001     1042976
005     20250804115211.0
024 7 _ |a 10.1029/2024GL113531
|2 doi
024 7 _ |a 0094-8276
|2 ISSN
024 7 _ |a 1944-8007
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02705
|2 datacite_doi
024 7 _ |a WOS:001493681500001
|2 WOS
037 _ _ |a FZJ-2025-02705
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Wu, X.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Mechanisms Linking Stratospheric Gravity Wave Activity to Hurricane Intensification: Insights From Model Simulation of Hurricane Joaquin
260 _ _ |a Hoboken, NJ
|c 2025
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1753092171_25322
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Previous studies based on satellite observations and model simulations have revealed a significant correlation between intense stratospheric gravity wave (GW) activity and hurricane intensification. This research further investigated the underlying mechanism of this correlation by analyzing the properties and propagation characteristics of stratospheric GWs excited by Hurricane Joaquin based on a Weather Research and Forecasting model simulation. By employing the 3-D Stockwell wave analysis method, we found that GWs excited during hurricane intensification display relatively higher intrinsic frequencies, shorter horizontal wavelengths, and longer vertical wavelengths than during weakening. Analysis of these GWs' propagation using the GROGRAT ray-tracing model revealed that they can reach the middle stratosphere rapidly within 20 min. This quick propagation enabled the observation of intense stratospheric GWs before the hurricane reached its peak intensity, offering a potential indicator for hurricane intensification. These findings strengthened the basis for considering stratospheric GW activity as a proxy for hurricane intensification under specific conditions.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hoffmann, L.
|0 P:(DE-Juel1)129125
|b 1
|e Corresponding author
700 1 _ |a Wright, C. J.
|0 0000-0003-2496-953X
|b 2
700 1 _ |a Hindley, N. P.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Alexander, M. J.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Wang, X.
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
700 1 _ |a Chen, B.
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
700 1 _ |a Wang, Y.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Li, M.
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1029/2024GL113531
|g Vol. 52, no. 10, p. e2024GL113531
|0 PERI:(DE-600)2021599-X
|n 10
|p e2024GL113531
|t Geophysical research letters
|v 52
|y 2025
|x 0094-8276
856 4 _ |u https://juser.fz-juelich.de/record/1042976/files/Geophysical%20Research%20Letters%20-%202025%20-%20Wu%20-%20Mechanisms%20Linking%20Stratospheric%20Gravity%20Wave%20Activity%20to%20Hurricane.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1042976
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129125
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-01
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2025-01-01
|w ger
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b GEOPHYS RES LETT : 2022
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-05-13T09:49:22Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-05-13T09:49:22Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-01
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-01
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-01
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-01
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEOPHYS RES LETT : 2022
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-01
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21