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Dense Crowd Dynamics  
and Pedestrian Trajectories:  
A Multiscale Field Dataset from  
the Festival of Lights in Lyon
Oscar Dufour1 ✉, Huu-Tu Dang2, Jakob Cordes3,4, Raphael Korbmacher5, Mohcine Chraibi   3 ✉,  
Benoit Gaudou2 ✉, Alexandre Nicolas   1 ✉ & Antoine Tordeux   5 ✉

The dynamics of dense crowds have received considerable attention from researchers seeking 
fundamental understanding or aiming to develop data-driven algorithms to predict pedestrian 
trajectories. However, current research mainly relies on data collected in controlled settings. We present 
one of the first comprehensive field datasets describing dense pedestrian dynamics at different scales, 
from contextualized macroscopic crowd flows over hundreds of meters to microscopic trajectories 
(around 7000 individual trajectories). In addition, a sample of GPS traces, some statistics of contacts 
and pushes, and a list of non-standard crowd phenomena observed in the video recordings are provided. 
The data were collected during the 2022 Festival of Lights in Lyon, France, as part of the French-
German MADRAS project and cover densities up to 4 pedestrians per square meter. We suggest using 
this extensive dataset, acquired in complex real-world settings, to benchmark models of pedestrian 
dynamics.

Background & Summary
Large gatherings raise challenges regarding public safety and flow management; these challenges tend to be 
all the more acute as the crowd is large and dense. Religious festivals, music concerts, and significant outdoor 
events are therefore of particular concern, with a record of poor crowd management and, in the worst cases, 
deadly crowd crushes1–4. Beyond the rules of thumb that have been refined over the years, a deeper fundamen-
tal understanding of the dynamics of dense crowds will be instrumental for more efficient event planning and 
crowd management. Here, a crowd will be described as dense if its density exceeds the arbitrary threshold of 1.5 
or 2 ped/m2, thus falling in Fruin’s Level of Service5; critical conditions with extreme densities (above 8 ped/m2), 
which must be avoided in practice, are left out of our scope.

The present theoretical grasp of dense crowd dynamics mainly stems from controlled experiments6, con-
ducted in idealized settings. This protocol enables researchers to finely control variables and settings to observe 
a whole gamut of none-too-common scenarios, such as emergency evacuations7 or high-density flows and cross-
ings. The Research Center of Jülich, in particular, has collected numerous pedestrian trajectories in a wide array 
of such experiments8,9. Let us also mention, among others, the datasets collected by the groups of Haghani10 and 
Zuriguel11 to explore crowd dynamics during emergency evacuation drills, Murakami et al.12 to probe the emer-
gence of unidirectional and bidirectional pedestrian flows. An open-access data archive can be found here13. 
However, the controlled conditions may substantially differ from reality, and the participants are aware of their 
involvement in the research. Another drawback of controlled experiments is that they do not afford a compre-
hensive picture of the crowd; the broader context in which the dynamics occur is missing.
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The thirst for field data to train data-based methods, such as machine learning algorithms, remains 
unquenched for dense crowds: field studies typically involve situations of low density. For instance, the widely 
used ETH14 and UCY15 datasets, which originate from surveillance videos, capture pedestrian scenes at density 
0.1-0.5 ped/m2, with many avoidance situations. In this regime, the pedestrian dynamics are believed to be gov-
erned by different mechanics than at higher density5,16,17. Empirical datasets often encompass a heterogeneous 
mix of road users, as in the Stanford Drone Dataset (SDD)18, including pedestrians, cyclists, skateboarders, 
cars, and buses. While these datasets capture small scenes, the Grand Central Station Dataset (GS)19, collected 
in New York, covers a vast area. Although one scene can contain hundreds of pedestrians, the average density is 
below 0.2ped/m2 due to the region’s size. The Edinburgh Informatics Forum Dataset (EIF)20 provides trajecto-
ries of 92 000 people in a university playground from an overhead camera, with minute average densities (most 
of the time just a few pedestrians at a time). Also worth mentioning are mass-gathering studies relying on a 
sparse sample of smartphone signals21. Besides, the group of Toschi and Corbetta at the Technical University of 
Eindhoven have collected extensive datasets of pedestrian trajectories in the Eindhoven train station and on the 
university campus in the last decade22,23. Several reviews on existing field studies of pedestrian trajectories have 
recently appeared24–26.

