ c? To get an intuitive
understanding, it is useful to focus on sparse networks. In
that case, the correlation coefficient τ c is directly related
to the occurrence probability ρc [Eq. (40)], which corre-
sponds to the fraction of chain motifs observed across all
possible chain motifs. A value of τ c = 0.1 together with
the connectivity probability c = 0.2 corresponds to an occur-
rence probability of ρc = 0.056. This is only 0.016 above
the chance level given by c2 = 0.04. This implies that in
an experiment where we examine 1000 neuron triplets that
could potentially form a chain motif, only about 56 triplets
will have the pair of synapses connected. Among these, 40
triplets are expected purely due to chance, so only 16 triplets
contribute to an over-representation beyond chance. This level
of over-representation, therefore, corresponds to a relatively
small number of chain motifs, and yet has a substantial impact
on the network dynamics.

Experimental studies of optogenetic perturbations have
revealed the presence of paradoxical inhibitory responses
throughout the cortex [19–21]. One proposed explanation is
that these paradoxical responses stem from strong average re-
current excitation. Our findings show that, alternatively, para-
doxical responses could be due to a weak over-representation
of chain motifs. In recent physiological datasets, the measured
strength of chain motifs is in the range of τ c = 0.05–0.1 [30],
and our results show that these values are compatible with
paradoxical responses even if average recurrent excitation
is weak. Additional investigations will be needed, however,
to distinguish experimentally between these two possible
mechanisms.
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APPENDIX A: OTHER SECOND-ORDER MOTIFS

In the main text, we focus on the chain and reciprocal
motifs. However, two other types of second-order motifs can
be distinguished: divergent and convergent motifs [Fig. 1(c)].

Divergent motifs correspond to the correlation coefficient τ div
ik j

between synapses Ji j and Jk j which share an identical presy-
naptic neuron j but have different postsynaptic neurons i �= k:

τ div
ik j = [Ji jJk j] − [Ji j][Jk j]√

[(Ji j − [Ji j])2][(Jk j − [Jk j])2]
= [zi jzk j]√[

z2
i j

][
z2

k j

] . (A1)

Convergent motifs correspond to the correlation coefficient
τ con

ik j between synapses Jik and Ji j , which share the identical
postsynaptic neuron i but have different presynaptic neurons
j �= k:

τ con
ik j = [JikJi j] − [Jik][Ji j]√

[(Jik − [Jik])2][(Ji j − [Ji j])2]
= [zikzi j]√[

z2
ik

][
z2

i j

] . (A2)

Only chain and reciprocal motifs contribute to the dynamics
for large N because they correspond to elements of the matrix
[Z2] [Eq. (25)] that determines the outlying eigenvalues. In
contrast, divergent and convergent motifs do not affect the
matrix [Z2], but they contribute to higher powers [Z2k] in a
subdominant fashion. To illustrate this higher-order impact,
we consider a single population network with homogeneous
motif strengths τ c, τ r, τ div, τ con and a homogeneous variance
of Z, denoted by σ 2

z , and we calculate [Z4] as an example.
Computing the product of two entries (Z2)i j, (Z2) jk, i �= j �=
k, its average is expressed as

[(Z2)i j (Z2) jk] =
N∑
s,l

[ziszs jz jl zlk] =
N∑
s,l

([ziszs j][z jl zlk] + [zisz jl ][zs jzlk] + [ziszlk][z jl zs j])

= [Z2]i j[Z2] jk +
N∑
s

[zisz js][zs jzsk] +
N∑
s

[ziszsk][z jszs j]

= [Z2]i j[Z2] jk + Nτ conσ 2
z τ divσ 2

z + Nτ cσ 2
z τ rσ 2

z . (A3)

We used Wick’s theorem from the first line to the second line.
From the second line to the third line, we used i �= j �= k. We
moreover assumed [zisz jl ] = 0 unless two of the presynaptic
neuron indices are identical, so that the second and third terms
are nonzero only when s = l . Since [Eq. (25)]

[Z2]i j = Nτ cσ 2
z , i �= j (A4)

we have

[(Z2)i j (Z2) jk]

[Z2]i j[Z2] jk
= 1 + Nτ divτ conσ 4

z + Nτ cτ rσ 4
z

(Nτ c)2σ 4
z

,

= 1 + O(N−1). (A5)

TABLE II. List of simulation parameters.

