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Abstract. The Modular Supercomputer Architecture (MSA) integrates
various processing units, with compute modules tailored for specific algo-
rithms, forming a unified heterogeneous system. Modules operate as
parallel clustered systems, interconnected via a common or federated
network. Optimized resource management allows flexible node selection,
aiming for better performance. Hardware heterogeneity poses challenges
for developers, who must port and optimize codes for various configura-
tions. This study evaluated the performance of two applications-TSMP
(regional Earth-system simulation) and mAIA (fluid dynamics)-across
two MSA platforms (DEEP, Wisteria/BDEC-01), considering both hard-
ware and software configurations.
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1 Heterogeneous Computing and MSA

Post-excale systems will be much larger than current ones. Semiconductor per-
formance scaling and increasing CPU operating clock frequency will be limited.
Rising demands for computer power are challenged by electricity costs.

High power consumption of CPUs makes large-scale homogeneous CPU clus-
ters costly. Accelerator processing units (APUs) execute specific operations effi-
ciently, offering high performance and lower energy consumption, making them
popular in HPC. Recently, GPUs have been widely used, along with new custom
accelerators for AI applications [1].

Therefore, the next flagship-level Supercomputer will be a heterogeneous
computer with several different hardware configurations for each target applica-
tion area optimized.
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As the number of systems equipped with GPUs, which have high power-
to-performance ratios, increases, the number of GPU-enabled applications and
applications using machine learning is also increasing. Recent systems run a vari-
ety of applications such as simulations in computational science and engineering,
big data analytics, AI, machine learning, etc.

However, not all HPC applications benefit from accelerators, so CPUs remain
essential for many users. Thus, HPC systems need heterogeneous designs com-
bining diverse processing units.

The Modular Supercomputer Architecture (MSA) is a system design that
aims at combining different processing units at system level [2]. Various compute
modules, each tailored to suit specific classes of algorithms, are interconnected
to form a unified heterogeneous system. Each module operates as a parallel,
clustered system of considerable scale. The modules may all be attached to a
common interconnecting network, or a federated network can be used to link
the module-specific interconnects. On the system software side, an optimized
resource manager facilitates the assembly of diverse resource combinations based
on the workload requirements of each application. In this way, each user has full
freedom in selecting the types and amount of nodes that the application needs.
This aims to yield better application performance by leveraging near-optimal
resource combinations, enabled by performance-portable implementations in the
applications.

The complexity added by hardware heterogeneity poses challenges to appli-
cation developers, who need to port and optimise their codes to an increasing
variety of system configurations and software environments. The community’s
willingness to port large, complex code to new system architectures depends
largely on whether there are enough success stories. It is therefore crucial to
carefully analyse the effort required and the performance achieved by those appli-
cation developers that have already attempted to port their code to new system
designs. Equally important is to compare performances across platforms, and to
report those in an fair and unbiased manner.

The present work aims at doing both in the context of modular supercom-
puting: describing the performance obtained by two application use-cases – the
TSMP for regional earth-system simulation and the mAIA for fluid dynamics
– running on two completely different MSA platforms both in terms of their
hardware and software configuration.

Our main new contributions are:

– Porting the applications (TSMP and mAIA) to the DEEP and
Wisteria/BDEC-01 modular platforms.

– Deploying the h3-Open-BDEC on the DEEP system
– Reporting on the performance of two applications on the DEEP and

Wisteria/BDEC-01 systems, studying separately the contribution from the
hardware configuration and the coupling library.

The paper is structured as follows. Section 2 shortly describes the two MSA
platforms used in the study and the main elements of their software stack. The
key characteristics of the application use cases are given in Sect. 3, with Sect. 4
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detailing the modifications included on the original codes to port them to the new
architecture. The results of the evaluation are presented in Sect. 5. The paper
is wrapped up with a discussion of the related work (Sect. 6) and a summary of
the concluding remarks in Sect. 7.

2 Target Systems and Software

The experiments described in Sect. 5 were executed on two modular supercom-
puters, the DEEP system at the Jülich Supercomputing Centre (JSC) in Ger-
many, and the Wisteria/BDEC-01 system at the University of Tokyo in Japan.
Both systems and related software are described in the following subsections.

