001042994 001__ 1042994
001042994 005__ 20250725202232.0
001042994 037__ $$aFZJ-2025-02721
001042994 041__ $$aEnglish
001042994 1001_ $$0P:(DE-Juel1)194153$$aMaksumov, Muzaffar$$b0
001042994 1112_ $$a10th Multifrequency AFM$$cMadrid$$d2025-05-26 - 2025-05-30$$wSpain
001042994 245__ $$aDynamic and static degradation of perovskite oxide catalysts by electrochemical AFM
001042994 260__ $$c2025
001042994 3367_ $$033$$2EndNote$$aConference Paper
001042994 3367_ $$2BibTeX$$aINPROCEEDINGS
001042994 3367_ $$2DRIVER$$aconferenceObject
001042994 3367_ $$2ORCID$$aCONFERENCE_POSTER
001042994 3367_ $$2DataCite$$aOutput Types/Conference Poster
001042994 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1753445231_29437$$xOther
001042994 520__ $$aA fundamental understanding of degradation mechanisms under static and dynamic conditions is essential to develop catalysts for the oxygen evolution reaction (OER), the bottleneck in efficient electrochemical water splitting. Perovskite oxides are novel class of OER electrocatalysts [1-2], however, the differences in their degradation and stability in alkaline electrolyte are not yet fully understood. To address this, epitaxially grown La0.6Sr0.4CoO3 (LSCO), La0.6Sr0.4FeO3 (LSFO) and La0.6Sr0.4MnO3 (LSMO) were compared by employing electrochemical atomic force microscopy (AFM) during cyclic voltammetry (CV) and chronoamperometry (CA).Electrochemical AFM results, mapping the topography and friction force of materials during the first CV showed distinctly different and irreversible degradation paths for perovskites. Continuous topography and friction force measurements over prolonged cycling, as well as post-catalysis analyses, further supported the observed dynamic degradation mechanisms, specifically bulk degradation in LSCO and LSMO, and surface passivation in LSFO. Consequently, the Co-based perovskite exhibited reduced stability and activity loss, whereas the Fe-based perovskite demonstrated improved stability. A comparison with steady-state OER conditions showed that electrochemical AFM during CA detected a short delay of morphology and friction force changes relative to the start of electrochemistry. The results elucidate how electrochemical AFM can differentiate degradation mechanisms under dynamic and static conditions in alkaline environments as well as between transition metals in perovskite oxides. Thereby, the conclusions contribute significantly to the understanding of perovskite degradation at the solid-liquid interface. References:[1] Weber, M., Gunkel, F. et al. J. Am. Chem. Soc. 2022, 144, 17966-17979 [2] Akbashew, A. et al., Energy Environ. Sci., 2023, 16, 513-522
001042994 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001042994 536__ $$0G:(GEPRIS)493705276$$aDFG project G:(GEPRIS)493705276 - Kontrolle des Degradationsverhaltens von perowskitischen OER-Katalysatoren unter dynamischen Operationsbedingungen durch operando-Charakterisierung und systematischer Variation der d-Orbital-Bandstruktur (493705276)$$c493705276$$x1
001042994 7001_ $$0P:(DE-Juel1)188202$$aKaus, Anton$$b1$$eCollaboration author
001042994 7001_ $$0P:(DE-HGF)0$$aTeng, Zhenjie$$b2$$eCollaboration author
001042994 7001_ $$0P:(DE-HGF)0$$aKleiner, Karin$$b3$$eCollaboration author
001042994 7001_ $$0P:(DE-Juel1)130677$$aGunkel, Felix$$b4$$eCollaboration author
001042994 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b5$$eCollaboration author$$ufzj
001042994 7001_ $$0P:(DE-Juel1)167581$$aHausen, Florian$$b6$$eCorresponding author$$ufzj
001042994 8564_ $$uhttps://wp.icmm.csic.es/multifrequency-afm/
001042994 8564_ $$uhttps://juser.fz-juelich.de/record/1042994/files/20250313_Veroeffentlichungengenehmigung_solid_liquid_Interface_Madrid-MaksumovM-signed-RE.pdf
001042994 909CO $$ooai:juser.fz-juelich.de:1042994$$pVDB
001042994 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194153$$aForschungszentrum Jülich$$b0$$kFZJ
001042994 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188202$$aForschungszentrum Jülich$$b1$$kFZJ
001042994 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a MEET$$b2
001042994 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a MEET$$b3
001042994 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich$$b4$$kFZJ
001042994 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b5$$kFZJ
001042994 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b5$$kRWTH
001042994 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167581$$aForschungszentrum Jülich$$b6$$kFZJ
001042994 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)167581$$aRWTH Aachen$$b6$$kRWTH
001042994 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001042994 9141_ $$y2025
001042994 920__ $$lyes
001042994 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001042994 980__ $$aposter
001042994 980__ $$aVDB
001042994 980__ $$aI:(DE-Juel1)IET-1-20110218
001042994 980__ $$aUNRESTRICTED