
S U R V E Y Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Sasse et al. Journal of Big Data (2025) 12:135
https://doi.org/10.1186/s40537-025-01193-8

†L. Sasse and E. Nicolaisen-
Sobesky contributed equally
to this work.

*Correspondence:
Kaustubh R. Patil
k.patil@fz-juelich.de

Full list of author information is
available at the end of the article

Overview of leakage scenarios in supervised
machine learning
L. Sasse1,2,3†, E. Nicolaisen-Sobesky1,2†, J. Dukart1,2, S. B. Eickhoff1,2, M. Götz4,5, S. Hamdan1,2, V. Komeyer1,2,6,
A. Kulkarni7, J. M. Lahnakoski1,2, B. C. Love8, F. Raimondo1,2 and Kaustubh R. Patil1,2,9*

Introduction
Machine learning (ML) has become a popular approach to make predictions, aid deci-
sion making, and gain insights into complex data in numerous scientific fields. Various
methodologies like supervised, unsupervised, generative, and reinforcement learning
define the ML landscape, each with its own unique strengths and applications. In super-
vised learning, the machine learns a function that links input to output by utilizing
labeled training data where the correct output is known, derived from example input-
output pairs [1]. Unsupervised learning deals with unlabeled data. The machine must
figure out the correct answer without being told about a ground truth and must there-
fore discover patterns and structures in the input data (e.g. using clustering) [1]. Genera-
tive learning is a machine learning approach centered on generating novel data samples.
This technique is commonly applied in tasks like producing images, texts, and various
other data types [2]. Reinforcement learning involves an agent interacting with an envi-
ronment, taking actions, and receiving rewards or penalties. Through repeated interac-
tions, the model autonomously learns the optimal strategy to maximize rewards, relying
less on external guidance for output determination [3].

Journal of Big Data

Abstract
Machine learning (ML) provides powerful tools for predictive modeling. ML’s
popularity stems from the promise of sample-level prediction with applications
across a variety of fields from physics and marketing to healthcare. However, if not
properly implemented and evaluated, ML pipelines may contain leakage typically
resulting in overoptimistic performance estimates and failure to generalize to new
data. This can have severe negative financial and societal implications. Our aim is to
expand understanding associated with causes leading to leakage when designing,
implementing, and evaluating ML pipelines. Illustrated by concrete examples, we
provide a comprehensive overview and discussion of various types of leakage that
may arise in ML pipelines.

Keywords  Machine learning, Generalization, Data leakage, Reproducibility

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1186/s40537-025-01193-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-025-01193-8&domain=pdf&date_stamp=2025-5-29

Page 2 of 23Sasse et al. Journal of Big Data (2025) 12:135

However, despite the due use and applicability of those methods, supervised learning
remains prominent for predictive modeling with applications in various domains includ-
ing health-care, physics, and climate science [4–12]. This is not only because super-
vised learning is well suited to learn from tabular data ubiquitously found in scientific
domains, but also because easy-to-use software libraries with hundreds of learning algo-
rithms and data wrangling tools have lowered the entry barrier for supervised ML-based
analyses (e.g. scikit-learn [13] and tidymodels [14]). These collaborative advancements
in accessible tools, expanding datasets, and evolving methodologies demonstrate the
considerable promise of supervised ML applications to drive transformative innovation
across diverse problem domains. This paper, therefore, is concerned with supervised
ML.

Despite the availability of easy-to-use ML software, most applications still require
assembling a custom ML-based data analysis pipeline satisfying unique considerations
in terms of data preprocessing, feature engineering, (hyper)parameter tuning, and model
selection. While end-to-end tools exist, opting for these often sacrifices control for con-
venience (e.g [15]). Therefore, implementing a correct ML pipeline and drawing valid
conclusions from the ensuing results remains challenging, and prone to errors. This
challenge extends beyond technical aspects, impacting the interpretability and trust-
worthiness of the outcomes. Handcrafted pipelines, although demanding, afford prac-
titioners the precision, control and insight required for complex data analysis scenarios.
Additionally, the evolving nature of data and algorithmic advancements continually
reshapes best practices, necessitating a balance between automation and custom solu-
tions to ensure accuracy and relevance in analyses. Striking this balance remains pivotal
for robust, reliable, and impactful ML applications.

ML models are powerful, and they are adept at exploiting any available information.
Thus, it falls on the practitioner to ensure that the modeling approach is reliable and
valid. As we will discuss, even simple ML pipelines, if not properly implemented and
interpreted, can lead to drastically wrong interpretations and severely problematic con-
clusions. These issues extend far beyond academic debates; they hold immense societal
relevance. Widespread adoption of flawed practices in machine learning can exact sub-
stantial societal and economic costs, underscoring the urgency to rectify and mitigate
these risks [16]. Similar to the replication crisis that recently engulfed the statistics com-
munities and much of the applied sciences, owing to misunderstanding and–intentional
or unintentional– misuse of p-values from null hypothesis significance testing [17, 18],
misunderstandings and malpractice in ML can lead to its own replication crisis [16,
19] with severe negative financial and societal ramifications [20]. It must be noted that
reproducibility of a ML pipeline is not sufficient to resolve this, as a reproducible ML
pipeline could be still incorrect in inference. Addressing such ML pitfalls is essential to
improve the quality and trustworthiness of ML-based data analyses, and consequently
will lead to better applications and foster societal acceptance. While previous works
have addressed several pitfalls in ML-based analysis [7, 21–27], only a few have covered
the wide range of threats posed by leakage [16, 28–30] (also see John Langford: ​h​t​t​p​s​:​/​/​h​
u​n​c​h​.​n​e​t​/​?​​p​​=​2​2​​​​​​)​.​​​

Data leakage is one of the most common and most critical types of error when apply-
ing ML. Data leakage refers to the leakage of “illegitimate” information into the train-
ing process of a ML model [16, 28]. For example, leakage occurs when the model gets

https://hunch.net/?p=22
https://hunch.net/?p=22

Page 3 of 23Sasse et al. Journal of Big Data (2025) 12:135

to learn from information about the supposed unseen test set. Therefore, a fair evalu-
ation of the generalization error is not possible, as the test set does not really represent
new, unseen data anymore. This likely means that any estimate of the error will be overly
optimistic [16]. The threat of data leakage can be exemplified by the case of a recent
study that claimed high accuracy (91%) in predicting suicidality in youth using neuro-
imaging data [31]. Such a model would be of high clinical relevance and could provide
valuable insights about underlying brain phenotypes. However, this paper was retracted
because it relied on leakage-prone feature selection leading to an overfitted model and
erroneous interpretations [20, 32]. Hence, the threat posed by leakage in ML pipelines
severely affects realistic estimation of generalization performance, insights gained, and
deployment.

Data leakage is a widespread pitfall on ML pipelines across numerous scientific fields
[16]. This highlights the importance of raising awareness among a very broad commu-
nity of researchers encompassing different fields. Recent studies have contributed to
raising awareness on the threats of data leakage [16, 28–30]. However, data leakage is
a complex issue that can happen in numerous ways, and often in subtle ways which are
difficult to pinpoint. Moreover, even though some types of leakage are recognized and
well-discussed in the literature, such as illegitimate use of the targets of the test data
[28], many scenarios of data leakage remain unexplored. All these subtleties and under
exploration of data leakage make its detection a complicated and tricky task. The lim-
ited awareness of its threats and its widespread presence in many fields, underscores the
urgency to raise awareness regarding a wide array of data leakage types in a compre-
hensible and accessible manner. To this end, we expand previous works on data leak-
age by providing a comprehensive overview and easily accessible visual representation
of various leakage scenarios, categorized in a user-centric and intuitive fashion. We hope
that this overarching survey on data leakage scenarios encourages more careful design
and evaluation of ML pipelines and inspires further investigation in this area. We aim
to equip readers with the necessary tools to effectively recognize leakage in their own
(and others’) work. This understanding will aid in avoiding these pitfalls, fostering more
robust and reliable ML-based analyses.

We would like to note that this work does not aim to cover the entire field of machine
learning, as it is too vast. For instance, we only touch upon time series analysis and do
not address unsupervised learning, which come with their own unique set of limitations
and considerations. We focus on supervised learning, however, most of the concepts and
guidelines presented here are generally applicable. The authors have noted the miscon-
ceptions and malpractices discussed here in open-source code available on the Internet,
as well as in code written by themselves, students, or collaborators. These observations
span various skill levels, ranging from beginners to domain experts and data analysis
experts. Therefore, the insights shared here can provide guidance for everyone from
novice to advanced ML practitioners, researchers, reviewers, and editors.

