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Abstract: 28 

Machine learning (ML) provides powerful tools for predictive modeling. ML's popularity stems 29 

from the promise of sample-level prediction with applications across a variety of fields from 30 

physics and marketing to healthcare. However, if not properly implemented and evaluated, 31 

ML pipelines may contain leakage typically resulting in overoptimistic performance estimates 32 

and failure to generalize to new data. This can have severe negative financial and societal 33 

implications. Our aim is to expand understanding associated with causes leading to leakage 34 

when designing, implementing, and evaluating ML pipelines. Illustrated by concrete examples, 35 

we provide a comprehensive overview and discussion of various types of leakage that may 36 

arise in ML pipelines. 37 
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1. Introduction 56 

Machine learning (ML) has become a popular approach to make predictions, aid decision 57 

making, and gain insights into complex data in numerous scientific fields. Various 58 

methodologies like supervised, unsupervised, generative, and reinforcement learning define 59 

the ML landscape, each with its own unique strengths and applications. In supervised learning, 60 

the machine learns a function that links input to output by utilizing labeled training data where 61 

the correct output is known, derived from example input-output pairs (1). Unsupervised 62 

learning deals with unlabeled data. The machine must figure out the correct answer without 63 

being told about a ground truth and must therefore discover patterns and structures in the 64 

input data (e.g. using clustering) (1). Generative learning is a machine learning approach 65 

centered on generating novel data samples. This technique is commonly applied in tasks like 66 

producing images, texts, and various other data types (2). Reinforcement learning involves an 67 

agent interacting with an environment, taking actions, and receiving rewards or penalties. 68 

Through repeated interactions, the model autonomously learns the optimal strategy to 69 

maximize rewards, relying less on external guidance for output determination (3). 70 

However, despite the due use and applicability of those methods, supervised learning remains 71 

prominent for predictive modeling with applications in various domains including health-care, 72 

physics, and climate science (4–12). This is not only because supervised learning is well 73 

suited to learn from tabular data ubiquitously found in scientific domains, but also because 74 

easy-to-use software libraries with hundreds of learning algorithms and data wrangling tools 75 

have lowered the entry barrier for supervised ML-based analyses (e.g. scikit-learn (13) and 76 

tidymodels (14)). These collaborative advancements in accessible tools, expanding datasets, 77 

and evolving methodologies demonstrate the considerable promise of supervised ML 78 

applications to drive transformative innovation across diverse problem domains. This paper, 79 

therefore, is concerned with supervised ML.  80 

https://sciwheel.com/work/citation?ids=12366648&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12366648&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16096758&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16096768&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=997289,8557373,13870408,12811834,13631359,801668,9696221,13450020,1518836&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=14471695&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15292131&pre=&suf=&sa=0
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Despite the availability of easy-to-use ML software, most applications still require assembling 81 

a custom ML-based data analysis pipeline satisfying unique considerations in terms of data 82 

preprocessing, feature engineering, (hyper)parameter tuning, and model selection. While end-83 

to-end tools exist, opting for these often sacrifices control for convenience (e.g. (15)). 84 

Therefore, implementing a correct ML pipeline and drawing valid conclusions from the ensuing 85 

results remains challenging, and prone to errors. This challenge extends beyond technical 86 

aspects, impacting the interpretability and trustworthiness of the outcomes. Handcrafted 87 

pipelines, although demanding, afford practitioners the precision, control and insight required 88 

for complex data analysis scenarios. Additionally, the evolving nature of data and algorithmic 89 

advancements continually reshapes best practices, necessitating a balance between 90 

automation and custom solutions to ensure accuracy and relevance in analyses. Striking this 91 

balance remains pivotal for robust, reliable, and impactful ML applications. 92 

ML models are powerful, and they are adept at exploiting any available information. Thus, it 93 

falls on the practitioner to ensure that the modeling approach is reliable and valid. As we will 94 

discuss, even simple ML pipelines, if not properly implemented and interpreted, can lead to 95 

drastically wrong interpretations and severely problematic conclusions. These issues extend 96 

far beyond academic debates; they hold immense societal relevance. Widespread adoption 97 

of flawed practices in machine learning can exact substantial societal and economic costs, 98 

underscoring the urgency to rectify and mitigate these risks (16). Similar to the replication 99 

crisis that recently engulfed the statistics communities and much of the applied sciences, 100 

owing to misunderstanding and –intentional or unintentional– misuse of p-values from null 101 

hypothesis significance testing (17,18), misunderstandings and malpractice in ML can lead to 102 

its own replication crisis (16,19) with severe negative financial and societal ramifications (20). 103 

It must be noted that reproducibility of a ML pipeline is not sufficient to resolve this, as a 104 

reproducible ML pipeline could be still incorrect in inference. Addressing such ML pitfalls is 105 

essential to improve the quality and trustworthiness of ML-based data analyses, and 106 

consequently will lead to better applications and foster societal acceptance. While previous 107 

https://sciwheel.com/work/citation?ids=12979976&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15496695&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1281556,5882&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=13540350,15496695&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=14643579&pre=&suf=&sa=0
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works have addressed several pitfalls in ML-based analysis (7,21–27), only a few have 108 

covered the wide range of threats posed by leakage (16,28–30) (also see John Langford: 109 

https://hunch.net/?p=22). 110 

Data leakage is one of the most common and most critical types of error when applying ML. 111 

Data leakage refers to the leakage of “illegitimate” information into the training process of a 112 

ML model (16,28). For example, leakage occurs when the model gets to learn from information 113 

about the supposed unseen test set. Therefore, a fair evaluation of the generalization error is 114 

not possible, as the test set does not really represent new, unseen data anymore. This likely 115 

means that any estimate of the error will be overly optimistic (16). The threat of data leakage 116 

can be exemplified by the case of a recent study that claimed high accuracy (91%) in predicting 117 

suicidality in youth using neuroimaging data (31). Such a model would be of high clinical 118 

relevance and could provide valuable insights about underlying brain phenotypes. However, 119 

this paper was retracted because it relied on leakage-prone feature selection leading to an 120 

overfitted model and erroneous interpretations (20,32). Hence, the threat posed by leakage in 121 

ML pipelines severely affects realistic estimation of generalization performance, insights 122 

gained, and deployment.  123 

Data leakage is a widespread pitfall on ML pipelines across numerous scientific fields (16). 124 

This highlights the importance of raising awareness among a very broad community of 125 

researchers encompassing different fields. Recent studies have contributed to raising 126 

awareness on the threats of data leakage (16,28–30). However, data leakage is a complex 127 

issue that can happen in numerous ways, and often in subtle ways which are difficult to 128 

pinpoint. Moreover, even though some types of leakage are recognized and well-discussed in 129 

the literature, such as illegitimate use of the targets of the test data (28), many scenarios of 130 

data leakage remain unexplored. All these subtleties and under exploration of data leakage 131 

make its detection a complicated and tricky task. The limited awareness of its threats and its 132 

widespread presence in many fields, underscores the urgency to raise awareness regarding 133 

a wide array of data leakage types in a comprehensible and accessible manner. To this end, 134 

https://sciwheel.com/work/citation?ids=7251068,12081783,12811834,9382155,802674,13886230,12458037,14910349&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=4218124,16419192,15496695,16751453&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://hunch.net/?p=22
https://sciwheel.com/work/citation?ids=4218124,15496695&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=15496695&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4575204&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10919123,14643579&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=15496695&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4218124,16419192,15496695,16751453&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=4218124&pre=&suf=&sa=0
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we expand previous works on data leakage by providing a comprehensive overview and easily 135 

accessible visual representation of various leakage scenarios, categorized in a user-centric 136 

and intuitive fashion. We hope that this overarching survey on data leakage scenarios 137 

encourages more careful design and evaluation of ML pipelines and inspires further 138 

investigation in this area. We aim to equip readers with the necessary tools to effectively 139 

recognize leakage in their own (and others’) work. This understanding will aid in avoiding these 140 

pitfalls, fostering more robust and reliable ML-based analyses.  141 

We would like to note that this work does not aim to cover the entire field of machine learning, 142 

as it is too vast. For instance, we only touch upon time series analysis and do not address 143 

unsupervised learning, which come with their own unique set of limitations and considerations. 144 

We focus on supervised learning, however, most of the concepts and guidelines presented 145 

here are generally applicable. The authors have noted the misconceptions and malpractices 146 

discussed here in open-source code available on the Internet, as well as in code written by 147 

themselves, students, or collaborators. These observations span various skill levels, ranging 148 

from beginners to domain experts and data analysis experts. Therefore, the insights shared 149 

here can provide guidance for everyone from novice to advanced ML practitioners, 150 

researchers, reviewers, and editors. 151 

We start with a brief introduction of ML basics and the cross validation (CV) procedure (section 152 

2) that will serve as a guide to understand the concepts used in the rest of the article. This 153 

section is divided in three parts: 2.a) ML concepts, 2.b) Cross-validation basics, and 2.c) Steps 154 

while designing a ML pipeline. Next, we present various examples of leakage in ML pipelines 155 

together with empirical examples and illustrations (section 3). Finally, we discuss possible 156 

mitigations strategies (section 4) followed by general conclusions and key takeaways (section 157 

5). 158 

 159 

 160 
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2. Supervised Machine Learning: Pipelines and Evaluation  161 

2a. Supervised Machine Learning concepts 162 

In a supervised machine learning task the user has access to labeled data consisting of 𝑛   163 

feature-target pairs 𝑆	 = 	 {(𝑥!, 𝑦!), (𝑥", 𝑦"), (𝑥#, 𝑦#), …	(𝑥$, 𝑦$)}	where 𝑥% are the features and 	𝑦% 164 

are associated targets. The data samples are assumed to be independently and identically 165 

distributed (I.I.D.) and sampled from a fixed probability distribution. The task of a ML algorithm 166 

is to learn a function or a model that maps features to a target; 𝑓(𝑥%) = 	𝑦%. A model with 167 

discrete output is called a classifier, while one with continuous output is a regressor, two 168 

commonly encountered scenarios. The goal is to learn a model that generalizes on unseen 169 

data by providing accurate predictions. A model is composed of parameters (e.g., weights in 170 

a multiple linear regression) and often includes hyperparameters (e.g., regularization 171 

parameter 𝜆 of ridge regression). Both contribute significantly to a model's ability to generalize. 172 

While the parameters are learned from the data using an optimization procedure, typically 173 

involving empirical risk minimization, the hyperparameters need to be either set by the user or 174 

