001 | 1043079 | ||
005 | 20250916202447.0 | ||
024 | 7 | _ | |a 10.1186/s40537-025-01193-8 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2025-02765 |2 datacite_doi |
024 | 7 | _ | |a WOS:001498691400001 |2 WOS |
037 | _ | _ | |a FZJ-2025-02765 |
082 | _ | _ | |a 004 |
100 | 1 | _ | |a Sasse, L. |0 P:(DE-Juel1)190306 |b 0 |
245 | _ | _ | |a Overview of leakage scenarios in supervised machine learning |
260 | _ | _ | |a Heidelberg [u.a.] |c 2025 |b SpringerOpen |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1750757943_4685 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Machine learning (ML) provides powerful tools for predictive modeling. ML’s popularity stems from the promise of sample-level prediction with applications across a variety of fields from physics and marketing to healthcare. However, if not properly implemented and evaluated, ML pipelines may contain leakage typically resulting in overoptimistic performance estimates and failure to generalize to new data. This can have severe negative financial and societal implications. Our aim is to expand understanding associated with causes leading to leakage when designing, implementing, and evaluating ML pipelines. Illustrated by concrete examples, we provide a comprehensive overview and discussion of various types of leakage that may arise in ML pipelines. |
536 | _ | _ | |a 5254 - Neuroscientific Data Analytics and AI (POF4-525) |0 G:(DE-HGF)POF4-5254 |c POF4-525 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Nicolaisen, Eliana |0 P:(DE-Juel1)180537 |b 1 |u fzj |
700 | 1 | _ | |a Dukart, Jürgen |0 P:(DE-Juel1)177727 |b 2 |
700 | 1 | _ | |a Eickhoff, S. B. |0 P:(DE-Juel1)131678 |b 3 |
700 | 1 | _ | |a Götz, M. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Hamdan, S. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Komeyer, V. |0 P:(DE-Juel1)187351 |b 6 |
700 | 1 | _ | |a Kulkarni, A. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Lahnakoski, J. M. |0 P:(DE-Juel1)179423 |b 8 |
700 | 1 | _ | |a Love, B. C. |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Raimondo, F. |0 P:(DE-Juel1)185083 |b 10 |
700 | 1 | _ | |a Patil, Kaustubh R. |0 P:(DE-Juel1)172843 |b 11 |e Corresponding author |
773 | _ | _ | |a 10.1186/s40537-025-01193-8 |g Vol. 12, no. 1, p. 135 |0 PERI:(DE-600)2780218-8 |n 1 |p 135 |t Journal of Big Data |v 12 |y 2025 |x 2196-1115 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1043079/files/Main%20paper.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1043079/files/s40537-025-01193-8.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:1043079 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)190306 |
910 | 1 | _ | |a HHU Düsseldorf, MPI Leipzig |0 I:(DE-HGF)0 |b 0 |6 P:(DE-Juel1)190306 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)180537 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)177727 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)131678 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 3 |6 P:(DE-Juel1)131678 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)187351 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)179423 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 8 |6 P:(DE-Juel1)179423 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)185083 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)172843 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5254 |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2025-01-06 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J BIG DATA-GER : 2022 |d 2025-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-04-10T15:40:52Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-04-10T15:40:52Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-06 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2025-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-06 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-04-10T15:40:52Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2025-01-06 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J BIG DATA-GER : 2022 |d 2025-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-06 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
915 | p | c | |a DEAL: Springer Nature 2020 |2 APC |0 PC:(DE-HGF)0113 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|