We start with a brief introduction of ML basics and the cross validation (CV) proce-
dure (Sect. 2) that will serve as a guide to understand the concepts used in the rest of
the article. This section is divided in three parts: 2.a) ML concepts, 2.b) Cross-validation
basics, and 2.c) Steps while designing a ML pipeline. Next, we present various examples
of leakage in ML pipelines together with empirical examples and illustrations (Sect. 3).

Page 4 of 23Sasse et al. Journal of Big Data (2025) 12:135

Finally, we discuss possible mitigations strategies (Sect. 4) followed by general conclu-
sions and key takeaways (Sect. 5).

Supervised machine learning: pipelines and evaluation
Supervised machine learning concepts

In a supervised machine learning task the user has access to labeled data consisting of
n feature-target pairs S = {(x1, y1), (x2, y2), (x3, y3), . . . (xn, yn)} where xi are
the features and yi are associated targets. The data samples are assumed to be indepen-
dently and identically distributed (I.I.D.) and sampled from a fixed probability distribu-
tion. The task of a ML algorithm is to learn a function or a model that maps features
to a target; f (xi) = yi. A model with discrete output is called a classifier, while one
with continuous output is a regressor, two commonly encountered scenarios. The goal
is to learn a model that generalizes on unseen data by providing accurate predictions.
A model is composed of parameters (e.g., weights in a multiple linear regression) and
often includes hyperparameters (e.g., regularization parameter λ of ridge regression).
Both contribute significantly to a model’s ability to generalize. While the parameters are
learned from the data using an optimization procedure, typically involving empirical
risk minimization, the hyperparameters need to be either set by the user or “tuned” by
searching for values that yield accurate predictions on hold-out data.

Cross validation basics: model assessment and model selection

The goal of ML is to create models that accurately predict outcomes on unseen data,
which requires learning generalizable information. However, because real-world test
data (e.g., future patients or scenarios not yet encountered by a self-driving car) are typi-
cally not available, ML practitioners often hold out a portion of the available data as a
proxy for test data to evaluate a model’s generalization performance. Assuming that the
underlying probability distribution of the data does not change, such an estimate helps
with model assessment as an indicator of what to expect on new data.

Cross validation (CV) is frequently employed for model assessment (Fig. 1) as it makes
efficient use of available data [33–36]. In a k-fold CV scheme, the data is divided into k
non-overlapping equally sized sets or folds. In each iteration of the CV procedure, one

Fig. 1  A schematic representation of the cross validation (CV) scheme: Here, we illustrate a single repeat of a k

-fold CV with three folds (k = 3) with the third fold being used as the test data

Page 5 of 23Sasse et al. Journal of Big Data (2025) 12:135

of the folds is used as the test data, while the rest are used for training. Iterating through
all folds completes one CV run (also called a repeat). The average performance across all
folds is computed as an estimate of generalization performance. To minimize biases that
could arise due to data splitting, it is a standard practice to repeat the CV process mul-
tiple times with different splits (e.g. 5 times repeated 5-fold CV) [37].

CV is also employed for model selection to select a model from a set of competing
options One example of these competing options are different models arising from
hyperparameter tuning [38] such as the cost of an SVM (support vector machine) [39].
Another example are different models arising from pipelines employing different pre-
processing and/or learning algorithms. The model with highest generalization per-
formance is typically selected. CV provides a general and practical method for model
selection even in the case of complex model parametrization. This is often found in ML
algorithms where model selection statistics like Akaike’s information criterion might not
be feasible. For a more comprehensive coverage of the topic, we refer the reader to excel-
lent sources (e.g [38, 40, 41]).

Both model assessment and model selection are often a part of a ML-based data analy-
sis pipeline. However, as will be discussed in more detail below (see Sect. 3.a), problems
arise if the two roles are confused [37]. Therefore, to cleanly and explicitly differentiate
between these two roles of CV (model selection and estimating generalization error), it
is necessary to use nested cross-validation [42], also known as double cross-validation.
Within a nested CV scheme, the inner CV encompasses all data-dependent decisions
and performs model selection (e.g., determining optimal hyperparameters or feature
selection) while the outer CV is responsible for model assessment, (i.e. evaluating the
model after a finalized model selection on previously completely unseen new data). The
key point here is that any decision made on data (i.e. the decision to select a specific
model) requires yet again more data, that was not involved in making the decision, to
correctly estimate the generalization error.

Designing a ML pipeline

The process of designing a ML-based data analysis pipeline can be broadly categorized
into the following steps: S-I) Task definition, S-II) Data collection and preparation, S-III)
Data preprocessing, S-IV) ML algorithm definition, and S-V) Definition of evaluation
scheme and metrics. If the goal of the analysis extends beyond assessing generalization
performance, additional steps might be employed, S-VI) Interpretation and deployment.
While each of these steps requires multiple decisions that must be made in a data-driven
fashion, it is possible and indeed necessary to define how each decision should be made
a priori. Mistakes in the data-driven decision making process can lead to data leakage.
For more elaborate analysis scenarios, we refer the reader to the CRoss-Industry Stan-
dard Process for Data Mining [43, 44].

S-I) task definition

Definition of the target variable y(e.g., disease status or behavioral scores) and the fea-
tures to be used (i.e., x, e.g., pixel values in images or functional connectivity derived
from neuroimaging data). Consideration of any confounds that can obscure the intended
feature-target relationship must be taken into account (e.g., age or sex are often consid-
ered as confounds in biological and clinical applications).

Page 6 of 23Sasse et al. Journal of Big Data (2025) 12:135

S-II) data collection and data preparation strategies

Here decisions need to be made both before and after data collection. Before data collec-
tion, decisions to deal with known biases should be made (e.g. equal sampling of males
and females, or of case and control observations; see [45, 46] for a detailed treatment
of this topic). After collection the data might need preparation. This may involve sub-
sampling (such as selection of only females for sex-specific analysis), feature extraction
like connectivity from brain imaging data, and feature preparation like normalization of
images. Importantly, we define data preparation as processing exclusively applied to a
single data point or sample independently of others. Open and already prepared data are
often available and are used directly by many practitioners.

S-III) data preprocessing strategy

Optional data preprocessing steps involving transformations applied across multiple
samples are defined. These steps are typically applied to the features, and may include
feature normalization, feature selection, dimensionality reduction, and treatment of
missing values. Note that domain-specific data preparation and (pre)processing is often
employed and the reader is requested to refer to appropriate literature for details.

S-IV) ML algorithm definition

One or more ML algorithms suitable for the task at hand must be selected, such as classi-
fication for predicting disease status, or regression for predicting continuous behavioral
scores. That is, practitioners should a priori define a set of candidate models to involve
in model selection. If the ML algorithm includes hyperparameters, the practitioner must
either set the hyperparameter values or define a search space and search strategy for
tuning them using data (in the model selection process).

S-V) definition of evaluation scheme and metrics

An evaluation scheme must be chosen for model assessment, such as train-test split, k

-fold CV or use of data to be collected in the future. If the pipeline requires hyperpa-
rameter tuning, the chosen scheme should take this into account, for instance by using
nested CV. Evaluation metrics appropriate for the task must be selected, such as clas-
sification accuracy and area under the receiver operating characteristic curve (AUROC)
for classification or mean absolute error (MAE) and coefficient of determination (r2) for
regression.

S-VI) interpretation and deployment

The selected model can be used to gain insights into the structure of the data. Implic-
itly interpretable models provide parameters that can be used, e.g., weights of a linear
SVM, or additional processing during or post model construction might be needed, e.g.,
feature importance scores. In real-world application scenarios, the selected pipeline is
deployed for making predictions on new samples. In this case, the practitioner must
define how the new samples will be acquired and processed before making predictions.
While deployment is not considered in typical research settings, as we shall see, it serves
as a useful concept for avoiding some potential pitfalls.

Page 7 of 23Sasse et al. Journal of Big Data (2025) 12:135

Leakage in ML pipelines
Data leakage is a common and critical error in ML pipelines. Any data-driven choice
made within any step of a ML pipeline (see Section 2c), whether concerning preprocess-
ing, learning, or prediction, must be validated using new unseen data. Failure to use
unseen data amounts to leakage and results in inaccurate generalization performance
estimates on the data at hand. We take a general view of leakage to cover inappropri-
ate use of data in different parts of a ML pipeline which can lead to erroneous (either
optimistic or pessimistic) estimation of generalization performance or results in non-
deployable models. Below, we describe several types of leakage assuming that the ML
pipeline employs CV for estimating generalization performance.