“tuned” by searching for values that yield accurate predictions on hold-out data. 175 

2.b Cross validation basics: model assessment and model selection 176 

The goal of ML is to create models that accurately predict outcomes on unseen data, which 177 

requires learning generalizable information. However, because real-world test data (e.g., 178 

future patients or scenarios not yet encountered by a self-driving car) are typically not 179 

available, ML practitioners often hold out a portion of the available data as a proxy for test 180 

data to evaluate a model's generalization performance. Assuming that the underlying 181 

probability distribution of the data does not change, such an estimate helps with model 182 

assessment as an indicator of what to expect on new data. 183 

Cross validation (CV) is frequently employed for model assessment (Fig. 1) as it makes 184 

efficient use of available data (33–36). In a 𝑘-fold CV scheme, the data is divided into 𝑘 non-185 

https://sciwheel.com/work/citation?ids=14436933,340635,5357279,16766156&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
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overlapping equally sized sets or folds. In each iteration of the CV procedure, one of the folds 186 

is used as the test data, while the rest are used for training. Iterating through all folds 187 

completes one CV run (also called a repeat). The average performance across all folds is 188 

computed as an estimate of generalization performance. To minimize biases that could arise 189 

due to data splitting, it is a standard practice to repeat the CV process multiple times with 190 

different splits (e.g. 5 times repeated 5-fold CV) (37). 191 

 192 

 193 

Figure 1: A schematic representation of the cross validation (CV) scheme: Here, we 194 

illustrate a single repeat of a 𝑘-fold CV with three folds (𝑘 = 3) with the third fold being used 195 

as the test data. 196 

 197 

CV is also employed for model selection to select a model from a set of competing options 198 

One example of these competing options are different models arising from hyperparameter 199 

tuning (38) such as the cost of an SVM (support vector machine) (39). Another example are 200 

different models arising from pipelines employing different preprocessing and/or learning 201 

algorithms. The model with highest generalization performance is typically selected. CV 202 

https://sciwheel.com/work/citation?ids=2867736&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1198412&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9418856&pre=&suf=&sa=0
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provides a general and practical method for model selection even in the case of complex 203 

model parametrization. This is often found in ML algorithms where model selection statistics 204 

like Akaike’s information criterion might not be feasible. For a more comprehensive coverage 205 

of the topic, we refer the reader to excellent sources (e.g. (38,40,41)).  206 

Both model assessment and model selection are often a part of a ML-based data analysis 207 

pipeline. However, as will be discussed in more detail below (see Section 3.a), problems arise 208 

if the two roles are confused (37). Therefore, to cleanly and explicitly differentiate between 209 

these two roles of CV (model selection and estimating generalization error), it is necessary to 210 

use nested cross-validation (42), also known as double cross-validation. Within a nested CV 211 

scheme, the inner CV encompasses all data-dependent decisions and performs model 212 

selection (e.g., determining optimal hyperparameters or feature selection) while the outer CV 213 

is responsible for model assessment, (i.e. evaluating the model after a finalized model 214 

selection on previously completely unseen new data). The key point here is that any decision 215 

made on data (i.e. the decision to select a specific model) requires yet again more data, that 216 

was not involved in making the decision, to correctly estimate the generalization error. 217 

2.c Designing a ML pipeline 218 

The process of designing a ML-based data analysis pipeline can be broadly categorized into 219 

the following steps: S-I) Task definition, S-II) Data collection and preparation, S-III) Data 220 

preprocessing, S-IV) ML algorithm definition, and S-V) Definition of evaluation scheme and 221 

metrics. If the goal of the analysis extends beyond assessing generalization performance, 222 

additional steps might be employed, S-VI) Interpretation and deployment. While each of these 223 

steps requires multiple decisions that must be made in a data-driven fashion, it is possible and 224 

indeed necessary to define how each decision should be made a priori. Mistakes in the data-225 

driven decision making process can lead to data leakage. For more elaborate analysis 226 

scenarios, we refer the reader to the CRoss-Industry Standard Process for Data Mining 227 

(43,44). 228 

https://sciwheel.com/work/citation?ids=1198412,818109,12682559&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=2867736&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3545127&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13630472,14439655&pre=&pre=&suf=&suf=&sa=0,0
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S-I) Task definition: Definition of the target variable 𝑦 (e.g., disease status or behavioral 229 

scores) and the features to be used (i.e., 𝑥, e.g., pixel values in images or functional 230 

connectivity derived from neuroimaging data). Consideration of any confounds that can 231 

obscure the intended feature-target relationship must be taken into account (e.g., age or sex 232 

are often considered as confounds in biological and clinical applications). 233 

S-II) Data collection and data preparation strategies: Here decisions need to be made both 234 

before and after data collection. Before data collection, decisions to deal with known biases 235 

should be made (e.g. equal sampling of males and females, or of case and control 236 

observations; see (45,46) for a detailed treatment of this topic). After collection the data might 237 

need preparation. This may involve subsampling (such as selection of only females for sex-238 

specific analysis), feature extraction like connectivity from brain imaging data, and feature 239 

preparation like normalization of images. Importantly, we define data preparation as 240 

processing exclusively applied to a single data point or sample independently of others. Open 241 

and already prepared data are often available and are used directly by many practitioners. 242 

S-III) Data preprocessing strategy: Optional data preprocessing steps involving 243 

transformations applied across multiple samples are defined. These steps are typically applied 244 

to the features, and may include feature normalization, feature selection, dimensionality 245 

reduction, and treatment of missing values. Note that domain-specific data preparation and 246 

(pre)processing is often employed and the reader is requested to refer to appropriate literature 247 

for details. 248 

S-IV) ML algorithm definition: One or more ML algorithms suitable for the task at hand must 249 

be selected, such as classification for predicting disease status, or regression for predicting 250 

continuous behavioral scores. That is, practitioners should a priori define a set of candidate 251 

models to involve in model selection. If the ML algorithm includes hyperparameters, the 252 

practitioner must either set the hyperparameter values or define a search space and search 253 

strategy for tuning them using data (in the model selection process). 254 

https://sciwheel.com/work/citation?ids=13631839,13480919&pre=&pre=&suf=&suf=&sa=0,0
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S-V) Definition of evaluation scheme and metrics: An evaluation scheme must be chosen for 255 

model assessment, such as train-test split, 𝑘-fold CV or use of data to be collected in the 256 

future. If the pipeline requires hyperparameter tuning, the chosen scheme should take this into 257 

account, for instance by using nested CV. Evaluation metrics appropriate for the task must be 258 

selected, such as classification accuracy and area under the receiver operating characteristic 259 

curve (AUROC) for classification or mean absolute error (MAE) and coefficient of 260 

determination (𝑟2) for regression. 261 

S-VI) Interpretation and deployment: The selected model can be used to gain insights into the 262 

structure of the data. Implicitly interpretable models provide parameters that can be used, e.g., 263 

weights of a linear SVM, or additional processing during or post model construction might be 264 

needed, e.g., feature importance scores. In real-world application scenarios, the selected 265 

pipeline is deployed for making predictions on new samples. In this case, the practitioner must 266 

define how the new samples will be acquired and processed before making predictions. While 267 

deployment is not considered in typical research settings, as we shall see, it serves as a useful 268 

concept for avoiding some potential pitfalls. 269 

3. Leakage in ML pipelines 270 

Data leakage is a common and critical error in ML pipelines. Any data-driven choice made 271 

within any step of a ML pipeline (see Section 2c), whether concerning preprocessing, learning, 272 

or prediction, must be validated using new unseen data. Failure to use unseen data amounts 273 

to leakage and results in inaccurate generalization performance estimates on the data at hand. 274 

We take a general view of leakage to cover inappropriate use of data in different parts of a ML 275 

pipeline which can lead to erroneous (either optimistic or pessimistic) estimation of 276 

generalization performance or results in non-deployable models. Below, we describe several 277 

types of leakage assuming that the ML pipeline employs CV for estimating generalization 278 

performance. 279 

 280 
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3.a Test-to-train leakage 281 

We begin with a type of leakage which we call test-to-train leakage as in this case information 282 

is leaked from the test set into the training process. Several scenarios can lead to test-to-train 283 

leakage, such as failure to separate training and test data, failure to consider dependent 284 

samples, application of preprocessing before data splitting, and improper model selection. 285 

The most straightforward case happens when the separation between training and test data 286 

is not followed (47), i.e. the test samples are used for training (Figure 2). As the model can 287 

learn patterns in the test data, it can result in high test accuracy. However, this cannot be 288 

considered a correct estimate of generalization performance as the test data was not unseen. 289 

That is, when the separation between training and test data is breached, the model risks fitting 290 

to the specific patterns present in the test set. For instance, a k-nearest neighbors (KNN) 291 

model (with k=1) will simply remember all the training samples it has seen, and therefore will 292 

achieve perfect prediction if the model is “tested” on previously seen training samples. Of 293 

course, the resulting error estimate can’t possibly hold on truly unseen new data, so that this 294 

error estimate is overly optimistic. Another example is optimizing a model to predict a particular 295 

test set. This has happened previously in a ML competition where multiple evaluations on the 296 

test set were performed, leading to disqualification of the team and consequently withdrawal 297 

of the associated paper1.  298 

 299 

 
1 https://dswalter.github.io/machine-learnings-first-cheating-scandal.html 

https://sciwheel.com/work/citation?ids=13919069&pre=&suf=&sa=0
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 300 

Figure 2: Test-to-train leakage: Using the test data as a part of the training data leads to 301 

leakage, since the model is able to learn patterns from the test data during training, which 302 

usually results in overoptimistic generalization performance estimates. Red color indicates 303 

the problematic steps. 304 

 305 

Another case where this type of leakage can happen is when the samples are not independent 306 

of each other. When data samples can be assumed I.I.D., randomly splitting them into training 307 

and test sets is sufficient. However, when the I.I.D. assumption is violated, more care must be 308 

taken to avoid related samples being split across training and test sets. An example of violation 309 

of the I.I.D. assumption is data that contains twins or siblings as is the case with the Human 310 

Connectome Project - Young Adult cohort (48). Functional Connectivity (FC) as a marker of 311 

brain organization is often used as a feature set to predict target variables such as behavioral 312 

scores in brain imaging research (49,50). Due to heritability, similarity between FC features 313 