Parameters Simulations

Figs. 2, 12(a)–12(c) Figs. 5, 6, 13(a) Fig. 12(d) Figs. 3, 12(e) Figs. 8, 9, 13(b), 15 Figs. 10, 11, 14
N 1000 1000 1000 1500 1500 1500
J0 8.125 × 10−4 8.125 × 10−4 8.125 × 10−4

σ 0.2 0.1 0.5
g 10.15 10.15 10.15 6.8 6.0 6.0
γ 1/4 1/4 1/4 1/4 1/4 1/4
c 0.2 0.2 0.2
J 0.0129 0.0129 0.00325
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The correlation between fluctuations in (Z2)i j and (Z2) jk di-
minishes with a scaling factor of 1/N . This correlation tends to
vanish in the limit of a large network as N approaches infinity.

APPENDIX B: EIGENVALUE CALCULATIONS

1. General approach

Using the determinant lemma [Eqs. (19)–(21)], we show
that the eigenvalues of matrix J after perturbations are the
solutions of the characteristic polynomial of the matrix Q
[Eq. (22)]. As [Zk] = 0 for odd k, the realization average of Q
is given by

[Q] =
∞∑

l=0

Nᵀ
0 [Z2l ]M0/(Nλ2l ). (B1)

In general, [Z2l ] �= [Z2]l ; however, the correlation between
entries (Z2)i j and (Z2) jk vanishes in the large network limit
N → ∞ (Appendix A).

Consequently, we rewrite the expression

[Q] =
∞∑

l=0

Nᵀ
0 [Z2]lM0/(Nλ2l ). (B2)

Using the geometric sequence summation calculation, we get
Eq. (24) in the main text,

[Q] = 1

N
Nᵀ

0

(
1 − [Z2]

λ2

)−1

M0. (B3)

The matrix [Z2] can be decomposed as D + O, where D ∈
RN×N is a diagonal matrix, and O ∈ RN×N is a matrix of
identical elements with block structure. The entries in matrix
D are determined by both the reciprocal and chain strengths,
and the entries in matrix O are determined by the chain motif
strength. Furthermore, the matrix O can be decomposed and
expressed as

O = UoVᵀ
o , Uo, Vo ∈ RN×Ro, (B4)

where the rank of O is Ro � P. Then, we use the Wood-
bury matrix identity: given a square invertible N × N matrix
1 − D/λ2, two N × Ro matrices Uo and Vo, A and B, and the
invertible N × N matrices

A =
(

1 − D
λ2

)
= diag

({
λ2 − Dii

λ2

})
, (B5)

B =
(

1 − [Z2]

λ2

)
=

[(
1 − D

λ2

)
− UoVᵀ

o

λ2

]
, (B6)

we have

B−1 = A−1 + 1

λ2
A−1Uo

(
1Ro − 1

λ2
Vᵀ

o A−1Uo

)−1

Vᵀ
o A−1.

(B7)

Now, rather than computing the inverse of an N × N matrix
(1 − Z/λ) [Eq. (21)], we calculate the inverse of a diagonal
matrix A and an Ro × Ro matrix (1Ro − Vᵀ

o A−1Uo/λ
2).

We substitute Eq. (B7) into Eq. (24), and then search
for the solutions of the characteristic polynomial fQ(λ) = 0
[Eq. (23)] to obtain the eigenvalue outliers λr, r = 1, . . . , R.