Test-to-train leakage

We begin with a type of leakage which we call test-to-train leakage as in this case infor-
mation is leaked from the test set into the training process. Several scenarios can lead to
test-to-train leakage, such as failure to separate training and test data, failure to consider
dependent samples, application of preprocessing before data splitting, and improper
model selection.

The most straightforward case happens when the separation between training and test
data is not followed [47], i.e. the test samples are used for training (Fig. 2). As the model
can learn patterns in the test data, it can result in high test accuracy. However, this can-
not be considered a correct estimate of generalization performance as the test data was
not unseen. That is, when the separation between training and test data is breached, the
model risks fitting to the specific patterns present in the test set. For instance, a k-near-
est neighbors (KNN) model (with k = 1) will simply remember all the training samples it
has seen, and therefore will achieve perfect prediction if the model is “tested” on previ-
ously seen training samples. Of course, the resulting error estimate can’t possibly hold
on truly unseen new data, so that this error estimate is overly optimistic. Another exam-
ple is optimizing a model to predict a particular test set. This has happened previously in

Fig. 2  Test-to-train leakage: Using the test data as a part of the training data leads to leakage, since the model
is able to learn patterns from the test data during training, which usually results in overoptimistic generalization
performance estimates. Red color indicates the problematic steps

Page 8 of 23Sasse et al. Journal of Big Data (2025) 12:135

a ML competition where multiple evaluations on the test set were performed, leading to
disqualification of the team and consequently withdrawal of the associated paper1.

Another case where this type of leakage can happen is when the samples are not inde-
pendent of each other. When data samples can be assumed I.I.D., randomly splitting
them into training and test sets is sufficient. However, when the I.I.D. assumption is vio-
lated, more care must be taken to avoid related samples being split across training and
test sets. An example of violation of the I.I.D. assumption is data that contains twins or
siblings as is the case with the Human Connectome Project - Young Adult cohort [48].
Functional Connectivity (FC) as a marker of brain organization is often used as a feature
set to predict target variables such as behavioral scores in brain imaging research [49,
50]. Due to heritability, similarity between FC features (and likely also of target variables)
is typically higher for twins and siblings than for independently drawn samples [51]. If
the twins are allowed to split between training and test sets, this is akin to duplicating
the samples albeit noisily, therefore a model can learn about samples in the test set from
their siblings in the training set. The prediction performance is therefore higher when
splitting family members across folds than if the family members are grouped together
(Fig. 3) [29]. This is an important pitfall, since most often the goal is to build models that
will generalize beyond specific families. The ungrouped CV cannot give us an estimate
of the error that we would expect for completely new samples, i.e. from new, unseen
families. Further examples demonstrating such leakage include, existence of the same
genomic loci in the training and test sets when performing cross-cell type predictions
[52], and using 2D slices from the 3D brain images of the same individual for training
and testing for predicting neurodegenerative disease [53].

In some task domains data does not follow the I.I.D. assumption [54]. This happens for
instance in time series forecasting where the goal is to predict the future using historical
data [54, 55]. This happens because the data at consecutive timepoints are associated.

1 ​h​t​t​p​s​:​​/​/​d​s​w​​a​l​t​e​r​.​​g​i​t​h​​u​b​.​i​o​​/​m​a​c​h​​i​n​e​-​l​e​​a​r​n​i​​n​g​s​-​f​​i​r​s​t​-​​c​h​e​a​t​i​​n​g​-​s​​c​a​n​d​a​l​.​h​t​m​l.

Fig. 3  Test-to-train leakage due to violation of I.I.D. assumption in cross-validation: Functional connectivity was
estimated using resting-state functional magnetic resonance imaging data of the Human Connectome Project -
Young Adult cohort (HCP-YA). Functional connectivity was then used to predict three psychometric targets (x-axis),
each in a 10-fold cross-validation scheme. HCP-YA data contain siblings, and siblings are known to have similar
connectomes. Therefore, allowing the siblings to be split across training and test sets (red bars, without grouping)
leads to leakage while grouping siblings in training or test sets (blue bars, with grouping) shows overall lower ac-
curacy (Pearson’s r between true and predicted target, y-axis)

https://dswalter.github.io/machine-learnings-first-cheating-scandal.html

Page 9 of 23Sasse et al. Journal of Big Data (2025) 12:135

Hence, application of standard cross-validation is inadequate here as it disrupts the tem-
poral sequence by splitting sections of the time series and randomly assigning them to
training or test folds. Subsequently, past and future data is used inconsistently, i.e. future
data is used to predict the past, leading to leakage. This can be seen as a form of test-to-
train leakage, producing misleading estimates of predictive performance which will not
be representative if such a model is deployed in the real-world. To address this, specific
techniques, such as use of out-of-sample (holdout) test data corresponding to the future
(with respect to the training set), must be employed to obtain proper generalization esti-
mates [54]. We refer the reader to [16] for further details.

In addition to leakage due to the same or similar samples, data leakage can also hap-
pen via modeling preprocessing parameters (preprocessing leakage). A common case
of such test-to-train leakage arises when data preprocessing, such as dimensionality
reduction (e.g. principal component analysis (PCA)), confound removal, feature normal-
ization or scaling, and imputation for filling in missing values, is applied to the whole
dataset before splitting it for CV [16, 29]. Practitioners may not immediately recognize
this as leakage, since the ML model is trained after splitting the data. However, estimat-
ing the preprocessing parameters on the whole dataset invalidates the train-test separa-
tion (Fig. 4). That is, data in the training set is transformed dependent on data in the test
set, and crucially, ML models can exploit this to learn about the test set. Therefore, the
resulting estimate of generalization performance is likely to be overly optimistic, though
it can also decrease the performance of the models [29]. Empirical demonstrations of
such leakage in the literature include performing confound removal [29] or feature selec-
tion on the whole dataset (Fig. 5) [23, 29, 56], and oversampling to counter data imbal-
ance [25]. It should be noted that such leakage can happen when preprocessing either
the features or the target values. For instance, when the target is created by combining
multiple variables (e.g., several behavioral measures) using a dimensionality reduction
method such as PCA.

This case of test-to-train leakage can be avoided by learning the preprocessing param-
eters on the training set and then applying them to the training and the test sets. For
example, if one wants to apply feature selection, one should select features based on
the training set after splitting data. Crucially, this means that each iteration of CV will
involve its own feature selection process which may select a different set of features.

Fig. 4  Test-to-train leakage: Preprocessing is performed on the whole data before data splitting, yielding a pre-
processing model learned from both training and testing data. In a correct implementation, the parameters of a
preprocessing model should be estimated in the training set and applied to both training and test sets. Red color
indicates the problematic steps

Page 10 of 23Sasse et al. Journal of Big Data (2025) 12:135

Since this implies more computation and also makes interpreting the results more diffi-
cult given that it is necessary to keep track of different features in different CV iterations,
practitioners sometimes erroneously avoid splitting the data before data preprocessing.
Note that data preparation strategies that rely on a single sample and thus preserve the
train-test separation do not lead to such leakage. For instance, data imputation can be
performed in a within-sample fashion such that missing values are estimated using other
features of that sample (see, e.g [57]).

A particular case of test-to-train leakage occurs when conflating the two roles of CV,
model assessment and model selection (see Sect. 2.b). Although not immediately obvi-
ous, this can be considered test-to-train leakage, because by running CV for many differ-
ent models, and subsequently making a decision based on the results (i.e. selecting one
model among them), the test folds used in the CV essentially become part of the train-
ing data. It is important to highlight here that training data does not just refer to data
that an algorithm uses to fit parameters but also to data that researchers use to make
data-driven decisions. Therefore, the error estimate from the model selection CV is not
a valid estimate of true generalization performance. For instance, consider an ML algo-
rithm with a single hyperparameter such as a linear kernel SVM with its hyperparameter
called cost within a 5-fold CV. For each fold the cost value that provides the lowest error
on the set is used. The CV estimate of error is calculated by averaging across the test
sets. As a result, the error obtained during model selection is likely an overoptimistic
estimate of the generalization error (model assessment) [23, 24, 37, 58]. Using nested CV
in which the hyperparameter is tuned in an inner CV and the selected model is applied
on the test set avoids such leakage.