(and likely also of target variables) is typically higher for twins and siblings than for 314 

independently drawn samples (51). If the twins are allowed to split between training and test 315 

sets, this is akin to duplicating the samples albeit noisily, therefore a model can learn about 316 

samples in the test set from their siblings in the training set. The prediction performance is 317 

https://sciwheel.com/work/citation?ids=1343608&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=832405,7881149&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=10169036&pre=&suf=&sa=0
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therefore higher when splitting family members across folds than if the family members are 318 

grouped together (Figure 3) (29). This is an important pitfall, since most often the goal is to 319 

build models that will generalize beyond specific families. The ungrouped CV cannot give us 320 

an estimate of the error that we would expect for completely new samples, i.e. from new, 321 

unseen families. Further examples demonstrating such leakage include, existence of the 322 

same genomic loci in the training and test sets when performing cross-cell type predictions 323 

(52), and using 2D slices from the 3D brain images of the same individual for training and 324 

testing for predicting neurodegenerative disease (53). 325 

In some task domains data does not follow the I.I.D. assumption (54). This happens for 326 

instance in time series forecasting where the goal is to predict the future using historical 327 

data (54,55). This happens because the data at consecutive timepoints are associated. 328 

Hence, application of standard cross-validation is inadequate here as it disrupts the 329 

temporal sequence by splitting sections of the time series and randomly assigning them 330 

to training or test folds. Subsequently, past and future data is used inconsistently, i.e. 331 

future data is used to predict the past, leading to leakage. This can be seen as a form of 332 

test-to-train leakage, producing misleading estimates of predictive performance which will 333 

not be representative if such a model is deployed in the real-world. To address this, 334 

specific techniques, such as use of out-of-sample (holdout) test data corresponding to the 335 

future (with respect to the training set), must be employed to obtain proper generalization 336 

estimates (54). We refer the reader to (16) for further details. 337 

https://sciwheel.com/work/citation?ids=16419192&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10115597&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14448892&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10989416&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=332891,10989416&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=10989416&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15496695&pre=&suf=&sa=0
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 338 

Figure 3: Test-to-train leakage due to violation of I.I.D. assumption in cross-validation: 339 

Functional connectivity was estimated using resting-state functional magnetic resonance 340 

imaging data of the Human Connectome Project - Young Adult cohort (HCP-YA). Functional 341 

connectivity was then used to predict three psychometric targets (x-axis), each in a 10-fold 342 

cross-validation scheme. HCP-YA data contain siblings, and siblings are known to have 343 

similar connectomes. Therefore, allowing the siblings to be split across training and test sets 344 

(red bars, without grouping) leads to leakage while grouping siblings in training or test sets 345 

(blue bars, with grouping) shows overall lower accuracy (Pearson’s r between true and 346 

predicted target, y-axis). 347 

 348 

In addition to leakage due to the same or similar samples, data leakage can also happen via 349 

modeling preprocessing parameters (preprocessing leakage). A common case of such test-350 

to-train leakage arises when data preprocessing, such as dimensionality reduction (e.g. 351 

principal component analysis (PCA)), confound removal, feature normalization or scaling, and 352 

imputation for filling in missing values, is applied to the whole dataset before splitting it for CV 353 

(16,29). Practitioners may not immediately recognize this as leakage, since the ML model is 354 

trained after splitting the data. However, estimating the preprocessing parameters on the 355 

https://sciwheel.com/work/citation?ids=16419192,15496695&pre=&pre=&suf=&suf=&sa=0,0
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whole dataset invalidates the train-test separation (Figure 4). That is, data in the training set 356 

is transformed dependent on data in the test set, and crucially, ML models can exploit this to 357 

learn about the test set. Therefore, the resulting estimate of generalization performance is 358 

likely to be overly optimistic, though it can also decrease the performance of the models (29). 359 

Empirical demonstrations of such leakage in the literature include performing confound 360 

removal (29) or feature selection on the whole dataset (Figure 5) (23,29,56), and oversampling 361 

to counter data imbalance (25). It should be noted that such leakage can happen when 362 

preprocessing either the features or the target values. For instance, when the target is created 363 

by combining multiple variables (e.g., several behavioral measures) using a dimensionality 364 

reduction method such as PCA. 365 

This case of test-to-train leakage can be avoided by learning the preprocessing parameters 366 

on the training set and then applying them to the training and the test sets. For example, if one 367 

wants to apply feature selection, one should select features based on the training set after 368 

splitting data. Crucially, this means that each iteration of CV will involve its own feature 369 

selection process which may select a different set of features. Since this implies more 370 

computation and also makes interpreting the results more difficult given that it is necessary to 371 

keep track of different features in different CV iterations, practitioners sometimes erroneously 372 

avoid splitting the data before data preprocessing. Note that data preparation strategies that 373 

rely on a single sample and thus preserve the train-test separation do not lead to such leakage. 374 

For instance, data imputation can be performed in a within-sample fashion such that missing 375 

values are estimated using other features of that sample (see, e.g., (57)). 376 

 377 

https://sciwheel.com/work/citation?ids=16419192&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16419192&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9382155,15139794,16419192&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=13886230&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12348711&pre=&suf=&sa=0
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 378 

Figure 4: Test-to-train leakage: Preprocessing is performed on the whole data before data 379 

splitting, yielding a preprocessing model learned from both training and testing data. In a 380 

correct implementation, the parameters of a preprocessing model should be estimated in the 381 

training set and applied to both training and test sets. Red color indicates the problematic 382 

steps. 383 

 384 

 385 

Figure 5: Pseudocode for leakage-inducing and leakage-free feature selection. 386 

 387 

A particular case of test-to-train leakage occurs when conflating the two roles of CV, model 388 

assessment and model selection (see Section 2.b). Although not immediately obvious, this 389 

can be considered test-to-train leakage, because by running CV for many different models, 390 
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and subsequently making a decision based on the results (i.e. selecting one model among 391 

them), the test folds used in the CV essentially become part of the training data. It is important 392 

to highlight here that training data does not just refer to data that an algorithm uses to fit 393 

parameters but also to data that researchers use to make data-driven decisions. Therefore, 394 

the error estimate from the model selection CV is not a valid estimate of true generalization 395 

performance. For instance, consider an ML algorithm with a single hyperparameter such as a 396 

linear kernel SVM with its hyperparameter called cost within a 5-fold CV. For each fold the 397 

cost value that provides the lowest error on the set is used. The CV estimate of error is 398 

calculated by averaging across the test sets. As a result, the error obtained during model 399 

selection is likely an overoptimistic estimate of the generalization error (model assessment) 400 

(23,24,37,58). Using nested CV in which the hyperparameter is tuned in an inner CV and the 401 

selected model is applied on the test set avoids such leakage.  402 

One of the questions a practitioner may face in this regard concerns the fact that different 403 

models and hyperparameters are selected in each fold of the CV. Students wonder how they 404 

can report and use that model, since there is no such thing as “the model”. However, this point 405 

of view fails to acknowledge that simply fitting parameters of a model in each iteration of CV 406 

will also always result in different models. Instead, nested CV presents an opportunity rather 407 

than a challenge, since researchers can then easily test the stability of fitted parameters and 408 

hyperparameters chosen in the model selection process over multiple iterations by inspecting 409 

each trained (and selected) model. We provide an empirical illustration, again using 410 

neuroimaging data to predict behavior, that indeed shows that CV estimates are overoptimistic 411 

compared to nested CV estimates (Figure 6).  412 

Such leakage is not restricted to hyperparameter tuning and can happen with any data-driven 413 

choices, such as selection of an algorithm (e.g., SVM versus random forests) and data 414 

transformations (e.g., PCA, univariate feature selection) (37). Such choices should be treated 415 

in the same way as hyperparameters, i.e. tuned and evaluated using nested CV. In other 416 

words, all data-driven choices within a ML pipeline should be considered as a part of learning, 417 

https://sciwheel.com/work/citation?ids=802674,9382155,7865067,2867736&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=2867736&pre=&suf=&sa=0
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hence they must be validated on data not seen by the models to correctly estimate 418 

generalization performance. For more details see (59). 419 

 420 

 421 

Figure 6: Effect of erroneous usage of CV for estimating generalization performance: 422 

Three targets (behavioral scores) were predicted in a 5-fold CV with 5 repeats using a 423 

subset of the HCP-YA S1200 release consisting of 369 unrelated subjects (192 males, 177 424 

https://sciwheel.com/work/citation?ids=14910357&pre=&suf=&sa=0
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females) with ages ranging from 22 to 37 (M=28.63, SD=3.83). In one case the CV was used 425 

for hyperparameter tuning and estimation of generalization performance simultaneously (i.e., 426 

“simple” CV) and the mean values (light blue) and maximum values (dark blue) across folds 427 

were reported. In the other case nested CV was performed such that hyperparameter tuning 428 

was performed for each test fold independently in an inner CV loop applied on the training 429 

folds of the outer CV loop. Again, mean values (red) and maximum values (green) across 430 

folds are reported. The effect of reporting the maximum value across folds rather than the 431 

mean can be visualized. 432 

 433 

3.b Test-to-test leakage 434 

Test-to-test leakage is a covert type of leakage that arises due to erroneous information 435 

sharing between the test samples. For the majority of ML applications samples in the test set 436 

should be treated independently. That is, processing and prediction of a given test sample 437 

should not depend on information from other test samples. Test-to-test leakage happens when 438 

the test set is used for estimating preprocessing parameters (Figure 7). In other words, instead 439 

of a single preprocessing model derived from the training samples (see Figure 1 for correct 440 

implementation) two preprocessing models are estimated: one using the training samples and 441 

applied to training samples, and another using the test samples and applied to test samples. 442 

For example, a practitioner may wish to demean their features. They may then estimate the 443 

mean of each feature in the training data and use these estimations to demean the training 444 

set. The error occurs if instead of also applying these estimations to the test data, the 445 

practitioner then estimates the mean values on the test data to demean the test data. This is 446 

wrong, because it implies that individual samples in the test data are demeaned depending 447 

on other samples in the test data.  448 

Another complication that arises in a pipeline that does not treat an individual test sample 449 

independently of other test samples, is that it cannot be deployed, and it might fail completely 450 
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when applied to a single test sample. In the previous example of demeaning for instance, the 451 

demeaning could not be applied since the demeaned feature will be zero. In addition, these 452 

kinds of preprocessing steps attempt to estimate the parameters for a population, and 453 

estimates of parameters such as the mean are unlikely to be accurate from the typically 454 

smaller test set even if they did not result in impermissible operations.  455 

 456 

 457 

Figure 7: Test-to-test leakage: Preprocessing is performed in the test and training sets 458 

independently. Red color indicates the problematic steps. 459 

 460 

Another case of test-to-test leakage can happen due to inappropriate use of the predictions 461 

obtained in CV. With repeated CV, which is usually recommended to avoid biases due to 462 

random data splitting, one obtains multiple predictions for each sample. Combining each 463 

sample’s predictions across CV repeats, e.g., by averaging, causes leakage (Figure 8). 464 