The present contribution aims to make up for the lack of field data on dense crowds by providing a compre-
hensive picture of pedestrian flows at a large gathering around a hot spot of a major cultural and entertainment 
event, the 2022 edition of the Festival of Lights, which took place in Lyon, France. For this purpose, we collected 
various data relevant to pedestrian dynamics and crowd management. These data cover an extensive range of 
length scales, by all standards in the field, from the global flow picture and contextual elements down to individ-
ual pedestrian trajectories and some statistics on physical contacts. In the following, an emphasis shall be placed 
on all observations that depart from what is typically prescribed or observed in controlled experiments, thus 
further highlighting the added value of actual field data.

Lyon’s yearly Festival of Lights is a four-evening event (from December 7 to 11 in 2022, mostly from 7 pm to 
11 pm) wherein the city is lit up remarkably. Originally a religious tribute to the Virgin Mary, it has become a 
massive international festival renowned for its innovative light shows and artistic projections on historic build-
ings. The event attracts millions of local and international visitors (more than 2 million officially in 202227). Key 
attractions include Place des Terreaux and Place Saint-Jean, reportedly attended by 150 000 and 80 000 spectators 
every night, respectively, in 202227. Quite interestingly, for our purposes, managing the associated crowd flows is 
one of the most prickly issues for the event organizers28. They aim to ensure smooth flows and reasonable delays 
for a pleasant experience. Still, above all, to ward off crowd accidents, after a difficult situation witnessed in the 
2000s (information obtained from a private communication with the organizers of the event) and the tragedies 
that have occurred in massive entertainment events around the world, e.g. at the Love Parade in Duisburg, 
Germany, in 20102 or during Halloween on the streets Seoul, Korea, in 202229. This is achieved by regulating 
flows at different scales: macroscopically, by suggesting routes through the city to visit the multiple light instal-
lations, for instance, starting at Place Bellecour, moving to Place des Terreaux, and then exploring Vieux Lyon, 
especially near Saint-Jean’s Cathedral; mesoscopically, by installing barriers and safety agents, particularly near 
Place des Terreaux and imposing unidirectional flows in many streets to ease congestion microscopically by 
continuously monitoring the event with CCTV. Our methodology explores these three scales for crowd flows, 
focusing on the microscopic one at the central location of Place des Terreaux. The crowd’s movement was notably 
monitored with strategically placed cameras (Fig. 1) installed by us or by the city of Lyon.

Methods
General organization of the data collection campaign.  Approximately ten staff members planned and 
carried out the data collection campaign. The aim was to capture a complete picture of pedestrian motion during 
the Festival of Lights. For that purpose, we combined various methods targeting different scales. Macroscopically, 
we inspected the broad patterns of macroscopic crowd flows on the ground around Place des Terreaux and 
recorded the scene with a broad overview. We surveyed passers-by close to the entrance of the square, asking 
them the following questions:

•	 ‘How many people were with you?’
•	 ‘How many children were with you?’
•	 ‘What was the last screening you attended before the one at Place des Terreaux?’
•	 ‘What screening do you plan to attend next? (You can answer that you don’t know)’

We strove to limit the selection bias on the the 79 respondents by making no distinction about general or 
physical appearance and by ensuring that we interviewed a sample from around the square and not limited to a 
single street.

Mesoscopically, we recruited participants willing to share their GPS data and record how often they bumped 
into other people.

Microscopically, we installed several cameras filming specific zones from the top (with all required author-
izations to ensure privacy preservation). Below, we distinguish between TopView cameras (labeled 1, 2, 3, 5, 6, 
7, 8), filming from a zenithal position, and LargeView cameras (labeled 4), recording an even broader view that 
encompasses the whole square, but with a more tilted (less vertical) angle. An overview of the data collected in 
this study is presented in Fig. 2.

