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Summary
• We previously created a large-scale spiking network model of all vision-

related areas in one hemisphere of macaque cortex [1, 2].

• Building on top of the framework, we have developed a spiking point-neuron 

network model of the areas in one hemisphere of human cortex [3].

• Model features:

– Integrates data on cortical architecture such as laminar thicknesses and 

neuron densities [4, 5], single-cell properties [6], and local [7] and cortico-

cortical connectivity [8, 9] into a consistent multi-scale framework.

– Full neuron [4] and synapse density [10], totaling 3.5 million neurons and 

43 billion synapses.

– Relates cortical network structure to resting-state activity of neurons, 

populations, layers, and areas.

– Simulated on a supercomputer using NEST.

– Compared against experimental spiking data recorded in medial frontal 

cortex in epileptic patients [11] and whole brain fMRI scans.
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Influence of cortico-cortical scaling

Outlook
We further plan to enhance the model with the most recent updates from the Jülich brain atlas (julich-

brain-atlas.de): detailed neuron density estimates and receptor densities of AMPA, NMDA, and GABA-A 

receptors [20]. These can help to account for the experimentally observed hierarchy of intrinsic 

timescales across cortex [21] and differential timescales of feedforward and feedback processing [22, 

23].

Code and scripts to regenerate the figures on this poster are available on https://github.com/INM-

6/human-multi-area-model. This repository also contains a direct link to run a downscaled version of the 

model on EBRAINS.
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Temporal hierarchy

Ground state (𝜒 = 1.0) Best-fit state (𝜒 = 2.5)

Scaling of cortico-cortical connections and experimental data
• A: shows the dependence of different 

similarity measures on the cortico-

cortical scaling factor 𝜒.

• A sudden increase in the similarity of 

spiking irregularity to experimental 

data is seen at 𝜒 = 2.5.

• B-D: state with 𝜒 = 2.5 matches the 

experimental data better than the 

ground state, as shown by the firing 

rate distribution and the CV and LvR 

[14] statistics.

• E-G: functional connectivities of the 

experimental and best-fit states show 

clear structure, while the ground state 

shows weak correlation and no 

structure.

• Network activity across populations, layers and 

areas is asynchronous and irregular.

• Inhibitory neurons show higher firing rates than 

excitatory neurons, CV ≈ 0.8, average pairwise 

correlation close to zero.

• Network activity in best-fit state varies across areas, 

generally higher firing rates than ground state.

• Inhibitory neurons have higher firing rates than 

excitatory neurons, CV ranges from 0.5 to 1.2, pairwise 

correlation ranges from 0 to 0.7.

• Temporal hierarchy of activity flow across the network. Inflated medial and lateral views of the brain 

(A) depict the temporal order of activation, with colors ranging from white for the most leading area to 

dark blue for the last. The black zone in the medial view is not part of the model.

• The temporal hierarchy matrix in (B) is based on the estimation of delays obtained as peaks in the 

cross-correlation function between source and target area, with ordering based on hierarchical 

clustering. Cells marked with “ ” indicate delays classified as ‘undecided’. On the x- and y-axis the 

brain area labels are colored according to a coarse anatomical division of parietal (gray), occipital 

(light gray), temporal (blue) and frontal (green) lobes.
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• A-B: Inter-area connection density is log-normally distributed, and it decays exponentially with 

distance. Similar results found in mouse [15,16], marmoset [17], and macaque [18] data.

• C-D: Feedback projections have larger outdegrees [19], and target more areas on average than 
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Model parameters

A. Local connectivity compiled in [7] from anatomical [12] and electrophysiological studies [13]. 

It is scaled according to the cytoarchitectonic data.

B. Area-level connectivity determined by DTI data [8].

C. Analysis of human neuron morphologies provides synapse-to-soma mappings based on 

layer- and cell-type-specific dendritic lengths [9].

D. Predictive connectomics based on macaque data which express regularities of laminar 

connectivity patterns as a function of cortical architecture. Neuron densities taken from the 

von Economo and Koskinas atlas [4] and enriched with more detailed data extracted from 

the BigBrain atlas (T. Dickscheid, personal communication).

E. Resulting directionality and target patterns based on predictive connectomics.

F. All data compiled into layer-specific connectivity matrix.

Human mesoscale connectome
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