Although this may seem like a rather elegant way to obtain a single prediction per sample and 465 

in turn a single error estimate, this procedure has two negative consequences. First, it 466 

generates ensemble results, and the performance reflects an ensemble of models built across 467 
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repeats and not a single model as the practitioner intended and might claim. Second, it 468 

increases the effective number of CV folds (𝑘) because across CV repeats the same data 469 

point is predicted using different combinations of training samples, effectively reducing the 470 

out-of-sample data points. With a high number of repetitions, the averaged prediction would 471 

be influenced by all other data points akin to leave-one-out (LOO) CV, and the claim that the 472 

results reflect 𝑘-fold strategy would be wrong. These two reasons can lead to overoptimistic 473 

results. 474 

We note that LOO per se is not problematic if properly implemented and with a correct 475 

evaluation metric that can be calculated for each sample separately and does not combine 476 

the samples. For instance, classification accuracy is suitable in a classification task, whereas 477 

AUROC is not. Similarly, when using LOO mean absolute error is appropriate but Pearson 478 

correlation should not be used. 479 

 480 

 481 

 482 

Figure 8: Test-to-test leakage due to averaging of predictions: For simplicity we show 483 

two runs of CV, and the major parts of CV are abstracted. Red color indicates the 484 

problematic steps. 485 
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3.c Feature-to-target leakage 486 

Feature-to-target leakage occurs when the target is constructed using one or more features 487 

in the first place (Figure 9). For example, data is first clustered using some or all the features 488 

and the resulting cluster IDs are used as the target. Subsequent generalization estimation 489 

using CV on this data is likely optimistic as the supervised classification algorithm will simply 490 

need to reverse engineer the clustering process which it should be able to in most cases. Note 491 

that it is valid to use cluster IDs as target to train a classification model and apply it to new 492 

unseen data. 493 

 494 

 495 

Figure 9: Feature-to-target leakage: The features include a variable, indicated with red 496 

color, that directly contributes to the target. 497 

 498 

Feature-to-target leakage is also evident when one or more variables informative of the target 499 

are available during learning but not at the deployment phase. Since these features carry 500 

information that the models can learn from, it will lead to a high CV accuracy and the model 501 
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might seem acceptable. However, this model is not deployable as the crucial features will not 502 

be available at the test time. As an example, consider a healthcare application where the goal 503 

is to diagnose a disease based on radiology data. To generate training data, radiology experts 504 

manually label each image as diseased or healthy. While labeling the data, the experts also 505 

make notes such as the size and location of the abnormality. If these notes are used together 506 

with the radiology images when building and validating models, it can lead to above mentioned 507 

issues. Given that these notes are predictive, the models will utilize them, and as a result, the 508 

CV will likely demonstrate high performance. However, these manually created notes will not 509 

be available during real-world use as the goal of such an application is to avoid manual 510 

annotation. Therefore, a model trained in this way cannot be deployed. 511 

More generally, this type of leakage occurs due to differing train and real test data distributions 512 

which again violates the I.I.D. assumption. However, as CV is performed only in the training 513 

data the predictive information available is used providing an optimistic estimate of 514 

generalization performance. As such, this scenario is similar to reliance on confounds (60) 515 

and shortcut learning (61) where a model learns unintended signals prominently present in 516 

the training data which then hampers generalization to unseen data in which these signals are 517 

missing. While this scenario could be viewed as learning incorrect information rather than 518 

leakage, we categorize it as leakage because it results in overestimation of the model’s ability 519 

to generalize which is typically the culmination of academic exercises. Note that feature-to-520 

target leakage has also been termed as target leakage2 but we reserve this term for another 521 

type of leakage described below.  522 

 523 

 524 

 
2http://downloads.alteryx.com/betawh_xnext/MachineLearning/MLTargetLeakage.htm 
 https://h2o.ai/wiki/target-leakage/ 

https://sciwheel.com/work/citation?ids=7960874&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14867178&pre=&suf=&sa=0
http://downloads.alteryx.com/betawh_xnext/MachineLearning/MLTargetLeakage.htm
https://h2o.ai/wiki/target-leakage/
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3.d Target leakage 525 

We define target leakage as the scenario where the target is utilized in the prediction process. 526 

This is an overt kind of leakage that can occur due to use of specific algorithms and 527 

preprocessing steps that rely on the target.  528 

An example is misapplication of the partial least squares (PLS) algorithm, which is popular in 529 

several fields. PLS is a bilinear factor model that identifies a new space representing the 530 

covariance between the features 𝑋 and target 𝑌 spaces. As PLS estimates a shared latent 531 

space, it generates beta values for both	𝑋 and 𝑌. If the beta values 𝑌 are also used instead of 532 

only that of 𝑋 to make predictions, then one requires the target values of the test examples, 533 

resulting in data leakage. When performing CV, the target values of the test data, are available 534 

and thus one could provide them at the test time to generate the latent space of the test data, 535 

but this will result in leakage in addition to creating a non-deployable model. Thus, when using 536 

PLS the practitioner should make sure that only 𝑋 values are used for prediction. Note that 537 

most libraries provide a correct implementation of PLS. 538 

Another case of target-leakage can occur while trying to mitigate measurement bias by means 539 

of data harmonization. As data collection becomes more accessible and widespread, pooling 540 

data together from different sites has become increasingly common. Differences in data 541 

collection protocols and measurement devices can induce systematic biases. To address this, 542 

batch-effect removal (22) or data harmonization (62) is used. If the data are harmonized 543 

across sites (e.g., by matching covariances) too aggressively, it could also remove variance 544 

of interest that is related to the target. To avoid this, harmonization methods can preserve 545 

variance related to user-specified covariates which can also include the target. When 546 

harmonizing new data, the same covariates must be provided for each test sample. Effectively, 547 

while it is beneficial to preserve variance related to the target while harmonizing, the target 548 

values must be available when making predictions on test data. This presents two possible 549 

ways to implement harmonization while estimating generalization performance using CV, both 550 

https://sciwheel.com/work/citation?ids=12081783&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14733700&pre=&suf=&sa=0
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of which lead to leakage. First, one can harmonize all the data before creating splits which 551 

violates the train-test data separation requirement. Second, the target values of the test set 552 

are needed for harmonization which amounts to target leakage and also precludes 553 

deployment. Overall, the use of harmonization in a ML pipeline while explicitly preserving the 554 

target-related variance can be considered as target leakage. 555 

3.e Dataset leakage: Dataset decay 556 

In traditional statistics it is widely recognized that testing multiple hypotheses (e.g., mass-557 

univariate hypothesis testing) can result in spurious discoveries (type I error), and hence 558 

approaches to correct for multiple comparisons are utilized (40,63,64). The multiple testing 559 

issue might not seem pertinent to an individual researcher who only aims to test a single 560 

hypothesis using a given dataset. On a larger scale, however, multiple researchers testing 561 

different hypotheses on the same dataset leads to an increased global likelihood of false 562 

positive findings, referred to as “dataset decay” (65). In other words, dataset decay means 563 

that as more hypotheses are tested in a specific dataset, the utility of such a dataset to yield 564 

generalizable results decreases.  565 

In some fields, for example neuroimaging, the availability of large datasets suitable for ML 566 

analysis is relatively limited, e.g. Human Connectome Project and Alzheimer’s Disease 567 

Neuroimaging Initiative. Consequently, these datasets are extensively used by a multitude of 568 

researchers in the field. This widespread usage has sparked a competitive environment where 569 

there is a continual race to develop new methods that outperform existing state-of-the-art 570 

scores. However, this intense focus on a few datasets and high accuracy can lead to dataset 571 

decay such that the overuse and repeated analysis of the same datasets increases the rate 572 

of false positive findings. This, in turn, would diminish the effectiveness of such models for 573 

future research and innovation, decreasing generalizability of the findings. For this reason, we 574 

consider this issue as a type of leakage (dataset leakage). 575 

https://sciwheel.com/work/citation?ids=818109,1220268,14874891&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=8959071&pre=&suf=&sa=0
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Furthermore, there is another angle to dataset leakage, which happens when a researcher’s 576 

data analysis strategy is informed by previous analyses carried out on the same data, i.e. 577 

adaptive data analysis or circularity (66). This not only increases the number of comparisons 578 

but also introduces dependency between analyses, frequently leading to further false 579 

discoveries and inflated performance estimates (67). In fact, our empirical demonstrations 580 

may be a good example of such overfitting: In both Figure 4 and Figure 6, kernel ridge 581 

regression and partial least squares regression were used for predicting a number of 582 

behavioral scores based on functional connectivity. These two models are well known to work 583 

on this task and have been chosen for this exact reason (50,68). Importantly, they are known 584 

to work well on the exact dataset we have used here - the HCP-YA. This could explain why 585 

instances of these models outperformed models found by Auto-ML. However, it is important 586 

to note that this conclusion for this specific case is only suggestive and further evaluations 587 

using additional datasets are needed to assess whether the algorithms and resulting outcomes 588 

are truly overfitted.  589 

3.f Confound leakage 590 

A ML model can be influenced by confounding factors which in turn can influence its 591 

predictions. Confounding factors are related to both the features and the target. Depending 592 

on the goal of a study, it may or may not be desirable to minimize their impact. If the goal of a 593 

study is to simply predict a target as well as possible, then confounding may not necessarily 594 

be a worry (69). But if researchers want to gain insight about the specific relationship between 595 

features and target independent of the confounding factors, strategies to mitigate the effect of 596 

confounders must be applied. A common example of a confounding factor in brain imaging 597 

studies is age. For instance, brain imaging can accurately reflect a person's age and can also 598 

contain information about age-related diseases (70). The problem here is that the model 599 

simply learns how brain images may change with the natural aging process but may not learn 600 

anything about the specific changes and processes related to pathology. From a prediction 601 

point of view this may be an issue in some cases, for instance a young person with pathology 602 

https://sciwheel.com/work/citation?ids=644888&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13897817&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7881149,7882025&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=16152368&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14439656&pre=&suf=&sa=0
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will not be identified as a patient. Furthermore, such a model is likely less helpful in gaining 603 

specific biological insight than a model that learns about processes specifically involved in the 604 

