001042883 001__ 1042883
001042883 005__ 20250916202447.0
001042883 0247_ $$2doi$$a10.1038/s41598-025-01107-x
001042883 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02690
001042883 0247_ $$2pmid$$a40419527
001042883 0247_ $$2WOS$$aWOS:001496076300006
001042883 037__ $$aFZJ-2025-02690
001042883 041__ $$aEnglish
001042883 082__ $$a600
001042883 1001_ $$0P:(DE-Juel1)201442$$aBarysch, Vera Michaela$$b0$$eCorresponding author$$ufzj
001042883 245__ $$aCombined dynamic nuclear polarization and electron paramagnetic resonance at 0.34 T to investigate electrochemical lithium deposition on copper
001042883 260__ $$a[London]$$bSpringer Nature$$c2025
001042883 3367_ $$2DRIVER$$aarticle
001042883 3367_ $$2DataCite$$aOutput Types/Journal article
001042883 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1751622265_28347
001042883 3367_ $$2BibTeX$$aARTICLE
001042883 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001042883 3367_ $$00$$2EndNote$$aJournal Article
001042883 520__ $$aDespite extensive research conducted on plating and dendrite formation in lithium batteries, themolecular formation processes are not yet fully understood. Electron paramagnetic resonance (EPR)sensitively detects metallic Li species but misses non-paramagnetic ones. Nuclear magneticresonance (NMR) is chemically selective, yet exhibits low sensitivity under low-field conditions.Dynamic nuclear polarization (DNP) overcomes this by transferring electron spin polarization tonuclei. Here, correlative EPR and DNP-enhanced 7Li NMR of lithium on copper is demonstratedusing a custom setup operating at 0.34 T with a sweepable electromagnet. DNP experiments wereconducted in pulsed mode to minimize sample heating. The resulting enhanced 7Li NMR signal allowsthe observation of electrochemically deposited lithium on copper, harvested from a Cu vs. Li cell, withan enhancement ϵ > 400. By changing the magnetic field strength by a few Gauss, the saturationof the conduction EPR transition was varied, leading to an altered Knight shift of metallic 7Li. Thecorresponding change of the DNP-polarized 7Li chemical shifts in the range from 240 ppm to 80 ppmallowed an indirect, saturation-based distinction of EPR species. Moreover, an enhancement ϵ by afactor of about 2 of the 1H signal from the surrounding electrolyte of electrochemically depositedlithium was observed, indicating the potential to investigate the solid–electrolyte interface (SEI). Thesetup employed a battery cell housing developed for EPR, demonstrating its suitability for in operandoexperiments in the future.
001042883 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001042883 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
001042883 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001042883 7001_ $$0P:(DE-Juel1)180213$$aWolff, Beatrice$$b1$$ufzj
001042883 7001_ $$0P:(DE-Juel1)133944$$aStreun, Matthias$$b2$$ufzj
001042883 7001_ $$0P:(DE-Juel1)156296$$aJakes, Peter$$b3$$ufzj
001042883 7001_ $$0P:(DE-Juel1)168465$$aSchleker, Peter Philipp Maria$$b4$$ufzj
001042883 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b5$$ufzj
001042883 770__ $$aNMR spectroscopy method development
001042883 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-025-01107-x$$gVol. 15, no. 1, p. 18436$$n1$$p18436$$tScientific reports$$v15$$x2045-2322$$y2025
001042883 8564_ $$uhttps://juser.fz-juelich.de/record/1042883/files/41598_2025_1107_MOESM1_ESM.pdf$$yRestricted
001042883 8564_ $$uhttps://juser.fz-juelich.de/record/1042883/files/s41598-025-01107-x.pdf$$yOpenAccess
001042883 8564_ $$u//juser.fz-juelich.de/record/1042883/files/41598_2025_1107_MOESM1_ESM.pdf$$yRestricted
001042883 8564_ $$u//juser.fz-juelich.de/record/1042883/files/s41598-025-01107-x.pdf$$yOpenAccess
001042883 8767_ $$8SN-2025-00897-b$$92025-08-27$$a1200217075$$d2025-09-16$$eAPC$$jZahlung erfolgt
001042883 909CO $$ooai:juser.fz-juelich.de:1042883$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$popenCost$$pdnbdelivery
001042883 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201442$$aForschungszentrum Jülich$$b0$$kFZJ
001042883 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)201442$$aRWTH Aachen$$b0$$kRWTH
001042883 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180213$$aForschungszentrum Jülich$$b1$$kFZJ
001042883 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133944$$aForschungszentrum Jülich$$b2$$kFZJ
001042883 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156296$$aForschungszentrum Jülich$$b3$$kFZJ
001042883 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168465$$aForschungszentrum Jülich$$b4$$kFZJ
001042883 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b5$$kFZJ
001042883 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162401$$aRWTH Aachen$$b5$$kRWTH
001042883 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001042883 9141_ $$y2025
001042883 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001042883 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
001042883 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-18
001042883 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-18
001042883 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
001042883 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-18
001042883 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2022$$d2024-12-18
001042883 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-07-29T15:28:26Z
001042883 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-07-29T15:28:26Z
001042883 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
001042883 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-18
001042883 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001042883 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
001042883 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001042883 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
001042883 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-18
001042883 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
001042883 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001042883 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001042883 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001042883 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001042883 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001042883 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001042883 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001042883 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
001042883 920__ $$lyes
001042883 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001042883 9201_ $$0I:(DE-Juel1)ITE-20250108$$kITE$$lInstitute of Technology and Engineering$$x1
001042883 9801_ $$aFullTexts
001042883 980__ $$ajournal
001042883 980__ $$aVDB
001042883 980__ $$aI:(DE-Juel1)IET-1-20110218
001042883 980__ $$aI:(DE-Juel1)ITE-20250108
001042883 980__ $$aUNRESTRICTED
001042883 980__ $$aAPC