2.1 DEEP

DEEP Hardware: The DEEP system is a Modular Supercomputer prototype
built by Megware and deployed at JSC within the research project DEEP-EST.
It is made of several modules, from which only two have been used in this work:
the general purpose CPU cluster, and the GPU-accelerated booster. We focus
therefore the system description on those, summarizing their main hardware
characteristics in Table 1. The DEEP cluster module, composed of 50 nodes
with Intel Xeon Skylake Gold CPUs, prioritizes reliable performance and ver-
satile applicability, to handle HPC workloads (or parts thereof) with intricate
and dynamic control flow. Emphasizing general-purpose performance and energy
efficiency, this module is engineered to meet diverse computational demands. In
contrast, the DEEP booster caters to highly scalable applications or workload
segments. With 75 nodes, each housing an Intel Xeon Cascade Lake Silver CPU
and an NVIDIA Tesla V100 GPU, the booster offers scalability and computa-
tional throughput, ideal for tasks with extensive parallelism and suitable control
structures. Energy efficiency is a primary focus of the booster design, achieved
through GPU-centric computing where the majority of compute operations are
handled by the high-end GPU, while the Xeon CPU manages I/O, network com-
munication (including MPI), and GPU device control via a PCIe Gen 3 link with
16 lanes. Both cluster and booster nodes are connected via an InfiniBand EDR
fabric with 100 Gbit/s bandwidth.

DEEP Software: The DEEP software stack is designed to fit the requirements
of a diverse portfolio of HPC applications and allow them to map their intrinsic
scalability patterns onto the hardware: highly parallel code segments execute on
the booster, while less scalable parts benefit from the cluster’s high single-thread
performance.

The DEEP programming environment abstracts the hardware complexity of
MSA by dealing with it in the lower layers of the software stack, while offer-
ing user-friendly interfaces and standard parallel programming paradigms. For
example, low-level interconnect management features were developed and inte-
grated within MPI, but without changing the MPI calls that are directly used
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Table 1. Key hardware features of the DEEP and Wisteria/BDEC-01 modules used
in this work.

DEEP system Wisteria/BDEC-01
Cluster Booster Odyssey Aquarius

Deployment 2019 2020 2021 2021
Node count 50 75 7,680 45
CPU type 2× Intel Xeon 6146 1× Intel Xeon 4215 1× Fujitsu A64FX 2× Intel Xeon 8360Y
CPU codename Skylake Cascade Lake - Ice Lake
Cores @freq. 2×12 @3.2GHz 1×8 @ 2.5GHz 1×48 @ 2.2GHz 2×36 @ 2.4GHz
GPUs per node n.a. 1× Nvidia V100 n.a. 8× Nvidia A100
DDR4 192 GB 48 GB n.a. 512 GB
HBM n.a. 32 GB (GPU) 32 GB. 40 GB (GPU)
Mem.BW/node 256 GB/s 900 GB/s (GPU) 1,024 GB/s 1,555 GB/s (GPU)
HD - - 25.8 PB 25.8 PB
NVMe SSD 25.6 PB 38.4 PB 1.0 PB + 1.0 PB
Interconnect EDR-IB (100 Gb/s) EDR-IB (100 Gb/s)Tofu Interconnect-DHDR-IB (200 Gb/s) (4×)
Topology fat-tree tree 6D torus fat tree
Power per node 500W 500W 200W 2,900W
Cooling warm-water warm-water cold water cold water

by the application developers. The DEEP system relies particularly on ParaS-
tation MPI [3], which can manage communication across different modules even
across gateway nodes in system configurations where different interconnect tech-
nologies are used (not the case on DEEP). ParaStation MPI is also aware of the
particular network topology in MSA and uses this knowledge to optimise collec-
tive MPI operations on modular systems. Features as CUDA awareness enhance
productivity and performance of hybrid MPI codes running on the booster.

The scheduler software used in DEEP is Slurm. While traditional job sched-
ulers excel in optimizing monolithic supercomputers, the MSA demands capa-
bilities to manage diverse resources and enable co-scheduling across modules.
Extensions to packages like psslurm (part of ParaStation) and Slurm facilitate
optimal utilization of heterogeneous resources, supporting co-scheduling across
modules. Enhanced support for the Multiple-Program Multiple-Data (MPMD)
paradigm enables heterogeneous jobs with different executables on distinct job
allocations. In practical use cases, such as preprocessing data before simulation,
data reduction, and final result visualization, executing codes on different mod-
ules involves simply specifying the nodes for each step to the Slurm scheduler.