disease. 605 

Thus, if not properly controlled or accounted for, confounding can lead to correct predictions 606 

but may mislead the researcher to incorrectly conclude that their model is learning about the 607 

specific disease-related processes. For example, a particular feature of brain structure might 608 

be erroneously deemed important in the prediction of Parkinson’s disease, whereas the 609 

association is actually due to the confounding effect of age. In other words, the brain structural 610 

feature changes with increasing age, and increasing age also leads to a higher likelihood of 611 

developing Parkinson’s disease, but the structural feature in reality has nothing to do with the 612 

disease.  613 

However, even if ML practitioners do not care about interpretability or insight with respect to 614 

their model and how it represents the relationship between features and target, confounding 615 

factors can be a problem. That is, confounding can also degrade the model's performance, 616 

especially when the model is deployed in environments where the distribution of the 617 

confounding variable is different. This is akin to the assumption that the data used to train a 618 

model should follow the same distribution as the data for which the model is deployed, with 619 

the only difference being that confounds in this scenario are not modeled explicitly (but 620 

importantly change the relationship between features and target). Thus, the model trained and 621 

evaluated in a particular distribution (of the confounding factor) will lead to overly optimistic 622 

estimates of the generalization error, that may not tell us about how the model will perform on 623 

data for which the distribution of the confounding factor is changed. 624 

Feature-wise confound removal by means of linear regression (i.e. confound regression) is a 625 

standard method used to deal with confounding effects in retrospective data analyses which 626 

is a common scenario in ML (71,72). As mentioned before, it is recommended to perform 627 

confound regression in a CV-consistent manner to avoid test-to-train data leakage (73). 628 

https://sciwheel.com/work/citation?ids=1125309,5855134&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=10546046&pre=&suf=&sa=0
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However, it is important to highlight that the process of confound regression itself can leak 629 

information into the features especially when the feature-target distribution is skewed (74). In 630 

this case, variance associated with the confounds is injected into the features rather than being 631 

removed as expected. This type of leakage becomes particularly problematic when the 632 

confounds are strongly associated with the target and the leakage increases with the number 633 

of features. Confound-leakage can lead to above-chance generalization performance 634 

estimates, even when the relationship between the features and the target is destroyed. This 635 

provides a method to check for potential confound leakage by shuffling each feature 636 

independently and performing CV. If the CV accuracy is above-chance, then one can conclude 637 

that confound leakage is possible on this dataset.  638 

4. Possible mitigation strategies 639 

In this section we provide advice to improve common reporting practices to facilitate the 640 

detection of leakage as well as to increase reproducibility in ML pipelines. First we should 641 

mention that excellent recommendations exist for reporting ML models such as Model Cards 642 

(75) and Data, Optimization, Model and evaluation (DOME) recommendations (76). Further 643 

guidelines have been proposed for specialized domains such as biomedical applications (77) 644 

and minimum information about clinical artificial intelligence modeling (78). Data processing 645 

and quality reporting have also been discussed (e.g. Datasheets for Datasets (79) and Data 646 

Nutrition Labels (80)).  647 

However, as the application contexts and modeling intricacies of ML-based analyses expand 648 

and grow in complexity, we think it is necessary to refine current recommendations, especially 649 

by making data processing and model selection and assessment strategies more transparent. 650 

Effective communication of ML pipelines can take various forms. Textual descriptions offer 651 

high-level overviews of a pipeline and its components, providing a conceptual understanding. 652 

However, such descriptions can fall short. 653 

https://sciwheel.com/work/citation?ids=13787964&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7291084&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11432312&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2891569&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9668820&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12218601&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13540029&pre=&suf=&sa=0
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When documenting the experimental setup, it is crucial to provide comprehensive details. 654 

However, ambiguous descriptions hinder understanding and replicability. For instance, stating 655 

that "default (hyper)parameters" were utilized for a given algorithm is inadequate as default 656 

hyperparameters are not universally defined and can vary between software implementations 657 

and labs. Moreover, defaults may change over time and with software updates. Therefore, to 658 

guarantee replicability, it is essential to report the specifics of the set up including data 659 

processing, model hyperparameters, training and evaluation procedures, as well as the 660 

software packages used and their corresponding versions. 661 

In addition, there are several instances where the method description, whether written or 662 

verbal, is insufficient to detect leakage. In some cases, the description seems to be correct, 663 

even when leakage is present. Therefore, researchers and reviewers should not only rely on 664 

the written description, but instead insist on reviewing the code written to implement the 665 

methods. To illustrate, let us look at this example method description: “We performed feature 666 

selection using LASSO followed by an SVM classifier with a radial basis function kernel. Both 667 

feature selection and hyperparameter tuning were performed on the training folds within a 668 

cross-validation loop”. Based on this, a reader would assume that the procedures were 669 

correctly implemented. However, when we were unable to replicate the results on the same 670 

data, we decided to examine the code more closely. The issue became immediately apparent: 671 

test-to-train leakage during feature selection using LASSO. Although both steps, feature 672 

selection and hyperparameter optimization, were performed within a CV loop as mentioned in 673 

the text, these two steps were implemented in two separate CV loops (see Figure 5). The first 674 

CV loop performed feature selection, correctly only on the training folds, and noted which 675 

features were selected (nonzero LASSO weights). The features selected more than once 676 

across CV folds were retained. Then in another CV loop, an SVM classifier was trained on the 677 

training folds with hyperparameter tuning while using only the selected features and tested on 678 

the test fold. It is clear that this procedure causes leakage even though the text description 679 

can be interpreted as being correct. It is crucial to note that the feature selection method (as 680 
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long as it is data driven) or the fact that the same CV fold structure was used for the two loops, 681 

does not prevent the leakage. The problem arises in the first CV loop where choice of which 682 

features to use was made using all the data. Therefore, the textual description of the process 683 

was insufficient to detect the issue of leakage. However, a quick examination of the underlying 684 

code clarified the situation. This highlights the importance of transparency in machine learning 685 

research and practice, and we strongly encourage researchers and practitioners to share their 686 

code. In addition, to avoid such errors before publication it is crucial that labs implement their 687 

own standard procedures to perform adequate code review. Since internal code review might 688 

not catch all errors, a greater emphasis should be put by journals and reviewers on reviewing 689 

code during the peer-review process. 690 

Sharing source code allows for a detailed examination of the implementation, enhancing 691 

transparency and enabling replication or modification. While sharing their code may indeed 692 

expose it to critical review, it is essential for progress in this predominantly software-driven 693 

discipline (81,82). There may be errors spotted and improvements suggested, but this iterative 694 

process of refinement is an integral part of scientific advancement. In this regard, we echo the 695 

call to make research code openly available. This practice would aptly put importance on 696 

correctness of the pipelines and ensuing analyses. The authors admit that they themselves 697 

have done this with less stringency in the past, but we aim to do better. We also recommend 698 

that ML practitioners, especially in early career stages, request code reviews to identify and 699 

fix any issues with their implementation. Importantly, however, the responsibility should not be 700 

off-loaded to early career researchers and standard procedures (to ensure good quality code 701 

and research) need to be implemented at an organizational level. For example, each lab can 702 

perform code reviews using one or more skilled reviewers. Such a code review should focus 703 

on the correctness of the code itself and not on its functionality or whether it produces the 704 

desirable output such as high accuracy. However, we recognize that it can be challenging to 705 

find skilled individuals that can perform a proper review.  706 

https://sciwheel.com/work/citation?ids=12226453,1025208&pre=&pre=&suf=&suf=&sa=0,0
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Openly sharing data, trained models, and other research artifacts/tools fosters reproducibility, 707 

and encourages collaboration, enabling the broader community to validate and build upon the 708 

work. However, it must be noted that the shared data should not be affected by data leakage 709 

(e.g., during preprocessing). Detecting such instances of leakage can be challenging, if not 710 

impossible once the data is shared. 711 

5. Conclusions 712 

Data leakage presents a significant challenge in machine learning. Identifying and preventing 713 

leakage is essential for ensuring reliable and robust models. To this end, we have provided 714 

several examples and detailed explanations of data leakage instances, along with tips on how 715 

to identify them. Below, we present a few crucial points that underlie most of the leakage cases 716 

we have presented in this article. 717 

● Ensure strict training-test set separation. 718 

● Ensure that performance metrics are calculated on truly unseen data that has not been 719 

used anywhere in the pipeline previously. 720 

● Model selection and model assessment should be done with a nested CV. 721 

● State the goal of your ML pipeline: Search for a feature-target relationship, assess 722 

generalization performance or deployment? Clarifying the goals early on will help 723 

practitioners to design and implement a correct and appropriate pipeline. 724 

● While academic applications of machine learning often do not involve deploying 725 

models, considering whether a pipeline can actually be used to make predictions on 726 

genuinely unseen data can aid in identifying potential instances of data leakage. Of 727 

note, check if features are available after deployment. Can a model be applied to future 728 

test data not currently available? Can it be applied to a single test example? 729 
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● Detailed description of methods as well as sharing your code publicly is an effective 730 

way to ensure transparency in your pipeline design. In addition, releasing your models 731 

enables users to test data gathered after the model's publication, which further boosts 732 

confidence in the model's ability to generalize well. 733 

● When possible, opt for using well-established software packages and libraries instead 734 

of creating standard procedures from scratch. We certainly do not discourage code 735 

implementation for learning purposes, but we recognize that code testing can be time-736 

consuming and challenging. Hence, using standardized code in production 737 

environments is typically a more effective choice. 738 

● Ensuring the correctness of a ML pipeline should take precedence over its output or 739 

even its replicability. A flawed pipeline might yield accurate and replicable results, but 740 

that should not be mistaken as an indication of the validity of the models or the ensuing 741 

results. 742 

Finally, in addition to leakage, several other pitfalls and issues exist and deserve attention, 743 

(real-world usefulness of benchmark data (83), dataset biases (46,84) and deployment 744 

challenges (85)). However, it is not possible to cover all those aspects in a single paper. We 745 

recommend that readers stay vigilant and pay attention to issues that might affect their specific 746 

analysis set up.  747 

6. Ethics approval and consent to participate 748 

The ethics protocols for analyses of these data were approved by the Heinrich Heine 749 

University Düsseldorf ethics committee (No. 4039). 750 

7. Availability of data and materials     751 

Access to data of the HCP can be requested on ConnectomeDB 752 

(https://db.humanconnectome.org/app/template/Login.vm).  753 

https://sciwheel.com/work/citation?ids=13886297&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13187012,13480919&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=13886245&pre=&suf=&sa=0


