001     1042994
005     20250725202232.0
037 _ _ |a FZJ-2025-02721
041 _ _ |a English
100 1 _ |a Maksumov, Muzaffar
|0 P:(DE-Juel1)194153
|b 0
111 2 _ |a 10th Multifrequency AFM
|c Madrid
|d 2025-05-26 - 2025-05-30
|w Spain
245 _ _ |a Dynamic and static degradation of perovskite oxide catalysts by electrochemical AFM
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1753445231_29437
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a A fundamental understanding of degradation mechanisms under static and dynamic conditions is essential to develop catalysts for the oxygen evolution reaction (OER), the bottleneck in efficient electrochemical water splitting. Perovskite oxides are novel class of OER electrocatalysts [1-2], however, the differences in their degradation and stability in alkaline electrolyte are not yet fully understood. To address this, epitaxially grown La0.6Sr0.4CoO3 (LSCO), La0.6Sr0.4FeO3 (LSFO) and La0.6Sr0.4MnO3 (LSMO) were compared by employing electrochemical atomic force microscopy (AFM) during cyclic voltammetry (CV) and chronoamperometry (CA).Electrochemical AFM results, mapping the topography and friction force of materials during the first CV showed distinctly different and irreversible degradation paths for perovskites. Continuous topography and friction force measurements over prolonged cycling, as well as post-catalysis analyses, further supported the observed dynamic degradation mechanisms, specifically bulk degradation in LSCO and LSMO, and surface passivation in LSFO. Consequently, the Co-based perovskite exhibited reduced stability and activity loss, whereas the Fe-based perovskite demonstrated improved stability. A comparison with steady-state OER conditions showed that electrochemical AFM during CA detected a short delay of morphology and friction force changes relative to the start of electrochemistry. The results elucidate how electrochemical AFM can differentiate degradation mechanisms under dynamic and static conditions in alkaline environments as well as between transition metals in perovskite oxides. Thereby, the conclusions contribute significantly to the understanding of perovskite degradation at the solid-liquid interface. References:[1] Weber, M., Gunkel, F. et al. J. Am. Chem. Soc. 2022, 144, 17966-17979 [2] Akbashew, A. et al., Energy Environ. Sci., 2023, 16, 513-522
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)493705276 - Kontrolle des Degradationsverhaltens von perowskitischen OER-Katalysatoren unter dynamischen Operationsbedingungen durch operando-Charakterisierung und systematischer Variation der d-Orbital-Bandstruktur (493705276)
|0 G:(GEPRIS)493705276
|c 493705276
|x 1
700 1 _ |a Kaus, Anton
|0 P:(DE-Juel1)188202
|b 1
|e Collaboration author
700 1 _ |a Teng, Zhenjie
|0 P:(DE-HGF)0
|b 2
|e Collaboration author
700 1 _ |a Kleiner, Karin
|0 P:(DE-HGF)0
|b 3
|e Collaboration author
700 1 _ |a Gunkel, Felix
|0 P:(DE-Juel1)130677
|b 4
|e Collaboration author
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 5
|e Collaboration author
|u fzj
700 1 _ |a Hausen, Florian
|0 P:(DE-Juel1)167581
|b 6
|e Corresponding author
|u fzj
856 4 _ |u https://wp.icmm.csic.es/multifrequency-afm/
856 4 _ |u https://juser.fz-juelich.de/record/1042994/files/20250313_Veroeffentlichungengenehmigung_solid_liquid_Interface_Madrid-MaksumovM-signed-RE.pdf
909 C O |o oai:juser.fz-juelich.de:1042994
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)194153
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)188202
910 1 _ |a MEET
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a MEET
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130677
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)156123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)167581
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)167581
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21