2.2 Wisteria/BDEC-01 and h3-Open-BDEC

Wisteria/BDEC-01 (Hardware). The Wisteria/BDEC-01 system (Fig. 1),
which began operations at the Information Technology Center, the University
of Tokyo (ITC/UTokyo) in May 2021, is the first system based on the concept
of BDEC (Big Data & Extreme Computing) aiming to integrate Simulation,
Data, and Learning (S+D+L). The Simulation Node Group (Odyssey) consists
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IB-EDR

Fig. 1. Wisteria/BDEC-01 [4]

of 20 racks of FUJITSU PRIMEHPC FX1000 equipped with A64FX proces-
sors, each of which consists of 48 cores and 2 or 4 assistant cores, achieving a
theoretical peak performance of 3.38 TFLOP/s and a total peak performance of
25.9 PFLOP/s. The total memory capacity in Odyssey is 240 TiB, while its total
memory bandwidth is 7.8 PB/s. Each node is interconnected using Tofu Inter-
connect D with a bisection bandwidth of 13.0 TB/s. The Data/Learning Node
Group (Aquarius) consists of general-purpose CPUs (Intel Xeon Platinum 8360Y
(Ice Lake), 36 cores, 2.4GHz) and 8 GPUs (NVIDIA A100 Tensor Core (SXM4,
40 GB)) per node. The total peak performance of Aquarius is 7.2 PFLOP/s,
with a total memory capacity of 36.5 TiB and a total memory bandwidth of
578.2 TB/s. Each of Aquarius node is interconnected using InfiniBand HDR
(200 Gbit/s per link), achieving full bisection bandwidth between nodes. Odyssey
and Aquarius are connected with each other a network bandwidth of 2.0 TB/s
using a total of 160 InfiniBand EDR (IB-EDR) (100 Gbps) links. Addition-
ally, Aquarius can communicate externally at a total network transfer rate of
800 Gbps. All nodes of Aquarius can directly access various external resources
including servers, storage, and sensor networks through external networks such
as SINET, enabling real-time data acquisition [4]. The storage system of the
overall Wisteria/BDEC-01 consists of a shared file system (capacity: 25.8 PB,
data transfer rate: 0.504 TB/s), and fast file system (FFS) with SSDs (1.0 PB,
1.00 TB/s), accessible from both of Odyssey and Aquarius.

h3-Open-BDEC (Software). h3-Open-BDEC [5,6] is an innovative software
infrastructure for integration of (S+D+L) on Wisteria/BDEC-01. Its develop-
ment has been supported by Japanese Government during FY.2019-2023. It is
designed for extracting the maximum performance of the supercomputers with
minimum energy consumption, focusing on: (1) Innovative methods for numer-
ical analysis, (2) Hierarchical data driven approach based on machine learning,
and (3) Software for heterogeneous systems, such as Wisteria/BDEC-01 with
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Odyssey and Aquarius based on different architectures, and no MPI library sup-
porting both simultaneously, a single MPI job over Odyssey-Aquarius is impossi-
ble. For this reason we developed a communication procedure based on h3-Open-
SYS/WaitIO, a library that provides a MPI-like interface to facilitate commu-
nication between multiple parallel programs running on Odyssey and Aquarius,
via IB-EDR (WaitIO-Socket) and via Fast File System (WaitIO-File). The h3-
Open-UTIL/MP is a multi-physics coupler, which was originally developed for
a homogeneous supercomputer system using MPI. In this project, we combine
h3-Open-UTIL/MP with h3-Open-SYS/WaitIO to integrate (S+D+L) on a het-
erogeneous environment like Wisteria/BDEC-01 [7]. To submit such (S+D+L)
jobs, currently two separate jobs must be submitted from Odyssey and Aquarius,
respectively.

3 Target Applications

To evaluate the portability of real applications, we ported TSMP and mAIA to
the DEEP and Wisteria/BDEC-01 modular platforms. Both TSMP and mAIA
are realized by coupling multiple modules, but the difference is that TSMP
couples modules using a high-level coupling library called OASIS3, while mAIA
couples modules at the MPI communication library level. The target applications
for each are described below.