 

35 

8. Acknowledgements and funding 754 

This research was partially funded by the Deutsche Forschungsgemeinschaft (DFG, German 755 

Research Foundation) – Project-ID 431549029 - Collaborative Research Centre CRC1451 on 756 

motor performance project B05; by the Helmholtz Portfolio Theme “Supercomputing and 757 

Modelling for the Human”; by the European Union’s Horizon 2020 Research and Innovation 758 

Programme under Grant Agreement No. 945539 (HBP SGA3); and by the Max Planck School 759 

of Cognition supported by the Federal Ministry of Education and Research (BMBF) and the 760 

Max Planck Society (MPG). 761 

 762 

9. Author’s contributions 763 

L.S.: Designed the experiments, developed code, performed the analyses, contributed to 764 

discussion and interpretation of results, and writing of the manuscript 765 

E.N-S: Contributed to discussion of results and writing of the manuscript 766 

J.D.: Contributed to discussion and interpretation of results, and writing of the manuscript 767 

S.B.E.: Contributed to discussion and interpretation of results, and writing of the manuscript 768 

M.G.: Contributed to discussion and interpretation of results, and writing of the manuscript 769 

S.H.: Contributed to discussion and interpretation of results, and writing of the manuscript 770 

V.K.: Contributed to discussion and interpretation of results, and writing of the manuscript 771 

A.K.: Contributed to discussion and interpretation of results, and writing of the manuscript 772 

J.L.: Contributed to discussion and interpretation of results, and writing of the manuscript 773 

B.C.L.: Contributed to discussion and interpretation of results, and writing of the manuscript 774 



 

36 

F.R.: Contributed to discussion and interpretation of results, and writing of the manuscript 775 

K.R.P.: Designed the experiments, contributed to discussion and interpretation of results, and 776 

contributed to writing of the manuscript 777 

All authors revised and approved the final version of the manuscript 778 

  779 



 

37 

Bibliography 780 

1.  Jiang T, Gradus JL, Rosellini AJ. Supervised machine learning: A brief primer. Behav 781 

Ther. 2020 Sep;51(5):675–87. 782 

2.  Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. 783 

Generative Adversarial Nets. Advances in Neural Information Processing Systems. 784 

2014; 785 

3.  Sutton RS, Barto AG. Reinforcement Learning, second edition: An Introduction 786 

(Adaptive Computation and Machine Learning series). second edition. Cambridge, 787 

Massachusetts: Bradford Books; 2018. 788 

4.  Bhaskar H, Hoyle DC, Singh S. Machine learning in bioinformatics: a brief survey and 789 

recommendations for practitioners. Comput Biol Med. 2006 Oct;36(10):1104–25. 790 

5.  Sun AY, Scanlon BR. How can Big Data and machine learning benefit environment 791 

and water management: a survey of methods, applications, and future directions. 792 

Environmental Research Letters. 2019 Jul 3;14(7):073001. 793 

6.  Swain S, Bhushan B, Dhiman G, Viriyasitavat W. Appositeness of optimized and 794 

reliable machine learning for healthcare: A survey. Arch Comput Methods Eng. 2022 795 

Mar 22;29(6):3981–4003. 796 

7.  Varoquaux G, Cheplygina V. Machine learning for medical imaging: methodological 797 

failures and recommendations for the future. npj Digital Med. 2022 Apr 12;5(1):48. 798 

8.  Douglas MR. Machine learning as a tool in theoretical science. Nat Rev Phys. 2022 799 

Mar;4(3):145–6. 800 

9.  Larrañaga P, Calvo B, Santana R, Bielza C, Galdiano J, Inza I, et al. Machine learning 801 

in bioinformatics. Brief Bioinformatics. 2006 Mar;7(1):86–112. 802 

10.  Wilkinson J, Arnold KF, Murray EJ, van Smeden M, Carr K, Sippy R, et al. Time to 803 

reality check the promises of machine learning-powered precision medicine. Lancet 804 

https://sciwheel.com/work/bibliography
https://sciwheel.com/work/bibliography/12366648
https://sciwheel.com/work/bibliography/12366648
https://sciwheel.com/work/bibliography/16096758
https://sciwheel.com/work/bibliography/16096758
https://sciwheel.com/work/bibliography/16096758
https://sciwheel.com/work/bibliography/16096768
https://sciwheel.com/work/bibliography/16096768
https://sciwheel.com/work/bibliography/16096768
https://sciwheel.com/work/bibliography/997289
https://sciwheel.com/work/bibliography/997289
https://sciwheel.com/work/bibliography/8557373
https://sciwheel.com/work/bibliography/8557373
https://sciwheel.com/work/bibliography/8557373
https://sciwheel.com/work/bibliography/13870408
https://sciwheel.com/work/bibliography/13870408
https://sciwheel.com/work/bibliography/13870408
https://sciwheel.com/work/bibliography/12811834
https://sciwheel.com/work/bibliography/12811834
https://sciwheel.com/work/bibliography/13631359
https://sciwheel.com/work/bibliography/13631359
https://sciwheel.com/work/bibliography/801668
https://sciwheel.com/work/bibliography/801668
https://sciwheel.com/work/bibliography/9696221
https://sciwheel.com/work/bibliography/9696221


 

38 

Digit Health. 2020 Dec;2(12):e677–80. 805 

11.  Chen J, Patil KR, Yeo BTT, Eickhoff SB. Leveraging machine learning for gaining 806 

neurobiological and nosological insights in psychiatric research. Biol Psychiatry. 2023 807 

Jan 1;93(1):18–28. 808 

12.  Qiu J, Wu Q, Ding G, Xu Y, Feng S. A survey of machine learning for big data 809 

processing. EURASIP J Adv Signal Process. 2016 Dec;2016(1). 810 

13.  Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-811 

learn: Machine Learning in Python. The Journal of Machine Learning Research. 812 

2011;12:2825–30. 813 

14.  Kuhn M, Wickham H. Tidymodels: a collection of packages for modeling and machine 814 

learning using tidyverse principles [Internet]. 2020 [cited 2023 Aug 25]. Available from: 815 

https://www.tidymodels.org 816 

15.  Chen S, Sedghi Gamechi Z, Dubost F, van Tulder G, de Bruijne M. An end-to-end 817 

approach to segmentation in medical images with CNN and posterior-CRF. Med 818 

Image Anal. 2022 Feb;76:102311. 819 

16.  Kapoor S, Narayanan A. Leakage and the reproducibility crisis in machine-learning-820 

based science. Patterns (N Y). 2023 Sep 8;4(9):100804. 821 

17.  Wasserstein RL, Lazar NA. The ASA Statement on p -Values: Context, Process, and 822 

Purpose. Am Stat. 2016 Apr 2;70(2):129–33. 823 

18.  Ioannidis JPA. Why most published research findings are false. PLoS Med. 2005 Aug 824 

30;2(8):e124. 825 

19.  Gundersen OE, Kjensmo S. State of the art: reproducibility in artificial intelligence. 826 

AAAI. 2018 Apr 25;32(1). 827 

20.  Verstynen T, Kording KP. Overfitting to ‘predict’ suicidal ideation. Nat Hum Behav. 828 

2023 Apr 6; 829 

https://sciwheel.com/work/bibliography/9696221
https://sciwheel.com/work/bibliography/13450020
https://sciwheel.com/work/bibliography/13450020
https://sciwheel.com/work/bibliography/13450020
https://sciwheel.com/work/bibliography/1518836
https://sciwheel.com/work/bibliography/1518836
https://sciwheel.com/work/bibliography/14471695
https://sciwheel.com/work/bibliography/14471695
https://sciwheel.com/work/bibliography/14471695
https://sciwheel.com/work/bibliography/15292131
https://sciwheel.com/work/bibliography/15292131
https://sciwheel.com/work/bibliography/15292131
https://sciwheel.com/work/bibliography/12979976
https://sciwheel.com/work/bibliography/12979976
https://sciwheel.com/work/bibliography/12979976
https://sciwheel.com/work/bibliography/15496695
https://sciwheel.com/work/bibliography/15496695
https://sciwheel.com/work/bibliography/1281556
https://sciwheel.com/work/bibliography/1281556
https://sciwheel.com/work/bibliography/1281556
https://sciwheel.com/work/bibliography/1281556
https://sciwheel.com/work/bibliography/5882
https://sciwheel.com/work/bibliography/5882
https://sciwheel.com/work/bibliography/13540350
https://sciwheel.com/work/bibliography/13540350
https://sciwheel.com/work/bibliography/14643579
https://sciwheel.com/work/bibliography/14643579


 

39 

21.  Riley P. Three pitfalls to avoid in machine learning. Nature. 2019 Aug;572(7767):27–9. 830 

22.  Whalen S, Schreiber J, Noble WS, Pollard KS. Navigating the pitfalls of applying 831 

machine learning in genomics. Nat Rev Genet. 2022 Mar;23(3):169–81. 832 

23.  Vabalas A, Gowen E, Poliakoff E, Casson AJ. Machine learning algorithm validation 833 

with a limited sample size. PLoS ONE. 2019 Nov 7;14(11):e0224365. 834 

24.  Varma S, Simon R. Bias in error estimation when using cross-validation for model 835 

selection. BMC Bioinformatics. 2006 Feb 23;7:91. 836 

25.  Santos MS, Soares JP, Abreu PH, Araujo H, Santos J. Cross-Validation for 837 

Imbalanced Datasets: Avoiding Overoptimistic and Overfitting Approaches [Research 838 

Frontier]. IEEE Comput Intell Mag. 2018 Nov;13(4):59–76. 839 

26.  Berisha V, Krantsevich C, Hahn PR, Hahn S, Dasarathy G, Turaga P, et al. Digital 840 

medicine and the curse of dimensionality. npj Digital Med. 2021 Oct 28;4(1):153. 841 

27.  Lones MA. How to avoid machine learning pitfalls: a guide for academic researchers. 842 

arXiv. 2021; 843 

28.  Kaufman S, Rosset S, Perlich C, Stitelman O. Leakage in data mining: Formulation, 844 

detection, and avoidance. ACM Trans Knowl Discov Data. 2012 Dec 1;6(4):1–21. 845 

29.  Rosenblatt M, Tejavibulya L, Jiang R, Noble S, Scheinost D. Data leakage inflates 846 

prediction performance in connectome-based machine learning models. Nat Commun. 847 

