Home > Publications database > Particle swarm optimization of 1D isochoric compression designs for fast ignition > print |
001 | 1043071 | ||
005 | 20250804115221.0 | ||
024 | 7 | _ | |a 10.1063/5.0244435 |2 doi |
024 | 7 | _ | |a 1527-2419 |2 ISSN |
024 | 7 | _ | |a 1070-664X |2 ISSN |
024 | 7 | _ | |a 1089-7674 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2025-02758 |2 datacite_doi |
024 | 7 | _ | |a WOS:001434107100005 |2 WOS |
037 | _ | _ | |a FZJ-2025-02758 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Brönner, M. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Particle swarm optimization of 1D isochoric compression designs for fast ignition |
260 | _ | _ | |a [Erscheinungsort nicht ermittelbar] |c 2025 |b American Institute of Physics |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1753091678_26185 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a A method to study isochoric compression to mass densities relevant for direct-drive fast ignition schemes is presented. The method is based on the combination of one-dimensional radiation-hydrodynamic simulations using the code MULTI-IFE [Ramis and Meyer-ter Vehn, Comput. Phys. Commun. 203, 226 (2016)] and a particle swarm optimization technique [Kennedy and Eberhart, in Proceedings of ICNN'95 - International Conference on Neural Networks (IEEE, Perth, WA, Australia, 1995), Vol. 4, pp. 1942–1948]. The compression of the fuel is optimized through variations of the incident temporal laser power profiles. Uniform mass density profiles are achieved by using appropriate objective functions that allow comparisons between the fuel assemblies obtained from simulations. Several objective functions were created and evaluated on their merits to yield isochoric compression assembly. Ultimately, such a profile is presented in conjunction with the technique to achieve it. A useful objective function is calculating the deviation of the simulated mass density profile from the ideal uniform mass density profile over a volume of the compressed target up to the radial position of the outgoing shock wave. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Atzeni, S. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Callahan, D. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Gaffney, J. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Gibbon, Paul |0 P:(DE-Juel1)132115 |b 4 |u fzj |
700 | 1 | _ | |a Jarrott, L. C. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Mateo, A. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Savino, L. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Schott, N. |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Theobald, W. |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Roth, M. |0 P:(DE-HGF)0 |b 10 |
773 | _ | _ | |a 10.1063/5.0244435 |g Vol. 32, no. 2, p. 022710 |0 PERI:(DE-600)1472746-8 |n 2 |p 022710 |t Physics of plasmas |v 32 |y 2025 |x 1527-2419 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1043071/files/broenner_pop2025.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1043071 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)132115 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-11 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS PLASMAS : 2022 |d 2024-12-11 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0 |0 LIC:(DE-HGF)CCBYNC4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-11 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-11 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-11 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2024-12-11 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-11 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|