3.1 TSMP, ToySMP

The Terrestrial Systems Modelling Platform (TSMP) is a multi-domain and
multi-physics framework [8] coupling the atmospheric model COSMO, the land
surface model CLM, and the hydrological model ParFlow via the OASIS3-MCT
coupler. TSMP operates under a highly flexible Multiple-Program-Multiple-Data
(MPMD) paradigm in which different combinations of the solvers are possible.
Similarly, it is possible to map each of the solvers to different computational
resources. Heterogeneous and modular computing are an interesting approach
for TSMP because of the inherently complex load balancing of the three solvers.
Since ParFlow has been ported to GPUs [9], TSMP is capable of running on het-
erogeneous and modular supercomputers, running COSMO and CLM on CPUs
and (currently only) ParFlow on GPUs. Experiments with TSMP have shown
that MSA can increase resource and energy efficiency, and improve the scalabil-
ity of the coupled system, but time-to-solution improvements only happen under
certain conditions. In the future, the upcoming TSMP2 will be able to offload
ParFlow and ICON (which will replace COSMO) onto GPUs, leaving only CLM
on CPUs (as it is not well suited for GPU computations) and is expected to
result in overall speed-up for TSMP. The relative loads of the components will
guide decisions concerning onto which hardware the solvers are mapped.

TSMP has been tested on the DEEP experimental modular system, using
different CPU and GPU modules as well as on the modular production system



Portability of Multiphysics Applications 53

JUWELS. However, porting it to other experimental systems can prove particu-
larly challenging, as substantial porting work is required to enable the complex
software environment required by TSMP. This makes experimenting with TSMP
on multiple systems rather cumbersome. Additionally, the complex multi-physics
implies that physical consistency across domains needs to be guaranteed in test
problems, further hindering the flexibility required for experimentation. ToySMP
was developed to alleviate these issues. As its name implies ToySMP is a toy
(dwarf, mini-app) version of TSMP with very minimal software dependencies.
It maintains the structure of TSMP in terms of the MPI communicators and
the coupling strategy, but abstracts most of the complexities in the implemen-
tation, which require physical consistency (pre-processing) and allows further
flexibility in terms of computational load. Nevertheless, ToySMP is intended to
closely follow the implementation in TSMP in the communicator structure, in
the common coupling interfaces and APIs, and in the coupling APIs in the toy
components.

3.2 mAIA

The multi-physics framework for the code mAIA [10] has been pursued at the
Institute of Aerodynamics of the RWTH Aachen University in Germany since
2004. The code is able to simulate compressible and incompressible flows, aeroa-
coustics, combustion flames, and multiphase problems. The code mAIA consists
of noble numerical schemes for the finite-volume (FV) [11], the lattice-Boltzmann
(LB), and the discontinuous Galerkin (DG) methods. The code has been tuned
and executed with a mixed MPI/OpenMP parallelism. The mesh generation is
automated to obtain hierarchical Cartesian grids with a quadtree/octree struc-
ture. Furthermore, the solver supports solution adaptive mesh refinement as well
as flows with immersed moving boundaries.

The simulation of a biofluid problem is performed by using a LB method
in the quasi-incompressible flow regimes. By solving the microscopic distribu-
tion of the fluid particles the LB method can determine flow fields in a simpler
manner than the typical finite-difference and finite-volume approaches. The LB
algorithm operates in a fully local manner, and its locality ensures a massive
parallelism on HPC systems. The LB method based on the BGK model [12] is
used to solve a computational domain generated with a local refinement method
at the boundaries. The LB method has been validated and applied to generic
flow configurations [13] and bio-fluid mechanical problems [14].

A hierarchical Cartesian computational mesh is generated using the massively
parallel method presented in [13]. That is, each MPI-process initially generates a
cube, in the following referred to as cell, with edge length equal to the maximum
geometrical size in the three Cartesian coordinate axes. Subsequently, this cube
is subdivided into eight child cells constituting an octree with parent-child rela-
tionships between the initial cell on level l0 and its descendants on level l1. Cells
outside the geometry are identified and removed from the tree. The subdivision
process then recursively continues the refinement up to a user-defined level lm.
On lm, all levels lj (j < m) are removed and a Hilbert curve is placed in the
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remaining cells. The computational mesh is then equally distributed among the
MPI processes by cutting the Hilbert curve with respect to the Hilbert iden-
tifier. Thereby, each process keeps only those cells that have been assigned to
it. In a parallel algorithm each MPI process subsequently continues the refine-
ment up to a user-defined level ln. Finally, neighborhood information across MPI
ranks is globally restored and a cell ordering is introduced following the Hilbert
curve on level lm and a z-ordering, i.e., a depth-first ordering, for all levels lk
(m < k ≤ n). It should be noted that although the algorithm is capable of cre-
ating boundary- or patch-refined meshes, only uniform meshes are used in the
current study.