One of the questions a practitioner may face in this regard concerns the fact that dif-
ferent models and hyperparameters are selected in each fold of the CV. Students wonder
how they can report and use that model, since there is no such thing as “the model”.
However, this point of view fails to acknowledge that simply fitting parameters of a
model in each iteration of CV will also always result in different models. Instead, nested
CV presents an opportunity rather than a challenge, since researchers can then easily
test the stability of fitted parameters and hyperparameters chosen in the model selec-
tion process over multiple iterations by inspecting each trained (and selected) model.
We provide an empirical illustration, again using neuroimaging data to predict behavior,
that indeed shows that CV estimates are overoptimistic compared to nested CV esti-
mates (Fig. 6).

Fig. 5  Pseudocode for leakage-inducing and leakage-free feature selection

Page 11 of 23Sasse et al. Journal of Big Data (2025) 12:135

Such leakage is not restricted to hyperparameter tuning and can happen with any data-
driven choices, such as selection of an algorithm (e.g., SVM versus random forests) and
data transformations (e.g., PCA, univariate feature selection) [37]. Such choices should
be treated in the same way as hyperparameters, i.e. tuned and evaluated using nested
CV. In other words, all data-driven choices within a ML pipeline should be considered as
a part of learning, hence they must be validated on data not seen by the models to cor-
rectly estimate generalization performance. For more details see [59].

Test-to-test leakage

Test-to-test leakage is a covert type of leakage that arises due to erroneous information
sharing between the test samples. For the majority of ML applications samples in the test

Fig. 6  Effect of erroneous usage of CV for estimating generalization performance: Three targets (behavioral scores)
were predicted in a 5-fold CV with 5 repeats using a subset of the HCP-YA S1200 release consisting of 369 unrelated
subjects (192 males, 177 females) with ages ranging from 22 to 37 (M = 28.63, SD = 3.83). In one case the CV was
used for hyperparameter tuning and estimation of generalization performance simultaneously (i.e., “simple” CV)
and the mean values (light blue) and maximum values (dark blue) across folds were reported. In the other case
nested CV was performed such that hyperparameter tuning was performed for each test fold independently in an
inner CV loop applied on the training folds of the outer CV loop. Again, mean values (red) and maximum values
(green) across folds are reported. The effect of reporting the maximum value across folds rather than the mean
can be visualized

Page 12 of 23Sasse et al. Journal of Big Data (2025) 12:135

set should be treated independently. That is, processing and prediction of a given test
sample should not depend on information from other test samples. Test-to-test leakage
happens when the test set is used for estimating preprocessing parameters (Fig. 7). In
other words, instead of a single preprocessing model derived from the training samples
(see Fig. 1 for correct implementation) two preprocessing models are estimated: one
using the training samples and applied to training samples, and another using the test
samples and applied to test samples. For example, a practitioner may wish to demean
their features. They may then estimate the mean of each feature in the training data
and use these estimations to demean the training set. The error occurs if instead of also
applying these estimations to the test data, the practitioner then estimates the mean val-
ues on the test data to demean the test data. This is wrong, because it implies that indi-
vidual samples in the test data are demeaned depending on other samples in the test
data.

Another complication that arises in a pipeline that does not treat an individual test
sample independently of other test samples, is that it cannot be deployed, and it might
fail completely when applied to a single test sample. In the previous example of demean-
ing for instance, the demeaning could not be applied since the demeaned feature will
be zero. In addition, these kinds of preprocessing steps attempt to estimate the param-
eters for a population, and estimates of parameters such as the mean are unlikely to be
accurate from the typically smaller test set even if they did not result in impermissible
operations.

Another case of test-to-test leakage can happen due to inappropriate use of the predic-
tions obtained in CV. With repeated CV, which is usually recommended to avoid biases
due to random data splitting, one obtains multiple predictions for each sample. Com-
bining each sample’s predictions across CV repeats, e.g., by averaging, causes leakage
(Fig. 8). Although this may seem like a rather elegant way to obtain a single prediction
per sample and in turn a single error estimate, this procedure has two negative conse-
quences. First, it generates ensemble results, and the performance reflects an ensemble
of models built across repeats and not a single model as the practitioner intended and
might claim. Second, it increases the effective number of CV folds (k) because across
CV repeats the same data point is predicted using different combinations of training

Fig. 7  Test-to-test leakage: Preprocessing is performed in the test and training sets independently. Red color in-
dicates the problematic steps

Page 13 of 23Sasse et al. Journal of Big Data (2025) 12:135

samples, effectively reducing the out-of-sample data points. With a high number of rep-
etitions, the averaged prediction would be influenced by all other data points akin to
leave-one-out (LOO) CV, and the claim that the results reflect k-fold strategy would be
wrong. These two reasons can lead to overoptimistic results.

We note that LOO per se is not problematic if properly implemented and with a cor-
rect evaluation metric that can be calculated for each sample separately and does not
combine the samples. For instance, classification accuracy is suitable in a classification
task, whereas AUROC is not. Similarly, when using LOO mean absolute error is appro-
priate but Pearson correlation should not be used.

Feature-to-target leakage

Feature-to-target leakage occurs when the target is constructed using one or more fea-
tures in the first place (Fig. 9). For example, data is first clustered using some or all the
features and the resulting cluster IDs are used as the target. Subsequent generalization
estimation using CV on this data is likely optimistic as the supervised classification algo-
rithm will simply need to reverse engineer the clustering process which it should be able

Fig. 9  Feature-to-target leakage: The features include a variable, indicated with red color, that directly contributes
to the target

Fig. 8  Test-to-test leakage due to averaging of predictions: For simplicity we show two runs of CV, and the major
parts of CV are abstracted. Red color indicates the problematic steps

Page 14 of 23Sasse et al. Journal of Big Data (2025) 12:135

to in most cases. Note that it is valid to use cluster IDs as target to train a classification
model and apply it to new unseen data.

Feature-to-target leakage is also evident when one or more variables informative of the
target are available during learning but not at the deployment phase. Since these features
carry information that the models can learn from, it will lead to a high CV accuracy
and the model might seem acceptable. However, this model is not deployable as the cru-
cial features will not be available at the test time. As an example, consider a healthcare
application where the goal is to diagnose a disease based on radiology data. To generate
training data, radiology experts manually label each image as diseased or healthy. While
labeling the data, the experts also make notes such as the size and location of the abnor-
mality. If these notes are used together with the radiology images when building and
validating models, it can lead to above mentioned issues. Given that these notes are pre-
dictive, the models will utilize them, and as a result, the CV will likely demonstrate high
performance. However, these manually created notes will not be available during real-
world use as the goal of such an application is to avoid manual annotation. Therefore, a
model trained in this way cannot be deployed.

More generally, this type of leakage occurs due to differing train and real test data dis-
tributions which again violates the I.I.D. assumption. However, as CV is performed only
in the training data the predictive information available is used providing an optimis-
tic estimate of generalization performance. As such, this scenario is similar to reliance
on confounds [60] and shortcut learning [61] where a model learns unintended signals
prominently present in the training data which then hampers generalization to unseen
data in which these signals are missing. While this scenario could be viewed as learning
incorrect information rather than leakage, we categorize it as leakage because it results
in overestimation of the model’s ability to generalize which is typically the culmination
of academic exercises. Note that feature-to-target leakage has also been termed as target
leakage2 but we reserve this term for another type of leakage described below.

Target leakage

We define target leakage as the scenario where the target is utilized in the prediction
process. This is an overt kind of leakage that can occur due to use of specific algorithms
and preprocessing steps that rely on the target.

An example is misapplication of the partial least squares (PLS) algorithm, which is
popular in several fields. PLS is a bilinear factor model that identifies a new space repre-
senting the covariance between the features X and target Y spaces. As PLS estimates a
shared latent space, it generates beta values for both X and Y . If the beta values Y are
also used instead of only that of X to make predictions, then one requires the target
values of the test examples, resulting in data leakage. When performing CV, the target
values of the test data, are available and thus one could provide them at the test time to
generate the latent space of the test data, but this will result in leakage in addition to cre-
ating a non-deployable model. Thus, when using PLS the practitioner should make sure
that only X values are used for prediction. Note that most libraries provide a correct
implementation of PLS.

