TY  - CHART
AU  - Barysch, Vera
AU  - Wolff, Beatrice
AU  - Streun, Matthias
AU  - Jakes, Peter
AU  - Schleker, Peter Philipp Maria
AU  - Granwehr, Josef
TI  - Replication Data for: Combined dynamic nuclear polarization and electron paramagnetic resonance at 0.34 Tesla to investigate electrochemical lithium deposition on copper
PB  - Jülich DATA
M1  - FZJ-2025-02691
PY  - 2025
AB  - Replication Data for: Combined Dynamic Nuclear Polarization and Electron Paramagnetic Resonance at 0.34 Tesla to Investigate Electrochemical Lithium Deposition on Copper Supporting experimental data and simulation results for the publication DOI: 10.1038/s41598-025-01107-x In the accompanying publication, plating and dendrite formation in lithium batteries is studied using a newly developed setup for dynamic nuclear polarization (DNP) operating at 0.34 Tesla. Electron paramagnetic resonance (EPR) sensitively detects metallic Li species but misses non-paramagnetic ones. Nuclear magnetic resonance (NMR) is chemically selective, yet exhibits a low sensitivity under low-field conditions. DNP-enhanced NMR overcomes this by transferring electron spin polarization to 7Li nuclei. Here, correlative X-band EPR and DNP-enhanced 7Li-NMR of plated lithium is demonstrated. DNP experiments were conducted in a pulsed mode to prevent excessive sample heating. The resulting enhanced 7Li NMR signal allows the observation of electrochemically plated lithium on copper, harvested from a Cu vs. Li cell, with an enhancement ε > 400. By changing the magnetic field strength by a few Gauss, the saturation of the conduction EPR transition was varied, leading to an altered shift of metallic 7Li. The corresponding change of the DNP-polarized 7Li chemical shifts in the range from 240 ppm to 80 ppm, in turn, allowed an indirect, saturation-based distinction of EPR species. Moreover, an enhancement ε by a factor of about 2 of the 1H signal from the surrounding electrolyte of electrochemically deposited lithium was observed, indicating the potential to investigate the solid-electrolyte interface (SEI).
LB  - PUB:(DE-HGF)32
DO  - DOI:10.26165/JUELICH-DATA/FEI8NB
UR  - https://juser.fz-juelich.de/record/1042884
ER  -