001     1043071
005     20250804115221.0
024 7 _ |a 10.1063/5.0244435
|2 doi
024 7 _ |a 1527-2419
|2 ISSN
024 7 _ |a 1070-664X
|2 ISSN
024 7 _ |a 1089-7674
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02758
|2 datacite_doi
024 7 _ |a WOS:001434107100005
|2 WOS
037 _ _ |a FZJ-2025-02758
082 _ _ |a 530
100 1 _ |a Brönner, M.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Particle swarm optimization of 1D isochoric compression designs for fast ignition
260 _ _ |a [Erscheinungsort nicht ermittelbar]
|c 2025
|b American Institute of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1753091678_26185
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A method to study isochoric compression to mass densities relevant for direct-drive fast ignition schemes is presented. The method is based on the combination of one-dimensional radiation-hydrodynamic simulations using the code MULTI-IFE [Ramis and Meyer-ter Vehn, Comput. Phys. Commun. 203, 226 (2016)] and a particle swarm optimization technique [Kennedy and Eberhart, in Proceedings of ICNN'95 - International Conference on Neural Networks (IEEE, Perth, WA, Australia, 1995), Vol. 4, pp. 1942–1948]. The compression of the fuel is optimized through variations of the incident temporal laser power profiles. Uniform mass density profiles are achieved by using appropriate objective functions that allow comparisons between the fuel assemblies obtained from simulations. Several objective functions were created and evaluated on their merits to yield isochoric compression assembly. Ultimately, such a profile is presented in conjunction with the technique to achieve it. A useful objective function is calculating the deviation of the simulated mass density profile from the ideal uniform mass density profile over a volume of the compressed target up to the radial position of the outgoing shock wave.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Atzeni, S.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Callahan, D.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Gaffney, J.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gibbon, Paul
|0 P:(DE-Juel1)132115
|b 4
|u fzj
700 1 _ |a Jarrott, L. C.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Mateo, A.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Savino, L.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Schott, N.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Theobald, W.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Roth, M.
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.1063/5.0244435
|g Vol. 32, no. 2, p. 022710
|0 PERI:(DE-600)1472746-8
|n 2
|p 022710
|t Physics of plasmas
|v 32
|y 2025
|x 1527-2419
856 4 _ |u https://juser.fz-juelich.de/record/1043071/files/broenner_pop2025.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1043071
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132115
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS PLASMAS : 2022
|d 2024-12-11
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-11
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-11
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21