2024 Feb 28;15(1):1829. 848 

30.  Bernett J, Blumenthal DB, Grimm DG, Haselbeck F, Joeres R, Kalinina OV, et al. 849 

Guiding questions to avoid data leakage in biological machine learning applications. 850 

Nat Methods. 2024 Aug 9;21(8):1444–53. 851 

31.  Just MA, Pan L, Cherkassky VL, McMakin DL, Cha C, Nock MK, et al. Machine 852 

learning of neural representations of suicide and emotion concepts identifies suicidal 853 

youth. Nat Hum Behav. 2017 Oct 30;1:911–9. 854 

https://sciwheel.com/work/bibliography/7251068
https://sciwheel.com/work/bibliography/12081783
https://sciwheel.com/work/bibliography/12081783
https://sciwheel.com/work/bibliography/9382155
https://sciwheel.com/work/bibliography/9382155
https://sciwheel.com/work/bibliography/802674
https://sciwheel.com/work/bibliography/802674
https://sciwheel.com/work/bibliography/13886230
https://sciwheel.com/work/bibliography/13886230
https://sciwheel.com/work/bibliography/13886230
https://sciwheel.com/work/bibliography/12458037
https://sciwheel.com/work/bibliography/12458037
https://sciwheel.com/work/bibliography/14910349
https://sciwheel.com/work/bibliography/14910349
https://sciwheel.com/work/bibliography/4218124
https://sciwheel.com/work/bibliography/4218124
https://sciwheel.com/work/bibliography/16419192
https://sciwheel.com/work/bibliography/16419192
https://sciwheel.com/work/bibliography/16419192
https://sciwheel.com/work/bibliography/16751453
https://sciwheel.com/work/bibliography/16751453
https://sciwheel.com/work/bibliography/16751453
https://sciwheel.com/work/bibliography/4575204
https://sciwheel.com/work/bibliography/4575204
https://sciwheel.com/work/bibliography/4575204


 

40 

32.  Dukart J, Weis S, Genon S, Eickhoff SB. Towards increasing the clinical applicability 855 

of machine learning biomarkers in psychiatry. Nat Hum Behav. 2021 Apr 5;5(4):431–2. 856 

33.  Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model 857 

selection. International Joint Conference on Arti cial Intelligence. 1995; 858 

34.  Arlot S, Celisse A. A survey of cross-validation procedures for model selection. Stat 859 

Surv. 2010;4(0):40–79. 860 

35.  Geisser S. The Predictive Sample Reuse Method with Applications. J Am Stat Assoc. 861 

1975 Jun;70(350):320–8. 862 

36.  Bates S, Trevor H, Tibshirani R. Cross-Validation: What Does It Estimate and How 863 

Well Does It Do It? Journal of the American Statistical Association. 864 

2023;119(546):1434–45. 865 

37.  Krstajic D, Buturovic LJ, Leahy DE, Thomas S. Cross-validation pitfalls when selecting 866 

and assessing regression and classification models. J Cheminform. 2014 Mar 867 

29;6(1):10. 868 

38.  Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. 2nd ed. New 869 

York, NY: Springer New York; 2009. 870 

39.  Yang L, Shami A. On hyperparameter optimization of machine learning algorithms: 871 

theory and practice. Neurocomputing. 2020 Jul; 872 

40.  James G, Witten D, Hastie T, Tibshirani R. An Introduction to Statistical Learning. New 873 

York, NY: Springer New York; 2013. 874 

41.  Bishop CM. Pattern recognition and machine learning. Springer New York; 2006. 875 

42.  Varoquaux G, Raamana PR, Engemann DA, Hoyos-Idrobo A, Schwartz Y, Thirion B. 876 

Assessing and tuning brain decoders: Cross-validation, caveats, and guidelines. 877 

Neuroimage. 2017 Jan 15;145(Pt B):166–79. 878 

43.  Martinez-Plumed F, Contreras-Ochando L, Ferri C, Hernandez-Orallo J, Kull M, 879 

https://sciwheel.com/work/bibliography/10919123
https://sciwheel.com/work/bibliography/10919123
https://sciwheel.com/work/bibliography/14436933
https://sciwheel.com/work/bibliography/14436933
https://sciwheel.com/work/bibliography/340635
https://sciwheel.com/work/bibliography/340635
https://sciwheel.com/work/bibliography/5357279
https://sciwheel.com/work/bibliography/5357279
https://sciwheel.com/work/bibliography/16766156
https://sciwheel.com/work/bibliography/16766156
https://sciwheel.com/work/bibliography/16766156
https://sciwheel.com/work/bibliography/2867736
https://sciwheel.com/work/bibliography/2867736
https://sciwheel.com/work/bibliography/2867736
https://sciwheel.com/work/bibliography/1198412
https://sciwheel.com/work/bibliography/1198412
https://sciwheel.com/work/bibliography/9418856
https://sciwheel.com/work/bibliography/9418856
https://sciwheel.com/work/bibliography/818109
https://sciwheel.com/work/bibliography/818109
https://sciwheel.com/work/bibliography/12682559
https://sciwheel.com/work/bibliography/3545127
https://sciwheel.com/work/bibliography/3545127
https://sciwheel.com/work/bibliography/3545127
https://sciwheel.com/work/bibliography/13630472


 

41 

Lachiche N, et al. CRISP-DM Twenty Years Later: From Data Mining Processes to 880 

Data Science Trajectories. IEEE Trans Knowl Data Eng. 2021 Aug 1;33(8):3048–61. 881 

44.  Wirth R. CRISP-DM: Towards a standard process model for data mining. Proceedings 882 

of the 4th international conference on the practical applications of knowledge 883 

discovery and data mining; 2000. 884 

45.  Chakraborty J, Majumder S, Menzies T. Bias in machine learning software: why? 885 

how? what to do? Proceedings of the 29th ACM Joint Meeting on European Software 886 

Engineering Conference and Symposium on the Foundations of Software Engineering. 887 

New York, NY, USA: ACM; 2021. p. 429–40. 888 

46.  Liang W, Tadesse GA, Ho D, Li F-F, Zaharia M, Zhang C, et al. Advances, challenges 889 

and opportunities in creating data for trustworthy AI. Nat Mach Intell. 2022 Aug 17; 890 

47.  Demšar J, Zupan B. Hands-on training about overfitting. PLoS Comput Biol. 2021 Mar 891 

4;17(3):e1008671. 892 

48.  Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K, et al. The 893 

WU-Minn Human Connectome Project: an overview. Neuroimage. 2013 Oct 15;80:62–894 

79. 895 

49.  Finn ES, Shen X, Scheinost D, Rosenberg MD, Huang J, Chun MM, et al. Functional 896 

connectome fingerprinting: identifying individuals using patterns of brain connectivity. 897 

Nat Neurosci. 2015 Nov;18(11):1664–71. 898 

50.  He T, Kong R, Holmes AJ, Nguyen M, Sabuncu MR, Eickhoff SB, et al. Deep neural 899 

networks and kernel regression achieve comparable accuracies for functional 900 

connectivity prediction of behavior and demographics. Neuroimage. 2020 Feb 901 

1;206:116276. 902 

51.  Demeter DV, Engelhardt LE, Mallett R, Gordon EM, Nugiel T, Harden KP, et al. 903 

Functional Connectivity Fingerprints at Rest Are Similar across Youths and Adults and 904 

Vary with Genetic Similarity. iScience. 2020 Jan 24;23(1):100801. 905 

https://sciwheel.com/work/bibliography/13630472
https://sciwheel.com/work/bibliography/13630472
https://sciwheel.com/work/bibliography/14439655
https://sciwheel.com/work/bibliography/14439655
https://sciwheel.com/work/bibliography/14439655
https://sciwheel.com/work/bibliography/13631839
https://sciwheel.com/work/bibliography/13631839
https://sciwheel.com/work/bibliography/13631839
https://sciwheel.com/work/bibliography/13631839
https://sciwheel.com/work/bibliography/13480919
https://sciwheel.com/work/bibliography/13480919
https://sciwheel.com/work/bibliography/13919069
https://sciwheel.com/work/bibliography/13919069
https://sciwheel.com/work/bibliography/1343608
https://sciwheel.com/work/bibliography/1343608
https://sciwheel.com/work/bibliography/1343608
https://sciwheel.com/work/bibliography/832405
https://sciwheel.com/work/bibliography/832405
https://sciwheel.com/work/bibliography/832405
https://sciwheel.com/work/bibliography/7881149
https://sciwheel.com/work/bibliography/7881149
https://sciwheel.com/work/bibliography/7881149
https://sciwheel.com/work/bibliography/7881149
https://sciwheel.com/work/bibliography/10169036
https://sciwheel.com/work/bibliography/10169036
https://sciwheel.com/work/bibliography/10169036


 

42 

52.  Schreiber J, Singh R, Bilmes J, Noble WS. A pitfall for machine learning methods 906 

aiming to predict across cell types. Genome Biol. 2020 Nov 19;21(1):282. 907 

53.  Yagis E, Atnafu SW, García Seco de Herrera A, Marzi C, Scheda R, Giannelli M, et al. 908 

Effect of data leakage in brain MRI classification using 2D convolutional neural 909 

networks. Sci Rep. 2021 Nov 19;11(1):22544. 910 

54.  Cerqueira V, Torgo L, Mozetič I. Evaluating time series forecasting models: an 911 

empirical study on performance estimation methods. Mach Learn. 2020 912 

Nov;109(11):1997–2028. 913 

55.  De Gooijer JG, Hyndman RJ. 25 years of time series forecasting. Int J Forecast. 2006 914 

Jan;22(3):443–73. 915 

56.  Samala RK, Chan H-P, Hadjiiski L, Helvie MA. Risks of feature leakage and sample 916 

size dependencies in deep feature extraction for breast mass classification. Med Phys. 917 

2021 Jun;48(6):2827–37. 918 

57.  Emmanuel T, Maupong T, Mpoeleng D, Semong T, Mphago B, Tabona O. A survey on 919 

missing data in machine learning. J Big Data. 2021 Oct 27;8(1):140. 920 

58.  Poldrack RA, Huckins G, Varoquaux G. Establishment of best practices for evidence 921 

for prediction: A review. JAMA Psychiatry. 2020 May 1;77(5):534–40. 922 

59.  Vanwinckelen G, Blockeel H. Look before you leap: Some insights into learner 923 

evaluation with cross-validation. Statistically Sound Data Mining. 2015 Nov 27;3–20. 924 