GPS data of recruited participants and collision counts.  A group of 24 undergraduate and doctoral 
students from Institut Lumière Matière in Lyon were invited to participate in the field study. More precisely, they 
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were asked to follow a general route (from the queue at the entrance to the square, on Rue du Président Edouard 
Herriot to the exit on Rue Lanterne, following the flow of the crowd), behave as a standard spectator. Meanwhile, 
their GPS positions were recorded using the GeoTracker application on their smartphones. Although the accu-
racy of the measurements varied from phone to phone, the trajectories obtained were generally reliable, with a 
margin of error of around 10 meters on absolute positions. Besides, each participant used a stopwatch on their 
smartphone to record each time they collided with another pedestrian. Upon synchronization with the GPS 
data, this method allowed us to precisely determine the time and location of the collisions. Each participant was 
taught what to consider a collision, which was demonstrated by jostling them hard. Therefore, minor rubbing of 
the clothing was not recorded. Of the 24 students involved in that experiment, 16 were able to provide us with a 
detailed list of physical contacts, among which eight could be coupled to GPS data (Dataset30, GPS Data]). Our 
efforts to involve on-site spectators in the campaign proved fruitless; none managed to send us GPS data.

Video processing and pedestrian tracking for the TopView cameras.  To obtain a finer view of 
pedestrian trajectories, we deployed lightweight cameras SJCAM A10 in strategic locations around Place des 
Terreaux. These cameras filmed the scene from a zenith perspective. These cameras were selected for their night 
vision capabilities and long battery life; three of them, labeled 1, 2, and 3 in Fig. S1 in the Supplementary Material, 
were placed on the north side of Place des Terreaux, protruding from the windows of an apartment Airbnb and a 
restaurant on the second floor. They captured the bidirectional movement of pedestrians below. Another camera, 
numbered 8, was mounted atop an existing post in the square’s South-East corner to monitor incoming flows; 
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4

Fig. 1   The thick crowd gathered in and around Place des Terreaux at the end of a light show on December 12, 
2022, at 9:41 PM. The cameras’ fields of view are highlighted in blue; the pink rounded square delimits the area 
where pedestrians were exhaustively tracked in the LargeView datasets30, LargeView Trajectories37. Inset: Zoom 
on two exit streets where we monitored the outflow.
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Fig. 2  Scales probed in this study and synthesis of the data collected at each scale.
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however, its nighttime footage was unusable due to lighting problems. Two additional cameras, numbered 5 and 
6, were placed on Rue Constantine, one of the main exits after the light show, hanging from the balconies of an 
Airbnb apartment to film the pedestrian egress from above. A final camera numbered 7 was temporarily held at 
the end of a stick in the South-West corner to provide a closer view of the pedestrian outflow. Overall, the portable 
SJCAM A10 cameras recorded nearly 200 GB of video at 30 frames per second.

From the collected footage, pedestrian trajectories were extracted from 10 excerpts (see Table 3 in the 
Supplementary Material and Dataset30, TopView Trajectories), using the PeTrack software31,32. This software is 
commonly used to automatically detect and track pedestrian heads in controlled experimental settings. The 
process notably involves calibrating the cameras to match pixel coordinates with real-world coordinates, which 
is split into two distinct phases: internal and external calibration. Internal calibration corrects the specific optical 
distortions of each camera lens by determining the optimum parameters to transform a reference pattern (such 
as a checkerboard) into its recorded image. Then, external calibration yields the conversion between real-world 
coordinates and pixel coordinates using three successive operations: a rotation and a translation of the reference 
frame, followed by a projection to move from the camera frame to the screen frame. The parameters of these 
operations minimize the differences between the known real-world coordinates of objects (here, staff members) 
positioned at predefined positions (here, at regularly spaced positions on a virtual ‘grid’) and the associated pixel 
coordinates. Such calibration is only an approximation if the recorded pedestrians are of unequal heights, espe-
cially without a stereoscopic camera to reconstruct the scene in three dimensions. Still, the inaccuracy is even 
lower as the camera is positioned higher and films from a zenithal viewpoint. Here, we expect the maximum 
uncertainty due to unequal heights to be of order33 δ ⋅h D