2. Gaussian networks with uniform variance and correlations

In this section, we calculate the eigenvalue outliers in
Gaussian networks with homogeneous chain motif strength
(Sec. IV B). We consider a homogeneous variance parameter
σ 2 [Eq. (31)] and correlation coefficient of chain motifs τ c,
and the elements of [Z2] are given by[

N∑
k=1

zikzk j

]
=

{∑P
q=1 αqσ

2τ c, i �= j,

0, i = j.
(B8)

In Eq. (26) we then have

D = −τ cσ 21, (B9)

O = τ cσ 2eeᵀ, (B10)

where Ro = 1 with Uo = e, Vo = τ cσ 2e, and e is an all-one
vector. Substituting Eq. (B9) into Eq. (B7), we obtain

B−1 = λ2

λ2 + τ cσ 2
1 + λ2τ cσ 2

[λ2 − (N − 1)τ cσ 2](λ2 + τ cσ 2)
eeᵀ.

(B11)

Combining the rank-1 mean connectivity structures as de-
scribed in Eq. (29) and inserting this B−1 [from Eq. (B11)]
into Eq. (24) and subsequently into Eq. (23),

λ = 1

N
nᵀ

0 B−1m0,

m0 = [1, . . . ]ᵀ = e,

n0 = [NJ0, . . . ,−NgJ0, . . . ]ᵀ, (B12)

we obtain the polynomial equation for λ:

λ = λ2λ0

λ2 + τ cσ 2
+ Nλ2τ cσ 2λ0

(λ2 + τ cσ 2)[λ2 − (N − 1)τ cσ 2]
. (B13)

It is important to note that we focus on the case in which λ

is an outlier, indicating λ2 > σ 2. Additionally, the correlation
coefficient τ c falls within the range [−1, 1], ensuring that λ

satisfies λ �= 0 and λ2 + τ cσ 2 > 0 �= 0. These conditions lead
us to the polynomial equation expressed in Eq. (32) in the
main text,

λ =
λ0 ∓

√
λ2

0 + 4(N − 1)τ cσ 2

2
. (B14)

Analogously, in Gaussian networks with homogeneous recip-
rocal motif strength, the elements of [Z2] are given by[

N∑
k=1

zikzk j

]
=

{
0, i �= j,∑P

q=1 αqσ
2τ r, i = j.

(B15)

There is only the diagonal matrix D which has identical
nonzero diagonal entries τ rσ 2, therefore

B−1 = A−1 = λ2

λ2 − τ rσ 2
1. (B16)

Thus the polynomial equation for determining the eigenvalues
of J with solely reciprocal motifs is

λ = λ0λ

λ2 − τ rσ 2
. (B17)
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Given that λ �= 0, we have

λ2 − λλ0 − τ rσ 2 = 0, (B18)

which leads to Eq. (36) in the main text and gives

λ =
λ0 ∓

√
λ2

0 + 4τ rσ 2

2
. (B19)

3. Gaussian networks with heterogeneous variance
and correlations

Next, we derive the eigenvalues of a connectivity matrix
with heterogeneous variance and correlations. Rather than
considering the general case in which the variance of synaptic
weights is determined by the populations of both pre- and
postsynaptic neurons, we assume here that it depends solely
on the population of the presynaptic neuron. Consequently,
we define the variance as σ 2

pq = σ 2
q /N . For the correlation

coefficients for chain motifs, we assume that they depend on
the populations of the presynaptic neurons of the two involved
synapses, thereby introducing heterogeneity in τ c

pq. Following
these assumptions, the elements of [Z2] are[

N∑
k=1

zikzk j

]
=

{∑P
q=1 αqσqσsτ

c
qs, i �= j,

0, i = j,
(B20)

where the neuron with index i belongs to population p while
the neuron with index j belongs to population s with p, q, s ∈
{E , I}. The matrix [Z2] therefore has a columnar structure
where all elements corresponding to j ∈ E are identical, as
are those for j ∈ I . Consequently, we express

[Z2]i j = αEσ 2
Eτ c

EE + αIσIσEτ c
IE = Z2

E , j ∈ E ,

[Z2]i j = αEσEσIτ
c
EI + αIσ

2
I τ c

II = Z2
I , j ∈ I, (B21)

Analogously to the homogeneous case, the matrix [Z2] can be
decomposed into a diagonal matrix D and a blocklike matrix
O. Since the impact of D on the eigenvalues is negligible
compared to that of O, for ease of mathematical analysis, we
ignore D and focus only on the blocklike matrix O. Moreover,
as per Eq. (B21), the matrix O has a unit rank structure,
expressed as

O = UoVᵀ
o , Uo = e,

Vo = [
Z2

E , . . . , Z2
I , . . .