The issues caused by imbalanced processes are treated by a load-balancing
technique. Note that in the current study a generic configuration is chosen to
provide a fundamental basis to understand the motions of fluids in a human
brain.

4 Porting/Implementations

In this section, details of the implementations of the h3-Open-BDEC to
TSMP/ToySMP and mAIA are described.

4.1 Overview: Porting h3-Open-BDEC

h3-Open-SYS/WaitIO. The h3-Open-SYS/WaitIO (WaitIO) is a heteroge-
neous communication library among system areas and computer centers. It sup-
ports multiple communication devices that are POSIX Socket (WaitIO-Socket),
POSIX File (WaitIO-File), the combination of POSIX Socket and POSIX File
(WaitIO-Hybrid), ibverbs (WaitIO-Verb for InfiniBand), and uTofu (WaitIO-
Tofu for Tofu interconnect). Application users write coupling communication
programs in an MPI-like manner over multiple heterogeneous systems without
installing any system-level software, just with the WaitIO user level libraries.

h3-Open-UTIL/MP. The h3-Open-UTIL/MP (UTIL/MP) is a coupling
library developed as part of h3-Open-BDEC. This library possesses function-
alities equivalent to OASIS3-MCT (OASIS3), including process group man-
agement, data exchange, and grid remapping. Additionally, WaitIO enables
coupling between modules with different architectures becomes possible. In
Wisteria/BDEC-01, MPI is employed for communication within the same mod-
ule, while global communication involves both MPI and WaitIO, and commu-
nication between modules solely utilizes WaitIO. Using this capability, coupled
computations are actually being performed where an atmospheric model runs on
CPU nodes and an Machine Learning (ML) library runs on GPU nodes, allowing
for the physical processes of the atmospheric model to be learned by machine
learning [15].
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4.2 TSMP, ToySMP

As mentioned in Sect. 3.1, in this study a group of toy models (ToySMP)
was used to mimic the behavior of TSMP. ToySMP consists of three com-
ponents: compA, compB, and compC. Each model corresponds to COSMO,
CLM and ParFlow respectively. Similar to TSMP, compA and compB are
written in Fortran, while compC is written in C language. The three TSMP
components are coupled by OASIS3. The long term goal of our research is
to replace OASIS3 with UTIL/MP in TSMP to perform coupled calculations
across different platforms. However, due to the effects this has on dependen-
cies, as a preliminary step, ToySMP has been designed to allow the use of
both OASIS3 and UTIL/MP couplers. To achieve this, we developed a mod-
ule called toysmp_interface (and also toysmp_c_interface) that provides
a coupling interface for the three toy-models. These toy-models call APIs of
toysmp_interface, and toysmp_c_interface APIs, depending on the config-
uration, internally invoke the appropriate APIs of either OASIS3 or UTIL/MP,
simply via preprocessor branching.

4.3 mAIA

The simulations using mAIA were conducted on the DEEP and the
Wisteria/BDEC-01 systems. The task consists of two parts, i.e., the first step to
perform benchmarks on a single module and the second to integrate the WaitIO
interface into the code mAIA without performance degradation. The main objec-
tive is to realize the MSA simulations of mAIA on both systems. In this section
the porting and implementation of WaitIO is discussed with the code structure.

Coupling
(WaitIO)

POST_DATA(WaitIO)

Fig. 2. Strategies towards the heterogeneous computing version of mAIA based on a
WaitIO implementation.