H
, where H ≈ 12 m is the altitude of the camera  

concerning the heads, D ≈ 5–10 m is the maximal horizontal stretch between the camera axis and people on the 
periphery of the scene, and δh ≲ 20 cm is the height difference between filmed people and the staff member who 
served as reference for the calibration; hence below 15 cm in most cases for deployed SJCAM A10 cameras. The 
uncertainty in detecting the central point on the head (≲5cm) and the error should be added to this because not 
all people stand perfectly upright. Furthermore, occlusion phenomena due to the perspective can increase the 
measurement uncertainty for small pedestrians.

After the calibration step, the PeTrack software semi-automatically detects and tracks pedestrians on the 
videos. Compared to controlled experimental conditions, some difficulties arose. In our case, this task was 
mainly complicated by the lighting conditions. Thus, pedestrian heads were first detected manually and then 
tracked from frame to frame using the extended pyramidal iterative Lucas Kanade feature tracker integrated into 
PeTrack. Although this method is surprisingly robust, manual corrections were often required, mainly when the 
illumination suddenly changed from dark to bright areas.

Video processing and pedestrian tracking for the LargeView camera.  In addition to the previ-
ously mentioned TopView cameras, we have gathered extensive LargeView video footage from cameras that offer 
a bird’s-eye view of the entire square. Two of these cameras are located at Place Saint-Jean. Another camera 
(numbered 4 in Fig. S1 in the Supplementary Material) captures Place des Terreaux from the City Hall tower, 
approximately 48 meters above ground level. Although all recordings are accessible, only the videos from Place 
des Terreaux have been thoroughly analyzed and discussed here.

The expansive view provided by the camera, numbered 4, along with variations in lighting, precludes auto-
mated tracking using PeTrack, in favor of a largely manual approach. Internal calibration was deemed unneces-
sary because the camera lens exhibited minimal optical distortion: straight lines in reality appear as straight lines 
on the video. Complete external calibration was performed by positioning a staff member at predefined evenly 
spaced points in the square 32 and applying the geometric transformations outlined in Sect. 2. The resulting pre-
cision for absolute positions, assessed using independently collected positions (either of the same staff member 
or others), ranged from 10 cm to approximately 2 meters at the farthest end of the square and over 80 meters 
from the camera horizontally. Given that this inaccuracy is primarily geometric, it is expected that the positions 
relative between pedestrians and their neighbours are significantly more precise.

Initially, we manually identified the positions of all individuals throughout the square at a specific time point, 
occasionally reviewing video frames to locate pedestrians temporarily obscured from view. This was done after 
a show cycle, as people began to exit, on Thursday 8 December 2022. Subsequently, we tracked a random sample 
of approximately 270 individuals over several seconds, with around 100 of them being tracked for a duration of 
20 seconds (Dataset30, LargeView Trajectories], file “LargeView_tracers.txt”). Finally, we focus on a particular 
area of interest, where opposing flows of people who do not necessarily follow traffic directions meet. The area 
has a square shape (before the correction of the geometric distortion) and is located near the fountain, a crucial 
convergence point of high density. Using homemade Python-based software, we manually tracked the trajec-
tories of all observable people in this area over around 30 seconds, at a rate of typically two frames per second. 
Trajectories were upsampled to 10 Hz by linear interpolation and exported into CSV files (dataset30, LargeView 
Trajectories] files “LargeView_zoom_A.txt” and “LargeView_zoom_O.txt”).