]ᵀ
. (B22)

By substituting Eq. (B22), we have

A = 1, B =
(

1 − 1

λ2
UoVᵀ

o

)
, (B23)

therefore

B−1 = 1 + 1

λ2 − (
NE Z2

E + NI Z2
I

)UoVᵀ
o . (B24)

By integrating the rank-1 mean structure from Eq. (29) with
the inverse matrix described in Eq. (B24) into Eq. (24), we
obtain the polynomial equation

λ = λ0 + λ0
(
NE Z2

E + NI Z2
I

)
λ2 − (

NE Z2
E + NI Z2

I

) . (B25)

The nonzero solutions can be expressed as

λ =
λ0 ∓

√
λ2

0 + 4
(
NE Z2

E + NI Z2
I

)
2

(B26)

Similarly, in Gaussian networks characterized by heteroge-
neous reciprocal motif strengths, the elements of [Z2] are[

N∑
k=1

zikzk j

]
=

{
0, i �= j,∑P

q=1 αqσqσpτ
r
pq, i = j,

(B27)

where the neuron with index i belongs to population p. In
the simplified two-population scenario, the matrix [Z2] only
has nonzero diagonal elements. All diagonal elements cor-
responding to i ∈ E are identical, as are those for i ∈ I . We
denote these two values as

[Z2]ii = αEσ 2
Eτ r

EE + αIσIσEτ r
IE = Z2

E , i ∈ E ,

[Z2]ii = αEσEσIτ
r
EI + αIσ

2
I τ r

II = Z2
I , i ∈ I. (B28)

The inverse matrix A−1 = diag({λ2/(λ2 − Dii )}) is therefore
a diagonal matrix⎡

⎢⎢⎢⎢⎢⎣

λ2

λ2−Z2
E

. . .
. . .

λ2

λ2−Z2
I

⎤
⎥⎥⎥⎥⎥⎦,

which, combined with the mean unit rank structure, leads to
the polynomial equation for the eigenvalues as

λ = NE J0λ2

λ2 − Z2
E

− NI gJ0λ2

λ2 − Z2
I

. (B29)

By replacing Z2
E , Z2

I with Eq. (B28) and solving this polyno-
mial equation, we can theoretically obtain the eigenvalues of
J with heterogeneous reciprocal correlations [33].

APPENDIX C: NETWORK CONSTRUCTION

1. Fully connected Gaussian networks

To generate fully connected networks with correlated
Gaussian weights, we follow the standard procedure for
generating correlated Gaussian variables by forming linear
combinations of uncorrelated variables [30].

For homogeneous networks, we use

Ji j = J0
pq + σ√

N

( convergent︷ ︸︸ ︷
sgn(τ c)

√
|τ c|ηi +

divergent︷ ︸︸ ︷√
|τ c|η j −sgn(τ c)

√
|τ c|μi j +

√
|τ c|μ ji︸ ︷︷ ︸

chain

+sgn(τ r )
√

|τ r/2|νi j +
√

|τ r/2|ν ji︸ ︷︷ ︸
reciprocal

+
√

1 − 4|τ c| − |τ r |yi j︸ ︷︷ ︸
independent

)
, (C1)
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where the post- and presynaptic neurons i and j belong to population p and q, τ c denotes the homogeneous chain-type
correlations between connections in a chain circuit crossing neuron i or j, τ r represents the homogeneous reciprocal-type
correlation between connections Ji j and Jji, and ηi, μi j, νi j , and yi j are i.i.d. normal random variables.