2 ​h​t​t​p​:​/​​/​d​o​w​n​​l​o​a​d​s​.​​a​l​t​e​​r​y​x​.​c​​o​m​/​b​e​​t​a​w​h​_​x​​n​e​x​t​​/​M​a​c​h​​i​n​e​L​e​​a​r​n​i​n​g​​/​M​L​T​​a​r​g​e​t​L​e​a​k​a​g​e​.​h​t​m.
https://h2o.ai/wiki/target-leakage/.

http://downloads.alteryx.com/betawh_xnext/MachineLearning/MLTargetLeakage.htm
https://h2o.ai/wiki/target-leakage/

Page 15 of 23Sasse et al. Journal of Big Data (2025) 12:135

Another case of target-leakage can occur while trying to mitigate measurement bias
by means of data harmonization. As data collection becomes more accessible and wide-
spread, pooling data together from different sites has become increasingly common. Dif-
ferences in data collection protocols and measurement devices can induce systematic
biases. To address this, batch-effect removal [22] or data harmonization [62] is used. If
the data are harmonized across sites (e.g., by matching covariances) too aggressively, it
could also remove variance of interest that is related to the target. To avoid this, harmo-
nization methods can preserve variance related to user-specified covariates which can
also include the target. When harmonizing new data, the same covariates must be pro-
vided for each test sample. Effectively, while it is beneficial to preserve variance related
to the target while harmonizing, the target values must be available when making pre-
dictions on test data. This presents two possible ways to implement harmonization while
estimating generalization performance using CV, both of which lead to leakage. First,
one can harmonize all the data before creating splits which violates the train-test data
separation requirement. Second, the target values of the test set are needed for harmoni-
zation which amounts to target leakage and also precludes deployment. Overall, the use
of harmonization in a ML pipeline while explicitly preserving the target-related variance
can be considered as target leakage.

Dataset leakage: dataset decay

In traditional statistics it is widely recognized that testing multiple hypotheses (e.g.,
mass-univariate hypothesis testing) can result in spurious discoveries (type I error), and
hence approaches to correct for multiple comparisons are utilized [40, 63, 64]. The mul-
tiple testing issue might not seem pertinent to an individual researcher who only aims
to test a single hypothesis using a given dataset. On a larger scale, however, multiple
researchers testing different hypotheses on the same dataset leads to an increased global
likelihood of false positive findings, referred to as “dataset decay” [65]. In other words,
dataset decay means that as more hypotheses are tested in a specific dataset, the utility
of such a dataset to yield generalizable results decreases.

In some fields, for example neuroimaging, the availability of large datasets suitable
for ML analysis is relatively limited, e.g. Human Connectome Project and Alzheimer’s
Disease Neuroimaging Initiative. Consequently, these datasets are extensively used by
a multitude of researchers in the field. This widespread usage has sparked a competitive
environment where there is a continual race to develop new methods that outperform
existing state-of-the-art scores. However, this intense focus on a few datasets and high
accuracy can lead to dataset decay such that the overuse and repeated analysis of the
same datasets increases the rate of false positive findings. This, in turn, would diminish
the effectiveness of such models for future research and innovation, decreasing general-
izability of the findings. For this reason, we consider this issue as a type of leakage (data-
set leakage).

Furthermore, there is another angle to dataset leakage, which happens when a
researcher’s data analysis strategy is informed by previous analyses carried out on the
same data, i.e. adaptive data analysis or circularity [66]. This not only increases the
number of comparisons but also introduces dependency between analyses, frequently
leading to further false discoveries and inflated performance estimates [67]. In fact, our
empirical demonstrations may be a good example of such overfitting: In both Figs. 4 and

Page 16 of 23Sasse et al. Journal of Big Data (2025) 12:135

6, kernel ridge regression and partial least squares regression were used for predicting
a number of behavioral scores based on functional connectivity. These two models are
well known to work on this task and have been chosen for this exact reason [50, 68].
Importantly, they are known to work well on the exact dataset we have used here - the
HCP-YA. This could explain why instances of these models outperformed models found
by Auto-ML. However, it is important to note that this conclusion for this specific case
is only suggestive and further evaluations using additional datasets are needed to assess
whether the algorithms and resulting outcomes are truly overfitted.

Confound leakage

A ML model can be influenced by confounding factors which in turn can influence its
predictions. Confounding factors are related to both the features and the target. Depend-
ing on the goal of a study, it may or may not be desirable to minimize their impact. If the
goal of a study is to simply predict a target as well as possible, then confounding may
not necessarily be a worry [69]. But if researchers want to gain insight about the spe-
cific relationship between features and target independent of the confounding factors,
strategies to mitigate the effect of confounders must be applied. A common example of a
confounding factor in brain imaging studies is age. For instance, brain imaging can accu-
rately reflect a person’s age and can also contain information about age-related diseases
[70]. The problem here is that the model simply learns how brain images may change
with the natural aging process but may not learn anything about the specific changes
and processes related to pathology. From a prediction point of view this may be an issue
in some cases, for instance a young person with pathology will not be identified as a
patient. Furthermore, such a model is likely less helpful in gaining specific biological
insight than a model that learns about processes specifically involved in the disease.

Thus, if not properly controlled or accounted for, confounding can lead to correct
predictions but may mislead the researcher to incorrectly conclude that their model is
learning about the specific disease-related processes. For example, a particular feature of
brain structure might be erroneously deemed important in the prediction of Parkinson’s
disease, whereas the association is actually due to the confounding effect of age. In other
words, the brain structural feature changes with increasing age, and increasing age also
leads to a higher likelihood of developing Parkinson’s disease, but the structural feature
in reality has nothing to do with the disease.

However, even if ML practitioners do not care about interpretability or insight with
respect to their model and how it represents the relationship between features and tar-
get, confounding factors can be a problem. That is, confounding can also degrade the
model’s performance, especially when the model is deployed in environments where the
distribution of the confounding variable is different. This is akin to the assumption that
the data used to train a model should follow the same distribution as the data for which
the model is deployed, with the only difference being that confounds in this scenario are
not modeled explicitly (but importantly change the relationship between features and
target). Thus, the model trained and evaluated in a particular distribution (of the con-
founding factor) will lead to overly optimistic estimates of the generalization error, that
may not tell us about how the model will perform on data for which the distribution of
the confounding factor is changed.

Page 17 of 23Sasse et al. Journal of Big Data (2025) 12:135

Feature-wise confound removal by means of linear regression (i.e. confound regres-
sion) is a standard method used to deal with confounding effects in retrospective data
analyses which is a common scenario in ML [71, 72]. As mentioned before, it is rec-
ommended to perform confound regression in a CV-consistent manner to avoid test-
to-train data leakage [73]. However, it is important to highlight that the process of
confound regression itself can leak information into the features especially when the
feature-target distribution is skewed [74]. In this case, variance associated with the con-
founds is injected into the features rather than being removed as expected. This type of
leakage becomes particularly problematic when the confounds are strongly associated
with the target and the leakage increases with the number of features. Confound-leakage
can lead to above-chance generalization performance estimates, even when the relation-
ship between the features and the target is destroyed. This provides a method to check
for potential confound leakage by shuffling each feature independently and performing
CV. If the CV accuracy is above-chance, then one can conclude that confound leakage is
possible on this dataset.

Possible mitigation strategies
In this section we provide advice to improve common reporting practices to facilitate
the detection of leakage as well as to increase reproducibility in ML pipelines. First we
should mention that excellent recommendations exist for reporting ML models such
as Model Cards [75] and Data, Optimization, Model and evaluation (DOME) recom-
mendations [76]. Further guidelines have been proposed for specialized domains such
as biomedical applications [77] and minimum information about clinical artificial intel-
ligence modeling [78]. Data processing and quality reporting have also been discussed
(e.g. Datasheets for Datasets [79] and Data Nutrition Labels [80]).

However, as the application contexts and modeling intricacies of ML-based analyses
expand and grow in complexity, we think it is necessary to refine current recommenda-
tions, especially by making data processing and model selection and assessment strate-
gies more transparent. Effective communication of ML pipelines can take various forms.
Textual descriptions offer high-level overviews of a pipeline and its components, provid-
ing a conceptual understanding. However, such descriptions can fall short.

When documenting the experimental setup, it is crucial to provide comprehensive
details. However, ambiguous descriptions hinder understanding and replicability. For
instance, stating that “default (hyper)parameters” were utilized for a given algorithm is
inadequate as default hyperparameters are not universally defined and can vary between
software implementations and labs. Moreover, defaults may change over time and with
software updates. Therefore, to guarantee replicability, it is essential to report the specif-
ics of the set up including data processing, model hyperparameters, training and evalua-
tion procedures, as well as the software packages used and their corresponding versions.