The mAIA consists of multiple solver modules and coupler modules. Users are
able to select the solvers and couplers depending on their purpose. The WaitIO
implementation to the mAIA modules considers two strategies in developing the
heterogeneous computing version of mAIA (see Fig. 2). Type A in Fig. 2 uses mul-
tiple solvers, e.g., LB-POST_DATA (LB on the System-A and POST_DATA
on the System-B), FV-DG or LB-DG, each of which is executed on multiple
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heterogeneous systems. In this case, WaitIO is used for the initialization and the
data coupling among different solver modules. Each solver uses MPI communi-
cation and exchanges the simulation results via shared memory. Therefore the
data exchange parts in the mAIA coupler needs new functions by the WaitIO
implementation. In the Type B strategy in Fig. 2, one solver is executed in mul-
tiple systems, i.e., the mAIA coupler between the mAIA modules is deactivated
and processes LB-POST_DATA. In this case, WaitIO is used to communicate
data in a single solver. In the design of a heterogeneous computing version of
mAIA using WaitIO, the porting/implementation aims at the seamless interface
for both Type A and Type B cases. The implementation procedure uses the
MPI conversion library of WaitIO, because it can easily replace the MPI APIs
by adding WAITIO_ prefixes to MPI function names, MPI datatypes, and MPI
operation types.

The targeted modules are a lattice Boltzmann solver (LB) and the post pro-
cessing module (POST_DATA). For the Type A implementation, the initialization
part of mAIA was converted by replacing MPI functions with WaitIO ones. For
the Type B implementation, the LB part was also rewritten by the WaitIO func-
tions. The data coupling part between the LB and POST_DATA solvers is modified
to ensure the on-the-fly data post-processing. Furthermore, mAIA supports a
GPU offloading via the C++ parallel STL. The implementation of the WaitIO
version of mAIA includes heterogeneous computing between CPU and GPU sys-
tems. The evaluation of CPU and GPU coupling is planned on both the DEEP
and the Wisteria/BDEC-01 system.

5 Performance Evaluations

5.1 TSMP, ToySMP

Overview. ToySMP was created to mimic the behavior of each component
model of TSMP. The execution pattern of the models and the flow of data are
also set to be similar to TSMP. These processes are illustrated in Fig. 3. compA
and compB are executed on CPU nodes (cluster module in DEEP, and Odyssey
in Wisteria/BDEC-01), while compC is executed on GPU nodes (booster mod-
ule in DEEP, and Aquarius in Wisteria/BDEC-01). The models compA and
compC perform the first step in the execution and send the results to compB.
After receiving this data, compB performs one-step computation and returns the
results to compA and compC. Since compA, compC, and compB are executed
sequentially, the time involved in data exchange includes the waiting time for
the calculations of the counterpart model. Consequently, it is not possible to cal-
culate performance metrics like throughput from the measured data. Therefore,
in this study, we decided to evaluate the relative scalability when changing the
number of processes.

Problem Setting: Since the coupler of TSMP performs grid remapping, each
component can compute on its own grid system. However, in this study, to
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Fig. 3. Time integration and data exchange pattern of ToySMP, following the same
sequence as TSMP.

simplify the performance evaluation, the three components were assumed to
have the same grid. Additionally, the domain decomposition method was unified
with a one-dimensional east-west division. Therefore, when the same number
of processes is assigned to each component, data exchange will be performed
on a one-to-one basis per process. In this experiment, the grid size was set to
1024× 1024, and the number of exchange fields from one component to another
per one time step was 10. Therefore, the total amount of communication data
per step is approximately 335 MB (1024 × 1024 × 8 × 10 × 4). The number of
processes assigned to each component was set to the same value and varied from
1 to 128. In this case, the data size of single field per process is shown in Table 2.

Table 2. Data sizes per process (strong scaling).

processes 1 2 4 8 16 32 64 128

data size 8,388 4,194 2,097 1,048 524 262 131 65
(byte) 608 304 152 576 288 144 072 536