Note that, following [30,32], we generate chain motifs by simultaneously creating divergent and convergent motifs (Ap-
pendix A) through the shared random variable η, so that |τ div| = |τ con| = |τ c|. This is not the most general approach, as we
could further add two independent random variables, αi and βi, for synaptic couplings that start or end at neuron i, respectively.
These random variables would independently contribute to τ div and τ con, but not to τ c or τ r . However, since only chain and
reciprocal motifs influence [Z2] and the eigenvalues of the dynamics, we focus here on a simplified scenario in which the
divergent and convergent correlations fully characterize the chain motifs.

The terms −sgn(τ c)
√|τ c|μi j + √|τ c|μ ji eliminate the diagonal reciprocity introduced by convergent and divergent motifs,

and the coefficient of the independent variable yi j imposes the constraint that 1 − 4|τ c| − |τ r | > 0.
For networks with population-dependent variances and correlations, we use

Ji j = J0
pq + σpq

(
sgn

(
τ c

pq

)√∣∣τ c
pq

∣∣η(q)
i +

P∑
x=1

√∣∣τ c
qx

∣∣η(x)
j − sgn

(
τ c

pq

)√∣∣τ c
pq

∣∣μ(q)
i j +

√∣∣τ c
qp

∣∣μ(p)
ji

+ sgn
(
τ r

pq

)√∣∣τ r
pq/2

∣∣νi j +
√∣∣τ r

pq/2
∣∣ν ji + crm,pqyi j

)
,

crm,pq =
√√√√1 − 2

∣∣τ c
pq

∣∣ − ∣∣τ c
qp

∣∣ −
P∑

x=1

∣∣τ c
qx

∣∣ − ∣∣τ r
pq

∣∣, (C2)

where the presynaptic neuron with index j belongs to pop-
ulation q, and the postsynaptic neuron with index i belongs
to population p. Here, τ c

pq and τ r
pq denote the population-

dependent chain and reciprocal correlation coefficients, while
crm,pq is a coefficient setting the magnitude of the independent
part of the synaptic variance. The entries in vectors η(p) ∈
RN , p = 1, . . . , P, matrices U(p), p = 1, . . . , P, V, and Y ∈
RN×N are i.i.d. random variables following the normal distri-
bution N (0, 1).

2. Sparse networks

We use the SONET algorithm [34] to generate sparse net-
works with predefined local motifs. In brief, the occurrence
probabilities of different motifs [Eq. (38)] are determined by
the in-degree, out-degree, and full joint-degree distributions
of the units within the sparse networks. For each neuron in the
network, SONET samples pairs of in- and out-degree values
from the full-degree distribution pd (x, y), and then assigns
a nonzero connection from neuron j to i with a probability
proportional to xiy j , where the proportionality constant sets
the sparsity in the network.

More specifically, the in-degree distribution pin(x) is as-
sociated with the convergent motifs probability ρcon, the
out-degree distribution pout(y) is associated with the di-
vergent motifs probability ρdiv, the full-degree distribution
pd (x, y) is associated with the chain motifs probability ρc, and
pcommon(x, y) is associated with the reciprocal motifs probabil-
ity ρr . These relationships are expressed as

〈x2〉 =
∫

x2 pin(x)dx = ρconN2,

〈y2〉 =
∫

y2 pout(y)dy = ρdivN2,

〈xy〉 =
∫

xypd (x, y)dxdy = ρcN2,

〈ν〉 =
∫

νpcommon(x, y)dν = ρrN. (C3)

Here ν represents the number of common nodes in x and
y. Therefore, once we define the motif probabilities, we can
derive the degree distributions based on the methodology out-
lined in [34,69].

As for fully connected Gaussian networks, for simplicity
we assume ρcon = ρdiv = ρc, therefore {xi = yi}i=1,...,N , and
pd (x, y) has a Gaussian copula with correlation coefficient 1.