It should be noted that, compared to the TopView videos, these ones (addressing a more complex flow sce-
nario) are of lower resolution and quality. Combined with the varying illumination, this hindered the detection 
of some individuals, especially children and shorter people, in specific frames. The datasets may thus exhibit 
imperfections, such as some individuals escaping detection and occasional swaps between trajectories. However, 
our subsequent tests have shown that they are accurate to a very large degree and nearly comprehensive (see 
Technical validation).

Conversion into global coordinates.  All trajectories were mapped to global coordinates using the RGF-
93 Lambert-93 coordinate reference system (EPSG:2154) for precise global positioning. This transformation 
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involved adjusting the positions of several landmarks visible in the videos and satellite imagery. The geometric 
shapes and locations of all obstacles in the square, including the fountain, temporary crowd barriers surrounding 
it, bollards, and Buren columns, were determined via direct measurements, together with satellite imagery and 
photographs taken on-site; they are provided as an external dataset30, Geometry].

Quantitative indicators.  Various relevant static and dynamic indicators can be computed using the 
detailed pedestrian trajectories.

Flow rate.  The outflow rate during an egress from Place des Terreaux was measured by drawing virtual 
cross-section lines at the two main exits, as shown in Fig. 1. People crossing these lines were counted manually 
by watching the recorded videos.

Density field.  To be useful, the extracted microscopic trajectories often need to be smoothed into continuous 
fields. Specifically, the local density field34, denoted as ρ(r, t), is derived by computing the convolution of the 
microscopic particle density t tr r r( , ) ( ( ))

A j j
1ρ δ= ∑ −µ

 - where δ(⋅) is the Dirac delta function and A is the 
surface area - with a Gaussian kernel r( ) exp( )r

2

2

2φ ∝ −ξ ξ
 whose integral is normalized to 1, for a chosen 

half-width ξ, viz.: 

∫ρ ρ φ= − ′ ′ ′µ ξtr r r r r( , ) ( ) ( ) d (1)
2

A

 For further smoothing, the time dependence can also be coarse-grained by averaging the field over a short time 
window Δt: 
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Velocity field.  Similarly, the microscopic velocities δ= ⋅ 
 + − 

δ
� �t t t tv r r( ) ( ) ( )j t j j

1 , estimated from the vector 
difference between two positions of pedestrian j over a small time interval δt (with δt = 0.5 or 1 second in this 
context), can be coarse-grained. The trajectories are initially smoothed using a second-order Butterworth 
low-pass filter. Trajectories that are too short for effective filtering remain unfiltered. Near the start (ts) and end 
(te) of each trajectory, linear interpolation is applied between the raw trajectory r and the filtered trajectory r� to 
address the Butterworth filter’s limitations when past or future data points are absent. This interpolation is 
expressed as � �α α← + −t t t t tr r r( ) ( ) ( ) [1 ( )] ( )j j j , where t e e( ) max{ , }

t t t t( ) ( )s eα = − − − − . Note that at the start 
(t = ts) and end (t = te) of the trajectory, α is close to 1, giving more weight to the original data. This helps pre-
serve the trajectory’s endpoints. In the middle, α decreases, giving more weight to the smoothed data. The 
beginning and end of the raw trajectories are thus preserved, reducing artefacts from filtering. Subsequently, the 
trajectories are transformed into a velocity field through Gaussian convolution: 
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The resulting field exhibits abrupt variations due to many individuals deviating from, or walking counter to, the 
primary local flow direction. Like the density field, the velocity field can be averaged over a finite time interval 
Δt to smooth out these variations: 
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The coarse-grained picture given by the smooth velocity field masks possible counterflows and fluctuations, 
whose presence can be ascertained by computing a variance field: 

� �∑

∑

∫

∫

φ

φ
=

− ′ ′ − ′ ′

− ′ ′

ξ

ξ

−

+

−

+

Δ

Δ

Δ

Δ
t

t t t t

t t
r

r r v v r

r r
Var ( , )

