001     1043040
005     20250627204348.0
024 7 _ |a arXiv:2505.21185
|2 arXiv
024 7 _ |a 10.48550/arXiv.2505.21185
|2 doi
037 _ _ |a FZJ-2025-02733
100 1 _ |a Senk, Johanna
|0 P:(DE-Juel1)162130
|b 0
|e Corresponding author
245 _ _ |a Constructive community race: full-density spiking neural network model drives neuromorphic computing
260 _ _ |c 2025
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1751007085_3940
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a The local circuitry of the mammalian brain is a focus of the search for generic computational principles because it is largely conserved across species and modalities. In 2014 a model was proposed representing all neurons and synapses of the stereotypical cortical microcircuit below $1\,\text{mm}^2$ of brain surface. The model reproduces fundamental features of brain activity but its impact remained limited because of its computational demands. For theory and simulation, however, the model was a breakthrough because it removes uncertainties of downscaling, and larger models are less densely connected. This sparked a race in the neuromorphic computing community and the model became a de facto standard benchmark. Within a few years real-time performance was reached and surpassed at significantly reduced energy consumption. We review how the computational challenge was tackled by different simulation technologies and derive guidelines for the next generation of benchmarks and other domains of science.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
536 _ _ |a 5235 - Digitization of Neuroscience and User-Community Building (POF4-523)
|0 G:(DE-HGF)POF4-5235
|c POF4-523
|f POF IV
|x 1
536 _ _ |a EBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)
|0 G:(EU-Grant)101147319
|c 101147319
|f HORIZON-INFRA-2022-SERV-B-01
|x 2
536 _ _ |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|0 G:(DE-Juel1)JL SMHB-2021-2027
|c JL SMHB-2021-2027
|x 3
536 _ _ |a HiRSE_PS - Helmholtz Platform for Research Software Engineering - Preparatory Study (HiRSE_PS-20220812)
|0 G:(DE-Juel-1)HiRSE_PS-20220812
|c HiRSE_PS-20220812
|x 4
536 _ _ |a ACA - Advanced Computing Architectures (SO-092)
|0 G:(DE-HGF)SO-092
|c SO-092
|x 5
588 _ _ |a Dataset connected to arXivarXiv
650 _ 7 |a Performance (cs.PF)
|2 Other
650 _ 7 |a Distributed, Parallel, and Cluster Computing (cs.DC)
|2 Other
650 _ 7 |a FOS: Computer and information sciences
|2 Other
700 1 _ |a Kurth, Anno C.
|b 1
700 1 _ |a Furber, Steve
|b 2
700 1 _ |a Gemmeke, Tobias
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Golosio, Bruno
|b 4
700 1 _ |a Heittmann, Arne
|b 5
700 1 _ |a Knight, James C.
|b 6
700 1 _ |a Müller, Eric
|b 7
700 1 _ |a Noll, Tobias
|b 8
700 1 _ |a Nowotny, Thomas
|b 9
700 1 _ |a Coppola, Gorka Peraza
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Peres, Luca
|b 11
700 1 _ |a Rhodes, Oliver
|b 12
700 1 _ |a Rowley, Andrew
|b 13
700 1 _ |a Schemmel, Johannes
|b 14
700 1 _ |a Stadtmann, Tim
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Tetzlaff, Tom
|0 P:(DE-Juel1)145211
|b 16
|u fzj
700 1 _ |a Tiddia, Gianmarco
|b 17
700 1 _ |a van Albada, Sacha J.
|0 P:(DE-Juel1)138512
|b 18
|u fzj
700 1 _ |a Villamar, José
|0 P:(DE-Juel1)191583
|b 19
|u fzj
700 1 _ |a Diesmann, Markus
|0 P:(DE-Juel1)144174
|b 20
|u fzj
773 _ _ |a 10.48550/arXiv.2505.21185
|y 2025
|t arXiv
909 C O |o oai:juser.fz-juelich.de:1043040
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)162130
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 15
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)145211
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 18
|6 P:(DE-Juel1)138512
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 19
|6 P:(DE-Juel1)191583
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 20
|6 P:(DE-Juel1)144174
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5235
|x 1
914 1 _ |y 2025
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 1
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21