001     1042883
005     20250916202447.0
024 7 _ |a 10.1038/s41598-025-01107-x
|2 doi
024 7 _ |a 10.34734/FZJ-2025-02690
|2 datacite_doi
024 7 _ |a 40419527
|2 pmid
024 7 _ |a WOS:001496076300006
|2 WOS
037 _ _ |a FZJ-2025-02690
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Barysch, Vera Michaela
|0 P:(DE-Juel1)201442
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Combined dynamic nuclear polarization and electron paramagnetic resonance at 0.34 T to investigate electrochemical lithium deposition on copper
260 _ _ |a [London]
|c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1751622265_28347
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Despite extensive research conducted on plating and dendrite formation in lithium batteries, themolecular formation processes are not yet fully understood. Electron paramagnetic resonance (EPR)sensitively detects metallic Li species but misses non-paramagnetic ones. Nuclear magneticresonance (NMR) is chemically selective, yet exhibits low sensitivity under low-field conditions.Dynamic nuclear polarization (DNP) overcomes this by transferring electron spin polarization tonuclei. Here, correlative EPR and DNP-enhanced 7Li NMR of lithium on copper is demonstratedusing a custom setup operating at 0.34 T with a sweepable electromagnet. DNP experiments wereconducted in pulsed mode to minimize sample heating. The resulting enhanced 7Li NMR signal allowsthe observation of electrochemically deposited lithium on copper, harvested from a Cu vs. Li cell, withan enhancement ϵ > 400. By changing the magnetic field strength by a few Gauss, the saturationof the conduction EPR transition was varied, leading to an altered Knight shift of metallic 7Li. Thecorresponding change of the DNP-polarized 7Li chemical shifts in the range from 240 ppm to 80 ppmallowed an indirect, saturation-based distinction of EPR species. Moreover, an enhancement ϵ by afactor of about 2 of the 1H signal from the surrounding electrolyte of electrochemically depositedlithium was observed, indicating the potential to investigate the solid–electrolyte interface (SEI). Thesetup employed a battery cell housing developed for EPR, demonstrating its suitability for in operandoexperiments in the future.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
536 _ _ |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
|0 G:(DE-Juel1)HITEC-20170406
|c HITEC-20170406
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wolff, Beatrice
|0 P:(DE-Juel1)180213
|b 1
|u fzj
700 1 _ |a Streun, Matthias
|0 P:(DE-Juel1)133944
|b 2
|u fzj
700 1 _ |a Jakes, Peter
|0 P:(DE-Juel1)156296
|b 3
|u fzj
700 1 _ |a Schleker, Peter Philipp Maria
|0 P:(DE-Juel1)168465
|b 4
|u fzj
700 1 _ |a Granwehr, Josef
|0 P:(DE-Juel1)162401
|b 5
|u fzj
770 _ _ |a NMR spectroscopy method development
773 _ _ |a 10.1038/s41598-025-01107-x
|g Vol. 15, no. 1, p. 18436
|0 PERI:(DE-600)2615211-3
|n 1
|p 18436
|t Scientific reports
|v 15
|y 2025
|x 2045-2322
856 4 _ |u https://juser.fz-juelich.de/record/1042883/files/41598_2025_1107_MOESM1_ESM.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1042883/files/s41598-025-01107-x.pdf
|y OpenAccess
856 4 _ |u //juser.fz-juelich.de/record/1042883/files/41598_2025_1107_MOESM1_ESM.pdf
|y Restricted
856 4 _ |u //juser.fz-juelich.de/record/1042883/files/s41598-025-01107-x.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1042883
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)201442
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)201442
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180213
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)133944
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156296
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)168465
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)162401
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)162401
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-07-29T15:28:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-07-29T15:28:26Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
920 1 _ |0 I:(DE-Juel1)ITE-20250108
|k ITE
|l Institute of Technology and Engineering
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 _ _ |a I:(DE-Juel1)ITE-20250108
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21