( ( )) ( ) ( , ) d

( ( )) d (5)

t

t
j j j

t

t
j j

v

2
t

t

t

t
2

2

2

2

Trajectories of counter-walking pedestrians j significantly deviate from the continuous flow, thus exhibiting a 
large variance relative to the velocity field, denoted as Var j

v. More precisely, the variance is computed by averag-
ing the squared difference between pedestrian j’s velocity vj(t) and the coarse-grained velocity t tv r( ( ), )j  at that 
position, over the entire duration of pedestrian j’s trajectory, i.e. ⟨ ⟩t t tv v rVar ( ) ( ( ), )j

j jv
2= −� � .
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Data Records
The datasets referenced in this study in relation with dense pedestrian dynamics during the 2022 Festival of 
Lights in Lyon, France, are publicly available and can be accessed via Zenodo30. The datasets include macro-
scopic crowd flows, microscopic individual trajectories, GPS traces, contact data, and statistics on crowd inter-
actions, providing a valuable resource for further research in pedestrian dynamics. In addition, we have released 
an open online platform that allows users to visualize and plot most of the collected data. 

•	 We have released an open online platform35 that allows users to visualize and plot most of the collected data; 
it can be accessed at https://go.fzj.de/madras-app.

•	 The survey results are provided in a CSV file, with each line representing a respondent. A README file is 
included to help interpret the columns.

•	 The geometry of the square and the (temporary) obstacles are provided as CSV files using the WKT format 
for geometries.

•	 Contact data are compiled in a CSV file, detailing the duration, end time, and instances of contact. A 
README file is included to assist with column interpretation. GPS data for 10 individuals are linked with the 
contact data. Note that some individuals in the contact data did not provide GPS trajectories.

•	 Each file is identified by a number, which corresponds to the camera and recording location (see Fig. S1 in the 
Supplementary Material), and a letter, which indicates the sequence. The videos from which the trajectories 
were extracted are also available. Trajectories are given in real-world coordinates at a frequency of 10 Hz after 
all geometric corrections and interpolation have been applied, but without any smoothing or filtering. They 
are available in both local coordinates (suffix ‘loc’) and absolute coordinates (EPSG:2154) for global location. 
The time reference is set to Friday 9 December 2022, at 8 pm, with time given in seconds before or after this 
reference.

•	 Many more videos were collected than we could analyze. We welcome contributions from volunteers to assist 
with the tracking efforts. We have made our tracking and camera calibration scripts available to support this.

Descriptive information about the data are available in the Supplementary Material and in [please add the 
reference https://doi.org/10.48550/arXiv.2410.05288].

Technical Validation
Trajectory datasets for the TopView recordings.  All trajectory datasets were visually inspected and 
manually corrected where necessary. In addition, comparing the overlapping time series of density and mean 
speed obtained from the TopView_1B and TopView_2C video recordings, on the one hand, and the TopView_1C 
and TopView_2D videos, on the other hand, further validated the results. The fields of view of these cameras are 
similar (see Fig. 3), and their recordings overlap in time (see Table 3 in the Supplementary Material). We find a 
relatively small root-mean-square differences (from 5 to 10%) between overlapping sequences, both for the mean 
speed and for the density (see Table 1 and Fig. 4). Nonetheless, a systematic bias is observed in opposite direc-
tions for TopView_1B/TopView_2C and TopView_1C/TopView_2D. These biases may be explained by perspective 
effects and partly biased correction of optical and geometric distortions.

Trajectory datasets for the LargeView recordings.  As mentioned above, owing to the lower resolu-
tion of the LargeView recordings, the quality of the extracted data is not quite as good. Occasionally, we may 
have failed to detect shorter individuals or swapped intersecting trajectories. Despite these challenges, two staff 
members (called ‘coders’) independently extracted trajectories from different recordings and then analyzed each 
other’s work. The coders largely agreed on the extracted data, although there were occasional disagreements or 
uncertainties regarding some data points. The common trends observed in the density and velocity fields, as 
shown in Figs. S4-S5 in the Supplementary Material, which correspond to different days of recording, further 
support the robustness of the presented data.

