001     1042825
005     20250916202446.0
024 7 _ |2 doi
|a 10.1038/s41598-025-01989-x
024 7 _ |2 datacite_doi
|a 10.34734/FZJ-2025-02663
024 7 _ |a 40413201
|2 pmid
024 7 _ |a WOS:001494675200023
|2 WOS
037 _ _ |a FZJ-2025-02663
082 _ _ |a 600
100 1 _ |0 P:(DE-Juel1)177845
|a von Polier, Georg G.
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Exploring voice as a digital phenotype in adults with ADHD
260 _ _ |a [London]
|b Springer Nature
|c 2025
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1748324082_461
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Current diagnostic procedures for attention deficit hyperactivity disorder (ADHD) are mainly subjective and prone to bias. While research on potential biomarkers, including EEG, brain imaging, and genetics is promising, it has yet to demonstrate clinical utility. Dopaminergic signaling alternations and executive functioning, crucial to ADHD pathology, are closely related to voice production. Consistently, previous studies point to alterations in voice and speech production in ADHD. However, studies investigating voice in large clinical samples allowing for individual-level prediction of ADHD are lacking. Here, 387 ADHD patients, 204 healthy controls, and 100 psychiatric controls underwent standardized diagnostic assessment. Subjects provided multiple 3-minutes speech samples, yielding 920 samples. Based on prosodic voice features, random forest-based classifications were performed, and cross-validated out-of-sample accuracy was calculated. The classification of ADHD showed the best performance in young female participants (AUC = 0.87) with lower performance in older participants and males. Psychiatric comorbidity did not alter the classification performance. Voice features were associated with ADHD-symptom severity as indicated by random forest regressions. In summary, prosodic features seem to be promising candidates for further research into voice-based digital phenotypes of ADHD.
536 _ _ |0 G:(DE-HGF)POF4-5254
|a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |0 P:(DE-HGF)0
|a Ahlers, Eike
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Volkening, Julia
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Langner, Jörg
|b 3
700 1 _ |0 P:(DE-Juel1)172843
|a Patil, Kaustubh R.
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)131678
|a Eickhoff, Simon B.
|b 5
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Helmhold, Florian
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Krautz, Agnieszka Ewa
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Langner, Daina
|b 8
773 _ _ |0 PERI:(DE-600)2615211-3
|a 10.1038/s41598-025-01989-x
|g Vol. 15, no. 1, p. 18076
|n 1
|p 18076
|t Scientific reports
|v 15
|x 2045-2322
|y 2025
856 4 _ |u https://juser.fz-juelich.de/record/1042825/files/s41598-025-01989-x.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1042825
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)177845
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-Juel1)177845
|a Clinic for Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Leipzig, Leipzig, Germany Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany
|b 0
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)172843
|a Forschungszentrum Jülich
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131678
|a Forschungszentrum Jülich
|b 5
|k FZJ
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-Juel1)131678
|a HHU Düsseldorf
|b 5
913 1 _ |0 G:(DE-HGF)POF4-525
|1 G:(DE-HGF)POF4-520
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5254
|a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|v Decoding Brain Organization and Dysfunction
|x 0
914 1 _ |y 2025
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)1190
|2 StatID
|a DBCoverage
|b Biological Abstracts
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b SCI REP-UK : 2022
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
|d 2024-07-29T15:28:26Z
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
|d 2024-07-29T15:28:26Z
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)0700
|2 StatID
|a Fees
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)0561
|2 StatID
|a Article Processing Charges
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2024-12-18
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21