Practically, implementing SONETs requires defining three
types of parameters [34]: (i) the marginal probability of
synaptic couplings, denoted by p; (ii) the probabilities of the
reciprocal, convergent, divergent, and chain motifs deviating
from independence, denoted by αrecip, αconv, αdiv, αchain, re-
spectively; and (iii) the correlation coefficient of the Gaussian
copula. All these parameters can be analytically mapped to the
parameters we used here to characterize the sparse network
with chain motifs:

SONETs Our Parameters

p = c

p2(1 + αrecip) = ρr

p2(1 + αconv) = ρc

p2(1 + αdiv) = ρc

p2(1 + αchain) = ρc

(C4)

The second and third lines for the convergent and divergent
motif statistics are derived by considering the relationship
between chains and convergent/divergent motifs (see Ap-
pendix A), that is, the correlation coefficient of the Gaussian
copula is 1.

APPENDIX D: EFFECTIVE CONNECTIVITY MATRIX
FOR THE RESPONSE FUNCTION

In this Appendix, we show that the response function
obtained from the effective connectivity Jeff = J0 + [Z2] is
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identical at leading order in N to the mean response [χ]
obtained by averaging Eq. (10) over realizations of the random
connectivity.

We begin with Eq. (10), and use the decomposition
J = J0 + Z [Eq. (4)]. The mean response function [χ] is

expressed as

[χ] =
[(

1 − Z − 1

N
M0Nᵀ

0

)−1
]
, (D1)

where the mean connectivity J0 = 1
N M0Nᵀ

0 has a block structure with constant elements, and is also of low rank. Using the
Woodbury matrix identity and expanding the matrix inverse as a power series [35], we have

[χ] =
[(

1 − Z − 1

N
M0Nᵀ

0

)−1
]

= [(1 − Z)−1] −
[

(1 − Z)−1

(
−M0

N

)(
1 − Nᵀ

0 (1 − Z)−1 M0

N

)−1

Nᵀ
0 (1 − Z)−1

]

≈ [(1 − Z)−1] +
[

(1 − Z)−1 M0

N
Nᵀ

0 (1 − Z)−1

]
≈ (1 − [Z2])−1 +

⎡
⎣ ∞∑

k,l=0

Zk M0Nᵀ
0

N
Zl

⎤
⎦

= (1 − [Z2])−1 +
∞∑

k,l=0

[Z2]k M0Nᵀ
0

N
[Z2]l . (D2)

From the second to the third line, we keep only the first order in 1
N . From the second-to-last to the last line, we note that the

low-rank mean connectivity has a blocklike structure with deterministic elements, whereas Z consists of zero-mean random
elements. So Z is independent of the low-rank mean connectivity, and only terms of the form [Z2]k remain in the large network
limit.

We next consider the response function χeff generated by Jeff = J0 + [Z2] and perform the same series of manipulations:

χeff =
(

1 − [Z2] − 1

N
M0Nᵀ

0

)−1

= (1 − [Z2])−1 − (1 − [Z2])−1

(
−M0

N

)(
1 − Nᵀ

0 (1 − [Z2])−1 M0

N

)−1

Nᵀ
0 (1 − [Z2])−1

≈ (1 − [Z2])−1 + (1 − [Z2])−1 M0

N
Nᵀ

0 (1 − [Z2])−1

= (1 − [Z2])−1 +
∞∑

k,l=0

[Z2]k M0Nᵀ
0

N
[Z2]l . (D3)

Therefore, at leading order in N , we find that the averaged re-
sponse function [χ] obtained using Eq. (D2) is identical to the
response function χeff derived from the effective connectivity
Jeff = J0 + [Z2].

We test the accuracy of χeff in both Gaussian (Figs. 6 and
7) and sparse networks (Figs. 9–11 on the right) in the main
text. The results show that the response function derived using
Jeff is in good agreement with the response function derived
using either numerical simulations or those obtained using the
low-rank framework.

Examining the eigenvalues of the effective connectivity
matrix Jeff, we find that they differ from the outliers of the
full connectivity matrix J. For instance, for fully connected
networks with uniform variance (Sec. IV B), Jeff has a unit
rank structure, and therefore only one nonzero eigenvalue,
while J has two outliers as τ c is increased (Fig. 2). The single

unique eigenvalue is given by

λeff = λ0 + Nσ 2τ c, (D4)

and therefore it increases linearly with τ c, while the positive
outlier of J increases as

√
τ c [Eqs. (34) and (35)].