In addition, there are several instances where the method description, whether writ-
ten or verbal, is insufficient to detect leakage. In some cases, the description seems to
be correct, even when leakage is present. Therefore, researchers and reviewers should
not only rely on the written description, but instead insist on reviewing the code written
to implement the methods. To illustrate, let us look at this example method descrip-
tion: “We performed feature selection using LASSO followed by an SVM classifier
with a radial basis function kernel. Both feature selection and hyperparameter tuning

Page 18 of 23Sasse et al. Journal of Big Data (2025) 12:135

were performed on the training folds within a cross-validation loop”. Based on this, a
reader would assume that the procedures were correctly implemented. However, when
we were unable to replicate the results on the same data, we decided to examine the
code more closely. The issue became immediately apparent: test-to-train leakage dur-
ing feature selection using LASSO. Although both steps, feature selection and hyper-
parameter optimization, were performed within a CV loop as mentioned in the text,
these two steps were implemented in two separate CV loops (see Fig. 5). The first CV
loop performed feature selection, correctly only on the training folds, and noted which
features were selected (nonzero LASSO weights). The features selected more than once
across CV folds were retained. Then in another CV loop, an SVM classifier was trained
on the training folds with hyperparameter tuning while using only the selected features
and tested on the test fold. It is clear that this procedure causes leakage even though the
text description can be interpreted as being correct. It is crucial to note that the feature
selection method (as long as it is data driven) or the fact that the same CV fold struc-
ture was used for the two loops, does not prevent the leakage. The problem arises in the
first CV loop where choice of which features to use was made using all the data. There-
fore, the textual description of the process was insufficient to detect the issue of leakage.
However, a quick examination of the underlying code clarified the situation. This high-
lights the importance of transparency in machine learning research and practice, and
we strongly encourage researchers and practitioners to share their code. In addition, to
avoid such errors before publication it is crucial that labs implement their own standard
procedures to perform adequate code review. Since internal code review might not catch
all errors, a greater emphasis should be put by journals and reviewers on reviewing code
during the peer-review process.

Sharing source code allows for a detailed examination of the implementation, enhanc-
ing transparency and enabling replication or modification. While sharing their code
may indeed expose it to critical review, it is essential for progress in this predominantly
software-driven discipline [81, 82]. There may be errors spotted and improvements sug-
gested, but this iterative process of refinement is an integral part of scientific advance-
ment. In this regard, we echo the call to make research code openly available. This
practice would aptly put importance on correctness of the pipelines and ensuing analy-
ses. The authors admit that they themselves have done this with less stringency in the
past, but we aim to do better. We also recommend that ML practitioners, especially in
early career stages, request code reviews to identify and fix any issues with their imple-
mentation. Importantly, however, the responsibility should not be off-loaded to early
career researchers and standard procedures (to ensure good quality code and research)
need to be implemented at an organizational level. For example, each lab can perform
code reviews using one or more skilled reviewers. Such a code review should focus on
the correctness of the code itself and not on its functionality or whether it produces the
desirable output such as high accuracy. However, we recognize that it can be challenging
to find skilled individuals that can perform a proper review.

Openly sharing data, trained models, and other research artifacts/tools fosters repro-
ducibility, and encourages collaboration, enabling the broader community to validate
and build upon the work. However, it must be noted that the shared data should not be
affected by data leakage (e.g., during preprocessing). Detecting such instances of leakage
can be challenging, if not impossible once the data is shared.

Page 19 of 23Sasse et al. Journal of Big Data (2025) 12:135

Conclusions
Data leakage presents a significant challenge in machine learning. Identifying and pre-
venting leakage is essential for ensuring reliable and robust models. To this end, we have
provided several examples and detailed explanations of data leakage instances, along
with tips on how to identify them. Below, we present a few crucial points that underlie
most of the leakage cases we have presented in this article.

 	• Ensure strict training-test set separation.
 	• Ensure that performance metrics are calculated on truly unseen data that has not

been used anywhere in the pipeline previously.
 	• Model selection and model assessment should be done with a nested CV.
 	• State the goal of your ML pipeline: Search for a feature-target relationship, assess

generalization performance or deployment? Clarifying the goals early on will help
practitioners to design and implement a correct and appropriate pipeline.

 	• While academic applications of machine learning often do not involve deploying
models, considering whether a pipeline can actually be used to make predictions
on genuinely unseen data can aid in identifying potential instances of data leakage.
Of note, check if features are available after deployment. Can a model be applied to
future test data not currently available? Can it be applied to a single test example?

 	• Detailed description of methods as well as sharing your code publicly is an effective
way to ensure transparency in your pipeline design. In addition, releasing your
models enables users to test data gathered after the model’s publication, which
further boosts confidence in the model’s ability to generalize well.

 	• When possible, opt for using well-established software packages and libraries instead
of creating standard procedures from scratch. We certainly do not discourage code
implementation for learning purposes, but we recognize that code testing can be
time-consuming and challenging. Hence, using standardized code in production
environments is typically a more effective choice.

 	• Ensuring the correctness of a ML pipeline should take precedence over its output or
even its replicability. A flawed pipeline might yield accurate and replicable results,
but that should not be mistaken as an indication of the validity of the models or the
ensuing results.

Finally, in addition to leakage, several other pitfalls and issues exist and deserve atten-
tion, (real-world usefulness of benchmark data [83], dataset biases [46, 84] and deploy-
ment challenges [85]). However, it is not possible to cover all those aspects in a single
paper. We recommend that readers stay vigilant and pay attention to issues that might
affect their specific analysis set up.

Abbreviations
AUROC	� Area Under the Receiver Operating Characteristic Curve
CV	� Cross Validation
DOME	� Data, Optimization, Model and Evaluation
FC	� Functional Connectivity
HCP-YA	� Human Connectome Project - Young Adult
I.I.D.	� Independently and Identically Distributed
KNN	� K-Nearest Neighbors
LOO	� Leave-One-Out
MAE	� Mean Absolute Error
ML	� Machine Learning
PCA	� Principal Component Analysis
PLS	� Partial Least Squares

Page 20 of 23Sasse et al. Journal of Big Data (2025) 12:135

SVM	� Support Vector Machine

Acknowledgements
This research was partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)–
Project-ID 431549029 - Collaborative Research Centre CRC1451 on motor performance project B05; by the Helmholtz
Portfolio Theme “Supercomputing and Modelling for the Human”; by the European Union’s Horizon 2020 Research and
Innovation Programme under Grant Agreement No. 945539 (HBP SGA3); and by the Max Planck School of Cognition
supported by the Federal Ministry of Education and Research (BMBF) and the Max Planck Society (MPG).

Author contributions
L.S.: Designed the experiments, developed code, performed the analyses, contributed to discussion and interpretation
of results, and writing of the manuscript. E.N-S: Contributed to discussion of results and writing of the manuscript. J.D.:
Contributed to discussion and interpretation of results, and writing of the manuscript. S.B.E.: Contributed to discussion
and interpretation of results, and writing of the manuscript. M.G.: Contributed to discussion and interpretation of
results, and writing of the manuscript. S.H.: Contributed to discussion and interpretation of results, and writing of
the manuscript. V.K.: Contributed to discussion and interpretation of results, and writing of the manuscript. A.K.:
Contributed to discussion and interpretation of results, and writing of the manuscript. J.L.: Contributed to discussion and
interpretation of results, and writing of the manuscript. B.C.L.: Contributed to discussion and interpretation of results, and
writing of the manuscript. F.R.: Contributed to discussion and interpretation of results, and writing of the manuscript.
K.R.P.: Designed the experiments, contributed to discussion and interpretation of results, and contributed to writing of
the manuscriptAll authors revised and approved the final version of the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Data availability
Access to data of the HCP can be requested on ConnectomeDB (​h​t​t​p​s​:​​/​/​d​b​.​​h​u​m​a​n​c​​o​n​n​e​​c​t​o​m​e​​.​o​r​g​/​​a​p​p​/​t​e​​m​p​l​a​​t​e​/​L​o​g​i​
n​.​v​m).

Declarations

Ethics approval and consent to participate
The ethics protocols for analyses of these data were approved by the Heinrich Heine University Düsseldorf ethics
committee (No. 4039).

Competing interests
The authors declare no competing interests.