60.  Badgeley MA, Zech JR, Oakden-Rayner L, Glicksberg BS, Liu M, Gale W, et al. Deep 925 

learning predicts hip fracture using confounding patient and healthcare variables. npj 926 

Digital Med. 2019 Apr 30;2:31. 927 

61.  Dagaev N, Roads BD, Luo X, Barry DN, Patil KR, Love BC. A Too-Good-to-be-True 928 

Prior to Reduce Shortcut Reliance. Pattern Recognit Lett. 2022 Dec; 929 

62.  Hu F, Chen AA, Horng H, Bashyam V, Davatzikos C, Alexander-Bloch A, et al. Image 930 

https://sciwheel.com/work/bibliography/10115597
https://sciwheel.com/work/bibliography/10115597
https://sciwheel.com/work/bibliography/14448892
https://sciwheel.com/work/bibliography/14448892
https://sciwheel.com/work/bibliography/14448892
https://sciwheel.com/work/bibliography/10989416
https://sciwheel.com/work/bibliography/10989416
https://sciwheel.com/work/bibliography/10989416
https://sciwheel.com/work/bibliography/332891
https://sciwheel.com/work/bibliography/332891
https://sciwheel.com/work/bibliography/15139794
https://sciwheel.com/work/bibliography/15139794
https://sciwheel.com/work/bibliography/15139794
https://sciwheel.com/work/bibliography/12348711
https://sciwheel.com/work/bibliography/12348711
https://sciwheel.com/work/bibliography/7865067
https://sciwheel.com/work/bibliography/7865067
https://sciwheel.com/work/bibliography/14910357
https://sciwheel.com/work/bibliography/14910357
https://sciwheel.com/work/bibliography/7960874
https://sciwheel.com/work/bibliography/7960874
https://sciwheel.com/work/bibliography/7960874
https://sciwheel.com/work/bibliography/14867178
https://sciwheel.com/work/bibliography/14867178
https://sciwheel.com/work/bibliography/14733700


 

43 

harmonization: A review of statistical and deep learning methods for removing batch 931 

effects and evaluation metrics for effective harmonization. Neuroimage. 2023 Jul 932 

1;274:120125. 933 

63.  Bender R, Lange S. Adjusting for multiple testing--when and how? J Clin Epidemiol. 934 

2001 Apr;54(4):343–9. 935 

64.  García-Pérez MA. Use and misuse of corrections for multiple testing. Methods in 936 

Psychology. 2023 Nov;8:100120. 937 

65.  Thompson WH, Wright J, Bissett PG, Poldrack RA. Dataset decay and the problem of 938 

sequential analyses on open datasets. eLife. 2020 May 19;9. 939 

66.  Dwork C, Feldman V, Hardt M, Pitassi T, Reingold O, Roth A. The reusable holdout: 940 

Preserving validity in adaptive data analysis. Science. 2015 Aug 7;349(6248):636–8. 941 

67.  Hardt M, Ullman J. Preventing false discovery in interactive data analysis is hard. 2014 942 

IEEE 55th Annual Symposium on Foundations of Computer Science. IEEE; 2014. p. 943 

454–63. 944 

68.  Chen C, Cao X, Tian L. Partial Least Squares Regression Performs Well in MRI-945 

Based Individualized Estimations. Front Neurosci. 2019 Nov 27;13:1282. 946 

69.  Komeyer V, Eickhoff SB, Grefkes C, Patil KR, Raimondo F. A framework for 947 

confounder considerations in AI-driven precision medicine. medRxiv. 2024 Feb 4; 948 

70.  More S, Antonopoulos G, Hoffstaedter F, Caspers J, Eickhoff SB, Patil KR, et al. 949 

Brain-age prediction: A systematic comparison of machine learning workflows. 950 

Neuroimage. 2023 Apr 15;270:119947. 951 

71.  Pourhoseingholi MA, Baghestani AR, Vahedi M. How to control confounding effects by 952 

statistical analysis. Gastroenterol Hepatol Bed Bench. 2012;5(2):79–83. 953 

72.  Snoek L, Miletić S, Scholte HS. How to control for confounds in decoding analyses of 954 

neuroimaging data. Neuroimage. 2019 Jan 1;184:741–60. 955 

https://sciwheel.com/work/bibliography/14733700
https://sciwheel.com/work/bibliography/14733700
https://sciwheel.com/work/bibliography/14733700
https://sciwheel.com/work/bibliography/1220268
https://sciwheel.com/work/bibliography/1220268
https://sciwheel.com/work/bibliography/14874891
https://sciwheel.com/work/bibliography/14874891
https://sciwheel.com/work/bibliography/8959071
https://sciwheel.com/work/bibliography/8959071
https://sciwheel.com/work/bibliography/644888
https://sciwheel.com/work/bibliography/644888
https://sciwheel.com/work/bibliography/13897817
https://sciwheel.com/work/bibliography/13897817
https://sciwheel.com/work/bibliography/13897817
https://sciwheel.com/work/bibliography/7882025
https://sciwheel.com/work/bibliography/7882025
https://sciwheel.com/work/bibliography/16152368
https://sciwheel.com/work/bibliography/16152368
https://sciwheel.com/work/bibliography/14439656
https://sciwheel.com/work/bibliography/14439656
https://sciwheel.com/work/bibliography/14439656
https://sciwheel.com/work/bibliography/1125309
https://sciwheel.com/work/bibliography/1125309
https://sciwheel.com/work/bibliography/5855134
https://sciwheel.com/work/bibliography/5855134


 

44 

73.  More S, Eickhoff SB, Caspers J, Patil KR. Confound removal and normalization in 956 

practice: A neuroimaging based sex prediction case study. In: Dong Y, Ifrim G, 957 

Mladenić D, Saunders C, Van Hoecke S, editors. Machine learning and knowledge 958 

discovery in databases applied data science and demo track: european conference, 959 

ECML PKDD 2020, ghent, belgium, september 14–18, 2020, proceedings, part V. 960 

Cham: Springer International Publishing; 2021. p. 3–18. 961 

74.  Hamdan S, Love BC, von Polier GG, Weis S, Schwender H, Eickhoff SB, et al. 962 

Confound-leakage: Confound Removal in Machine Learning Leads to Leakage. arXiv. 963 

2022; 964 

75.  Mitchell M, Wu S, Zaldivar A, Barnes P, Vasserman L, Hutchinson B, et al. Model 965 

cards for model reporting. Proceedings of the Conference on Fairness, Accountability, 966 

and Transparency  - FAT* ’19. New York, New York, USA: ACM Press; 2019. p. 220–967 

9. 968 

76.  Walsh I, Fishman D, Garcia-Gasulla D, Titma T, Pollastri G, ELIXIR Machine Learning 969 

Focus Group, et al. DOME: recommendations for supervised machine learning 970 

validation in biology. Nat Methods. 2021 Oct;18(10):1122–7. 971 

77.  Luo W, Phung D, Tran T, Gupta S, Rana S, Karmakar C, et al. Guidelines for 972 

developing and reporting machine learning predictive models in biomedical research: 973 

A multidisciplinary view. J Med Internet Res. 2016 Dec 16;18(12):e323. 974 

78.  Norgeot B, Quer G, Beaulieu-Jones BK, Torkamani A, Dias R, Gianfrancesco M, et al. 975 

Minimum information about clinical artificial intelligence modeling: the MI-CLAIM 976 

checklist. Nat Med. 2020 Sep;26(9):1320–4. 977 

79.  Gebru T, Morgenstern J, Vecchione B, Vaughan JW, Wallach H, Iii HD, et al. 978 

Datasheets for datasets. Commun ACM. 2021 Dec;64(12):86–92. 979 

80.  Holland S, Hosny A, Newman S, Joseph J, Chmielinski K. The Dataset Nutrition Label: 980 

A Framework To Drive Higher Data Quality Standards. arXiv. 2018; 981 

https://sciwheel.com/work/bibliography/10546046
https://sciwheel.com/work/bibliography/10546046
https://sciwheel.com/work/bibliography/10546046
https://sciwheel.com/work/bibliography/10546046
https://sciwheel.com/work/bibliography/10546046
https://sciwheel.com/work/bibliography/10546046
https://sciwheel.com/work/bibliography/13787964
https://sciwheel.com/work/bibliography/13787964
https://sciwheel.com/work/bibliography/13787964
https://sciwheel.com/work/bibliography/7291084
https://sciwheel.com/work/bibliography/7291084
https://sciwheel.com/work/bibliography/7291084
https://sciwheel.com/work/bibliography/7291084
https://sciwheel.com/work/bibliography/11432312
https://sciwheel.com/work/bibliography/11432312
https://sciwheel.com/work/bibliography/11432312
https://sciwheel.com/work/bibliography/2891569
https://sciwheel.com/work/bibliography/2891569
https://sciwheel.com/work/bibliography/2891569
https://sciwheel.com/work/bibliography/9668820
https://sciwheel.com/work/bibliography/9668820
https://sciwheel.com/work/bibliography/9668820
https://sciwheel.com/work/bibliography/12218601
https://sciwheel.com/work/bibliography/12218601
https://sciwheel.com/work/bibliography/13540029
https://sciwheel.com/work/bibliography/13540029


 

45 

81.  Schwab S, Held L. Statistical programming: Small mistakes, big impacts. Significance. 982 

2021 Jun;18(3):6–7. 983 

82.  Barnes N. Publish your computer code: it is good enough. Nature. 2010 Oct 984 

14;467(7317):753. 985 

83.  Soares C. Is the UCI repository useful for data mining? Portuguese Conference on 986 

Artificial Intelligence. 2003;209–23. 987 

84.  van Giffen B, Herhausen D, Fahse T. Overcoming the pitfalls and perils of algorithms: 988 

A classification of machine learning biases and mitigation methods. J Bus Res. 2022 989 

May;144:93–106. 990 

85.  Paleyes A, Urma R-G, Lawrence ND. Challenges in deploying machine learning: a 991 

survey of case studies. ACM Comput Surv. 2022 Apr 30; 992 

https://sciwheel.com/work/bibliography/12226453
https://sciwheel.com/work/bibliography/12226453
https://sciwheel.com/work/bibliography/1025208
https://sciwheel.com/work/bibliography/1025208
https://sciwheel.com/work/bibliography/13886297
https://sciwheel.com/work/bibliography/13886297
https://sciwheel.com/work/bibliography/13187012
https://sciwheel.com/work/bibliography/13187012
https://sciwheel.com/work/bibliography/13187012
https://sciwheel.com/work/bibliography/13886245
https://sciwheel.com/work/bibliography/13886245