Results and Discussion: As mentioned in Sect. 4.1, WaitIO has three modes:
Socket, File, and Hybrid. The results measured on Wisteria/BDEC-01 for each
mode are shown in Fig. 4, along with the results from DEEP in Socket mode.
The measurements from DEEP demonstrate shorter execution times and bet-
ter scalability compared to those from Wisteria/BDEC-01. This difference is
likely attributed to the hardware configuration differences between DEEP and
Wisteria/BDEC-01. Specifically, DEEP has a smaller heterogeneity between its
CPU and GPU modules and a more tightly integrated system compared to
Wisteria/BDEC-01. In Hybrid mode, the threshold for switching between Socket
and File can be set via an environment variable, which was set to 524288 for this
experiment. This value corresponds to 16 processes. The measurement results
indicate that for 32 or more processes, the results of the Hybrid mode align
with those of the Socket mode. Conversely, within the range where the File
mode is applied, the Hybrid mode outperforms the File mode. This is because
the Hybrid mode uses the Socket mode for the rendezvous protocol to transfer
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larger message communications. UTIL/MP is equipped with the capability to
aggregate multiple data transfers into a single transmission. This functionality
was originally implemented to reduce the latency of routine calls in MPI com-
munication. Additionally, since WaitIO, particularly WaitIO-File, shows better
performance with larger data sizes, applying this feature in our experiment was
expected to enhance performance. Therefore, we configured UTIL/MP to aggre-
gate 10 field data sets and exchange all at once, and conducted the measurements
accordingly. The measurement results for DEEP and Wisteria/BDEC-01 under
this configuration are shown in Fig. 5. For DEEP, there is a slight performance
improvement up to 32 processes, but performance plateaus at 64 and beyond.
In the Socket mode on Wisteria/BDEC-01, the performance remains nearly the
same. However, significant performance improvements were observed in the File
and Hybrid modes. Notably, in Hybrid mode, performance scaled effectively up
to 128 processes, this demonstrates the effectiveness of UTIL/MP’s functionality.

fi

Fig. 4. Data exchange time of h3-
Open-UTIL/MP on DEEP and
Wisteria/BDEC-01

fi

Fig. 5. Data exchange time when
10 data are packed and exchanged
together.

5.2 mAIA

Overview: We selected LB-POST_DATA solver module coupling. And, the
LB module of mAIA possesses three major functions which simulate the lattice
gas behaviour, i.e., the collision step, the propagation step, and the prolongation
step. These functions calculate the flow field based on the BGK model imple-
mented in the LB module. At each time step the particle collision determines
a new distribution function which streams the particle momentum in the prop-
agation direction. The computation time of the three major functions extends
to more than 50% of the total computing time. The second largest portion is
consumed to apply the physical conditions at the domain boundaries and to
update the field values at the interface. The coupling with the LB module is
enabled by defining the number of solvers and each solver type. In this study the
post-processing module is activated to perform the on-the-fly data processing of
LB solutions.
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Problem Setting: The evaluation procedure for a WaitIO coupling is defined
by following steps using LB-POST_DATA solver module coupling. Since both
the Type A and Type B implementations of mAIA are in progress, the evaluation
is performed as follows: the Type A evaluation measures the initialization time
of WaitIO by comparing it with MPI on the DEEP, and with homogeneous
processing on Wisteria/BDEC-01. The Type B evaluation measures the parallel
performance via scaling tests using a heterogeneous combination of Arm CPUs
on Odyssey and Intel CPUs on Aquarius of the Wisteria/BDEC-01 system. In
the evaluation of the Type A initialization time, on DEEP ParaStation MPI was
used as the MPI library, and WaitIO-Verbs were used as the WaitIO library. On
Wisteria/BDEC-01, Fujitsu MPI was used as the MPI library, and WaitIO-Tofu
was used as the WaitIO. The evaluation time in minutes was measured using
LB and POST_DATA execution with 5000 steps. The LB part used an MPI library
in each case. In the evaluation of the Type B execution time, WaitIO-Socket
and WaitIO-Hybrid were used in Wisteria/BDEC-01 with LB and POST_DATA
coupling. The LB and POST_DATA solvers run on both Odyssey and Aquarius at
the same time in a heterogeneous computing environment.