Despite this difference, we find that Jeff correctly predicts
network instability. Indeed, for the full connectivity matrix J,
the positive outlier crosses unity when

λ0 +
√

λ2
0 + 4(N − 1)σ 2τ c

2
= 1. (D5)

Here we use N instead of N − 1 [Eqs. (34) and (35)] in
the large network limit. Rearranging terms, this is directly
equivalent to λeff = 1. Therefore, the effective connectivity
matrix Jeff accurately predicts the instability of the network
dynamics.
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APPENDIX E: SUPPLEMENTARY FIGURES

In this Appendix, we present eigenvalues of networks with divergent, convergent, and reciprocal motifs (Fig. 12), the response
to external inputs in networks with reciprocal motifs (Fig. 13), eigenvector statistics for sparse networks with chain motifs
(Fig. 14), the response to external inputs in sparse networks with chain motifs (Fig. 15), the effects of distinct chain motif
statistics between different populations (Figs. 16 and 17).

FIG. 12. Eigenvalues of networks featuring divergent, convergent, and reciprocal motifs. In subplots (a)–(d), results are presented for
networks with Gaussian-distributed synaptic couplings. Subplots (a)–(d) show how the unique eigenvalue outlier λ1 and the radius of the
eigenvalue bulk Rbulk change as the statistics of the divergent τ div, convergent τ con, and reciprocal motifs τ r increase. The red error bars with
asterisks represent the numerically obtained λ1 from 30 network realizations, and the red lines represent the theoretical predictions. Gray areas
illustrate the area of eigenvalue bulks obtained numerically, with gray dashed lines representing the theoretical predictions [30]. The black
dashed lines indicate the unperturbed eigenvalue λ0 of the mean connectivity. In subplots (a)–(c), the network parameters are the same as those
used in Fig. 2: σ = 0.2 and τ div/con/r ranges from 0 to 0.1. In subplot (d), the networks have parameters σ = 0.5, and τ r ranges from 0 to 0.8.
Subplot (e) exhibits results for sparse networks. Figure descriptions are consistent with those in subplots (a)–(d).
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FIG. 13. Mean response χE of the excitatory neuron population in response to the time-invariant uniform input Iext in networks with only
reciprocal motifs. Subplot (a) corresponds to Gaussian networks, while subplot (b) corresponds to sparse networks. Network parameters remain
consistent with those provided in Figs. 6 and 9.

FIG. 14. Population-averaged mean of entries on connectivity vectors for sparse networks featuring chain motifs. Figure descriptions are
identical to those in Fig. 8, except that the network parameters are consistent with those used in Fig. 10 (see Table II).

FIG. 15. Impact of chain motifs on the mean response χpq of population p to uniform inputs to population q, in sparse excitatory-inhibitory
networks. Figure descriptions are identical to those in Fig. 10, except that the network parameters are consistent with those used in Figs 8 and
9 (see Table II).
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FIG. 16. Distinct effects of EE-type [panel (a), τ c
EE > 0], EI-type [panel (b), τ c

EI < 0], IE-type [panel (c), τ c
IE < 0], and II-type [panel (d),

τ c
II] chain motifs on eigenvalues (1.), inhibitory-associated low-rank structures (2.), and response functions χE and χII (3.). Results are obtained

using the Gaussian approximation for sparse networks; except for the varying chain-motif strength, network parameters are identical to those
in Figs. 10 and 11.

023008-23



YUXIU SHAO et al. PRX LIFE 3, 023008 (2025)

FIG. 17. Distinct effects of EI-type [panel (a), τ c
EI > 0] and IE-type [panel (b), τ c

IE > 0] chain motifs on eigenvalues (1.), inhibitory-
associated low-rank structures (2.), and response functions χE and χII (3.). Other figure descriptions remain consistent with those in Fig. 16.
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