Author details
1Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Forschungszentrum Jülich, Jülich, Germany
2Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
3Max Planck School of Cognition, Stephanstrasse 1a, Leipzig, Germany
4Division of Experimental Radiology, Department for Diagnostic and Interventional Radiology, Ulm University
Medical Center, Ulm, Germany
5Experimental Radiology, University Ulm, Ulm, Germany
6Department of Biology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf,
Duesseldorf, Germany
7Principal Global Services, Pune, India
8Computer, Computational, and Statistical Sciences, Los Alamos National Laboratory, Los Alamos, United States of
America
9Koita Centre for Digital Health, IIT Bombay, Mumbai 400076, India

Received: 16 August 2024 / Accepted: 12 May 2025

References
1.	 Jiang T, Gradus JL, Rosellini AJ. Supervised machine learning: A brief primer. Behav Ther. 2020;51(5):675–87.
2.	 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S et al. Generative Adversarial Nets Adv Neural Inform

Process Syst. 2014.
3.	 Sutton RS, Barto AG. Reinforcement Learning, second edition: An Introduction (Adaptive Computation and Machine

Learning series). second edition. Cambridge, Massachusetts: Bradford Books; 2018.
4.	 Bhaskar H, Hoyle DC, Singh S. Machine learning in bioinformatics: a brief survey and recommendations for practitioners.

Comput Biol Med. 2006;36(10):1104–25.
5.	 Sun AY, Scanlon BR. How can big data and machine learning benefit environment and water management: a survey of

methods, applications, and future directions. Environ Res Lett. 2019;14(7):073001.
6.	 Swain S, Bhushan B, Dhiman G, Viriyasitavat W. Appositeness of optimized and reliable machine learning for healthcare: A

survey. Arch Comput Methods Eng. 2022;29(6):3981–4003.
7.	 Varoquaux G, Cheplygina V. Machine learning for medical imaging: methodological failures and recommendations for the

future. Npj Digit Med. 2022;5(1):48.
8.	 Douglas MR. Machine learning as a tool in theoretical science. Nat Rev Phys. 2022;4(3):145–6.

https://db.humanconnectome.org/app/template/Login.vm
https://db.humanconnectome.org/app/template/Login.vm

Page 21 of 23Sasse et al. Journal of Big Data (2025) 12:135

9.	 Larrañaga P, Calvo B, Santana R, Bielza C, Galdiano J, Inza I, et al. Machine learning in bioinformatics. Brief Bioinf.
2006;7(1):86–112.

10.	 Wilkinson J, Arnold KF, Murray EJ, van Smeden M, Carr K, Sippy R, et al. Time to reality check the promises of machine
learning-powered precision medicine. Lancet Digit Health. 2020;2(12):e677–80.

11.	 Chen J, Patil KR, Yeo BTT, Eickhoff SB. Leveraging machine learning for gaining Neurobiological and nosological insights in
psychiatric research. Biol Psychiatry. 2023;93(1):18–28.

12.	 Qiu J, Wu Q, Ding G, Xu Y, Feng S. A survey of machine learning for big data processing. EURASIP J Adv Signal Process.
2016;2016(1).

13.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J Mach
Learn Res. 2011;12:2825–30.

14.	 Kuhn M, Wickham H. Tidymodels: a collection of packages for modeling and machine learning using tidyverse principles
[Internet]. 2020 [cited 2023 Aug 25]. Available from: https://www.tidymodels.org

15.	 Chen S, Sedghi Gamechi Z, Dubost F, van Tulder G, de Bruijne M. An end-to-end approach to segmentation in medical
images with CNN and posterior-CRF. Med Image Anal. 2022;76:102311.

16.	 Kapoor S, Narayanan A. Leakage and the reproducibility crisis in machine-learning-based science. Patterns (N Y).
2023;4(9):100804.

17.	 Wasserstein RL, Lazar NA. The ASA statement on p -Values: context, process, and purpose. Am Stat. 2016;70(2):129–33.
18.	 Ioannidis JPA. Why most published research findings are false. PLoS Med. 2005;2(8):e124.
19.	 Gundersen OE, Kjensmo S. State of the art: reproducibility in artificial intelligence. AAAI. 2018;32(1).
20.	 Verstynen T, Kording KP. Overfitting to ‘predict’ suicidal ideation. Nat Hum Behav. 2023.
21.	 Riley P. Three pitfalls to avoid in machine learning. Nature. 2019;572(7767):27–9.
22.	 Whalen S, Schreiber J, Noble WS, Pollard KS. Navigating the pitfalls of applying machine learning in genomics. Nat Rev

Genet. 2022;23(3):169–81.
23.	 Vabalas A, Gowen E, Poliakoff E, Casson AJ. Machine learning algorithm validation with a limited sample size. PLoS ONE.

2019;14(11):e0224365.
24.	 Varma S, Simon R. Bias in error Estimation when using cross-validation for model selection. BMC Bioinformatics. 2006;7:91.
25.	 Santos MS, Soares JP, Abreu PH, Araujo H, Santos J. Cross-Validation for imbalanced datasets: avoiding overoptimistic and

overfitting approaches [Research Frontier]. IEEE Comput Intell Mag. 2018;13(4):59–76.
26.	 Berisha V, Krantsevich C, Hahn PR, Hahn S, Dasarathy G, Turaga P, et al. Digital medicine and the curse of dimensionality.

Npj Digit Med. 2021;4(1):153.
27.	 Lones MA. How to avoid machine learning pitfalls: a guide for academic researchers. ArXiv. 2021.
28.	 Kaufman S, Rosset S, Perlich C, Stitelman O. Leakage in data mining: formulation, detection, and avoidance. ACM Trans

Knowl Discov Data. 2012;6(4):1–21.
29.	 Rosenblatt M, Tejavibulya L, Jiang R, Noble S, Scheinost D. Data leakage inflates prediction performance in connectome-

based machine learning models. Nat Commun. 2024;15(1):1829.
30.	 Bernett J, Blumenthal DB, Grimm DG, Haselbeck F, Joeres R, Kalinina OV, et al. Guiding questions to avoid data leakage in

biological machine learning applications. Nat Methods. 2024;21(8):1444–53.
31.	 Just MA, Pan L, Cherkassky VL, McMakin DL, Cha C, Nock MK, et al. Machine learning of neural representations of suicide

and emotion concepts identifies suicidal youth. Nat Hum Behav. 2017;1:911–9.
32.	 Dukart J, Weis S, Genon S, Eickhoff SB. Towards increasing the clinical applicability of machine learning biomarkers in

psychiatry. Nat Hum Behav. 2021;5(4):431–2.
33.	 Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. International Joint

Conference on Arti cial Intelligence. 1995.
34.	 Arlot S, Celisse A. A survey of cross-validation procedures for model selection. Stat Surv. 2010;4(0):40–79.
35.	 Geisser S. The predictive sample reuse method with applications. J Am Stat Assoc. 1975;70(350):320–8.
36.	 Bates S, Trevor H, Tibshirani R. Cross-Validation: what does it estimate and how well does it do it? J Am Stat Assoc.

2023;119(546):1434–45.
37.	 Krstajic D, Buturovic LJ, Leahy DE, Thomas S. Cross-validation pitfalls when selecting and assessing regression and clas-

sification models. J Cheminform. 2014;6(1):10.
38.	 Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. 2nd ed. New York, NY: Springer New York; 2009.
39.	 Yang L, Shami A. On hyperparameter optimization of machine learning algorithms: theory and practice. Neurocomputing.

2020.
40.	 James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning. New York, NY: Springer New York; 2013.
41.	 Bishop CM. Pattern recognition and machine learning. New York: Springer; 2006.
42.	 Varoquaux G, Raamana PR, Engemann DA, Hoyos-Idrobo A, Schwartz Y, Thirion B. Assessing and tuning brain decoders:

Cross-validation, caveats, and guidelines. NeuroImage. 2017;145(Pt B):166–79.
43.	 Martinez-Plumed F, Contreras-Ochando L, Ferri C, Hernandez-Orallo J, Kull M, Lachiche N, et al. IEEE Trans Knowl Data Eng.

2021;33(8):3048–61. CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories.
44.	 Wirth R. CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on

the practical applications of knowledge discovery and data mining; 2000.
45.	 Chakraborty J, Majumder S, Menzies T. Bias in machine learning software: why? how? what to do? Proceedings of the

29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering. New York, NY, USA: ACM; 2021. pp. 429–40.

46.	 Liang W, Tadesse GA, Ho D, Li F-F, Zaharia M, Zhang C et al. Advances, challenges and opportunities in creating data for
trustworthy AI. Nat Mach Intell. 2022.