Fig. 3  Point of view for the TopView_1B (left panel) and TopView_2C (right panel) camera videos, which 
simultaneously captured the same scene from different locations and angles.
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To further validate the LargeView trajectory dataset, possible detection or tracking errors were analyzed 
jointly by the two coders in a second stage. Errors were categorized as either major or minor. Major errors 
included omissions of clearly visible pedestrians and the creation of non-existent ones. Minor errors involved 
misidentifying or possibly swapping pedestrians as well as slightly inaccurate clicks on a pedestrian’s head. The 
joint analysis led to the detection of 10 major errors (1.3%) out of  ~740 trajectories and 6 minor errors in 
the LargeView Zoom_O dataset, and 3 major errors (0.4%) out of  ~740 trajectories and 5 minor errors in the 
LargeView Zoom_A dataset, over 10 seconds. (All these errors were corrected in the final dataset.)

In order to assess errors on the local densities, two sub-regions of rectangular shape were defined at distinct 
locations in time and space, each measuring 4 × 6 m2, and the two coders separately counted all people in these 
regions, including flickering appearances who were likely to be people, even if this was not certain, in order to get 
an upper bound. Their respective counts typically differed by less than 10%, and exceeded the number of actually 
tracked pedestrians by 20% to 30% in the LargeView Zoom_O dataset and 9% to 12% in the LargeView Zoom_A 
dataset, depending on the location of the rectangle. This leads to the conclusion that the local densities given by 
our dataset underestimate the actual densities by at most 9% to 30%.

Mapping to real-world coordinates.  To map the pedestrian positions in pixel coordinates to real-world 
coordinates, calibration using people standing at predefined positions was performed; the distances between the 
predefined positions were carefully measured on the ground. In the most distant part of the square, the calibra-
tion error on the real-world coordinates (but not the relative positions) may reach a couple of meters. Then, after 
conversion, we successfully checked the compatibility of the crowd positions with the geometry of the premises 
obtained from Google Earth data and our independent positioning of obstacles.

Surveys.  Six distinct staff members gave out oral surveys about origins, destinations, and group sizes. In addi-
tion to the collected statements, group sizes were also passively observed on the field.

Fig. 4  Superposition of the pedestrian mean speed (left panels) and density (right panels) time series for the 
TopView_1B and TopView_2C video recordings (upper panels) and for the TopView_1C and TopView_2D video 
recordings (lower panels), which capture the same scene from different locations and angles of view, and which 
partly overlap in time.

File RMSD Mean Speed [m/s] RMSD Density [ped/m2]

TopView_1B / TopView_2C 0.02 0.05

TopView_1C / TopView_2D 0.05 0.07

Table 1.  Root mean square differences (RMSD) between the pedestrian mean speed and density time series for 
the TopView_1B and TopView_2C video recordings and the TopView_1C and TopView_2D video recordings, as 
shown in Fig. 4.
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Respect of privacy.  The data that we released on a public repository30 do not contain personal or sensi-
tive information. Besides, the video recordings that we collected comply with the GDPR insofar as the record-
ing conditions (from an elevated zenithal viewpoint, at night, without colors) do not allow the identification of 
passers-by. Finally, the information obtained by means of surveys was aggregated and the results that are pre-
sented do not disclose personal details about any of the respondents.

Code availability
Custom code was developed to generate, process, and analyze the datasets presented in this study. Additionally, 
a Streamlit application enables interactive data exploration and access under specific conditions. The source 
code is available on GitHub35 under the MIT license distribution, and modification with proper attribution. The 
repository includes:

• The scripts and notebooks used for data collection, preprocessing, analysis, and visualization.
• The Streamlit application code, along with instructions for installation and deployment35.
• �A requirements.txt file specifying the versions of the software and libraries used to ensure compatibility. 

Essential software versions include PedPy 1.0.236 as a backend for speed, density and flow calculations.

The repository also includes comprehensive documentation that details the specific variables, parameters, and 
settings used to facilitate the reproduction of the results and analyses presented in this study. This encompasses, 
but is not limited to, parameters for data filtering and the statistical analysis methods applied.
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