Results and Discussion: Figure 6 shows the Type A initialization time. In
Fig. 6 the number of processes per node was 4 in Odyssey, and 16 processes per
node were used in the DEEP cluster module. In Fig. 6 the processing time of the
WaitIO was competitive or faster than that of MPI up to 128 processes. In cases
with a small number of processes, WaitIO was faster. However, increasing the
number of processes over 128 MPI ranks, the MPI libraries perform faster than
the WaitIO. In the comparison of the run-times determined on the DEEP and the
Wisteria/BDEC-01(Odyssey), the execution on the Odyssey system was much
slower in a small number of processes. With an increasing number of processes,
the runtime on the Odyssey system was competitive with that on the DEEP
system. Since the problem size is fixed, the results are caused by the increased
overhead in communication between processes. Figure‘7 shows the results of
Type B execution time. In Fig. 7 the notation 128(O:64+A:64) indicates a job
execution with a total of 128 processes, from which 64 processes ran on Odyssey
and 64 processes ran on Aquarius. Note that the case uses 4 processes per node in
Odyssey and 64 processes per node in Aquarius due to the limitation of the num-
ber of nodes. From the results in Fig. 7, one can conclude that the heterogeneous
coupling of Arm CPU and Intel CPU functions works correctly, and improves
the performance when increasing the number of processes. Comparison between
WaitIO-Socket and WaitIO-Hybrid, in the case with 128 processes, the WaitIO-
Hybrid setup is faster. However, the setup with WaitIO-Socket shows a better
performance in the case with 512 processes, where the size of communication
messages is reduced by increasing the number of processes. The WaitIO-Hybrid
performance is degraded when the size of messages exceeds 512 KB.
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Fig. 6. Comparison of mAIA execution
time (lower is better): MPI vs. WaitIO
in Type A.

Fig. 7. Comparison of mAIA execu-
tion times (lower is better): WaitIO in
Type B.

6 Related Work

The Modular Supercomputing Architecture (MSA) has been already described
in more detail in [2,16]. Previous work documenting the experience of applica-
tion developers that ported and benchmarked different use cases on the DEEP
system are reported in [17] and [18]. Experiments on other MSA systems in
JSC have been published in [19,20]. All those previous experiments were done
with different application use-cases to those reported in the current work, and
no comparison was done with Wisteria/BDEC-01 or between any two different
MSA systems. The present work is unique in that it compares different hardware
and software implementations of the MSA concept, using different use cases to
those reported on previous publications.

7 Concluding Remarks

This study evaluated the performance of two applications (TSMP, mAIA) on
two systems (DEEP, Wisteria/BDEC-01), which are based on the idea of MSA.
We introduced h3-Open-BDEC, originally developed for coupled simulations on
Wisteria/BEDC-01 with heterogenous architectures, to JSC’s DEEP system.
We evaluated the performance of two applications on two systems from two
perspectives: hardware configuration and coupling libraries. Obtained results
show that, like the original TSMP on MSA, performance is highly dependent on
configuration settings, but scalability can be achieved with proper tuning.

For this study, we developed ToySMP, which simulates the data transfer and
management between applications in the Terrestrial Systems Modelling Platform
(TSMP). We introduced UTIL-MP to ToySMP for coupling, and evaluated the
performance of the code on DEEP and Wisteria/BDEC-01. Obtained results
show that, like the original TSMP on MSA, performance is highly dependent on

Minutes
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configuration settings, but scalability can be achieved with proper tuning. More-
over, UTIL/MP’s feature for aggregating data transfers was validated. Future
work includes improving ToySMP so that it can more accurately simulate the
behavior of the original TSMP, deploying the original TSMP to Wisteria/BDEC-
01, and applying h3-Open-BDEC to it.

TSMP has already realized coupled calculations in a heterogeneous environ-
ment for the DEEP system, but for mAIA, we started by considering the coupling
of multiple components. We evaluated two types of workloads. Type-A is running
LB application of mAIA coupled with post-processing across multiple systems,
and compares performance of communications by MPI and those by WaitIO
library of h3-Open-BDEC on both of DEEP and Wisteria/BDEC-01 (Odyssey).
Codes using MPI and WaitIO provide similar performance on both DEEP
and Wisteia/BDEC-01 (Odyssey), respectively. Type-B evaluates the perfor-
mance of a single application on heterogeneous environments of Wisteria/BDEC-
01. Results of Type-B show that the LB solver in mAIA performs well on
Wisteria/BDEC-01 using a heterogeneous combination of Arm CPU and Intel
CPU. We continue to develop the coupled mAIA codes in two direction, Type-
A and Type-B, and elucidate the effectiveness of such heterogeneous coupling
applications. In the direction of Type-A, we are planning integration of simu-
lations and machine learning/AI workloads using h3-Open-BEDC, as we have
already done in previous works [7].

Although this study is very preliminary, it demonstrated the effectiveness of
coupled simulations on MSA-based systems using h3-Open-BDEC. In the future,
we would like to continue to improve the software in terms of both computa-
tional efficiency and ease of use, and verify its effectiveness for a wider range of
applications using various MSA-based systems.
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