47.	 Demšar J, Zupan B. Hands-on training about overfitting. PLoS Comput Biol. 2021;17(3):e1008671.
48.	 Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K, et al. The WU-Minn human connectome project: an

overview. NeuroImage. 2013;80:62–79.
49.	 Finn ES, Shen X, Scheinost D, Rosenberg MD, Huang J, Chun MM, et al. Functional connectome fingerprinting: identifying

individuals using patterns of brain connectivity. Nat Neurosci. 2015;18(11):1664–71.

https://www.tidymodels.org

Page 22 of 23Sasse et al. Journal of Big Data (2025) 12:135

50.	 He T, Kong R, Holmes AJ, Nguyen M, Sabuncu MR, Eickhoff SB, et al. Deep neural networks and kernel regression
achieve comparable accuracies for functional connectivity prediction of behavior and demographics. NeuroImage.
2020;206:116276.

51.	 Demeter DV, Engelhardt LE, Mallett R, Gordon EM, Nugiel T, Harden KP, et al. Functional connectivity fingerprints at rest are
similar across youths and adults and vary with genetic similarity. iScience. 2020;23(1):100801.

52.	 Schreiber J, Singh R, Bilmes J, Noble WS. A pitfall for machine learning methods aiming to predict across cell types.
Genome Biol. 2020;21(1):282.

53.	 Yagis E, Atnafu SW, García Seco de Herrera A, Marzi C, Scheda R, Giannelli M, et al. Effect of data leakage in brain MRI clas-
sification using 2D convolutional neural networks. Sci Rep. 2021;11(1):22544.

54.	 Cerqueira V, Torgo L, Mozetič I. Evaluating time series forecasting models: an empirical study on performance Estimation
methods. Mach Learn. 2020;109(11):1997–2028.

55.	 De Gooijer JG, Hyndman RJ. 25 Years of time series forecasting. Int J Forecast. 2006;22(3):443–73.
56.	 Samala RK, Chan H-P, Hadjiiski L, Helvie MA. Risks of feature leakage and sample size dependencies in deep feature extrac-

tion for breast mass classification. Med Phys. 2021;48(6):2827–37.
57.	 Emmanuel T, Maupong T, Mpoeleng D, Semong T, Mphago B, Tabona O. A survey on missing data in machine learning. J

Big Data. 2021;8(1):140.
58.	 Poldrack RA, Huckins G, Varoquaux G. Establishment of best practices for evidence for prediction: A review. JAMA Psychia-

try. 2020;77(5):534–40.
59.	 Vanwinckelen G, Blockeel H. Look before you leap: some insights into learner evaluation with cross-validation. Statistically

Sound Data Min. 2015;3–20.
60.	 Badgeley MA, Zech JR, Oakden-Rayner L, Glicksberg BS, Liu M, Gale W, et al. Deep learning predicts hip fracture using

confounding patient and healthcare variables. Npj Digit Med. 2019;2:31.
61.	 Dagaev N, Roads BD, Luo X, Barry DN, Patil KR, Love BC. A Too-Good-to-be-True prior to reduce shortcut reliance. Pattern

Recognit Lett. 2022.
62.	 Hu F, Chen AA, Horng H, Bashyam V, Davatzikos C, Alexander-Bloch A, et al. Image harmonization: A review of statistical

and deep learning methods for removing batch effects and evaluation metrics for effective harmonization. NeuroImage.
2023;274:120125.

63.	 Bender R, Lange S. Adjusting for multiple testing–when and how? J Clin Epidemiol. 2001;54(4):343–9.
64.	 García-Pérez MA. Use and misuse of corrections for multiple testing. Methods Psychol. 2023;8:100120.
65.	 Thompson WH, Wright J, Bissett PG, Poldrack RA. Dataset decay and the problem of sequential analyses on open datasets.

eLife. 2020;9.
66.	 Dwork C, Feldman V, Hardt M, Pitassi T, Reingold O, Roth A. The reusable holdout: preserving validity in adaptive data

analysis. Science. 2015;349(6248):636–8.
67.	 Hardt M, Ullman J. Preventing false discovery in interactive data analysis is hard. 2014 IEEE 55th Annual Symposium on

Foundations of Computer Science. IEEE; 2014. pp. 454–63.
68.	 Chen C, Cao X, Tian L. Partial least squares regression performs well in MRI-Based individualized estimations. Front Neuro-

sci. 2019;13:1282.
69.	 Komeyer V, Eickhoff SB, Grefkes C, Patil KR, Raimondo F. A framework for confounder considerations in AI-driven precision

medicine. medRxiv. 2024.
70.	 More S, Antonopoulos G, Hoffstaedter F, Caspers J, Eickhoff SB, Patil KR, et al. Brain-age prediction: A systematic compari-

son of machine learning workflows. NeuroImage. 2023;270:119947.
71.	 Pourhoseingholi MA, Baghestani AR, Vahedi M. How to control confounding effects by statistical analysis. Gastroenterol

Hepatol Bed Bench. 2012;5(2):79–83.
72.	 Snoek L, Miletić S, Scholte HS. How to control for confounds in decoding analyses of neuroimaging data. NeuroImage.

2019;184:741–60.
73.	 More S, Eickhoff SB, Caspers J, Patil KR. Confound removal and normalization in practice: A neuroimaging based sex

prediction case study. In: Dong Y, Ifrim G, Mladenić D, Saunders C, Van Hoecke S, editors. Machine learning and knowledge
discovery in databases applied data science and demo track: european conference, ECML PKDD 2020, ghent, belgium,
september 14–18, 2020, proceedings, part V. Cham: Springer International Publishing; 2021. pp. 3–18.

74.	 Hamdan S, Love BC, von Polier GG, Weis S, Schwender H, Eickhoff SB et al. Confound-leakage: Confound Removal in
Machine Learning Leads to Leakage. arXiv. 2022.

75.	 Mitchell M, Wu S, Zaldivar A, Barnes P, Vasserman L, Hutchinson B et al. Model cards for model reporting. Proceedings of
the Conference on Fairness, Accountability, and Transparency - FAT* ’19. New York, New York, USA: ACM Press; 2019. pp.
220–9.

76.	 Walsh I, Fishman D, Garcia-Gasulla D, Titma T, Pollastri G, ELIXIR Machine Learning Focus Group. DOME: recommendations
for supervised machine learning validation in biology. Nat Methods. 2021;18(10):1122–7.

77.	 Luo W, Phung D, Tran T, Gupta S, Rana S, Karmakar C, et al. Guidelines for developing and reporting machine learning
predictive models in biomedical research: A multidisciplinary view. J Med Internet Res. 2016;18(12):e323.

78.	 Norgeot B, Quer G, Beaulieu-Jones BK, Torkamani A, Dias R, Gianfrancesco M, et al. Minimum information about clinical
artificial intelligence modeling: the MI-CLAIM checklist. Nat Med. 2020;26(9):1320–4.

79.	 Gebru T, Morgenstern J, Vecchione B, Vaughan JW, Wallach H, Iii HD, et al. Datasheets for datasets. Commun ACM.
2021;64(12):86–92.

80.	 Holland S, Hosny A, Newman S, Joseph J, Chmielinski K. The Dataset Nutrition Label: A Framework To Drive Higher Data
Quality Standards. arXiv. 2018.

81.	 Schwab S, Held L. Statistical programming: small mistakes, big impacts. Significance. 2021;18(3):6–7.
82.	 Barnes N. Publish your computer code: it is good enough. Nature. 2010;467(7317):753.
83.	 Soares C. Is the UCI repository useful for data mining? Portuguese Conference on Artificial Intelligence. 2003;209–23.
84.	 van Giffen B, Herhausen D, Fahse T. Overcoming the pitfalls and perils of algorithms: A classification of machine learning

biases and mitigation methods. J Bus Res. 2022;144:93–106.
85.	 Paleyes A, Urma R-G, Lawrence ND. Challenges in deploying machine learning: a survey of case studies. ACM Comput

Surv. 2022.

Page 23 of 23Sasse et al. Journal of Big Data (2025) 12:135

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	﻿Overview of leakage scenarios in supervised machine learning
	﻿Abstract
	﻿Introduction
	﻿Supervised machine learning: pipelines and evaluation
	﻿Supervised machine learning concepts
	﻿Cross validation basics: model assessment and model selection
	﻿Designing a ML pipeline
	﻿S-I) task definition
	﻿S-II) data collection and data preparation strategies
	﻿S-III) data preprocessing strategy
	﻿S-IV) ML algorithm definition
	﻿S-V) definition of evaluation scheme and metrics
	﻿S-VI) interpretation and deployment

	﻿Leakage in ML pipelines
	﻿Test-to-train leakage
	﻿Test-to-test leakage
	﻿Feature-to-target leakage
	﻿Target leakage
	﻿Dataset leakage: dataset decay
	﻿Confound leakage

	﻿Possible mitigation strategies
	﻿Conclusions
	﻿References

