001043152 001__ 1043152 001043152 005__ 20250916202447.0 001043152 0247_ $$2doi$$a10.34734/FZJ-2024-05343 001043152 0247_ $$2doi$$a10.1038/s41597-025-05126-1 001043152 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02769 001043152 0247_ $$2pmid$$a40473681 001043152 0247_ $$2WOS$$aWOS:001503948500006 001043152 037__ $$aFZJ-2025-02769 001043152 041__ $$aEnglish 001043152 082__ $$a500 001043152 1001_ $$0P:(DE-Juel1)191583$$aVillamar, Jose$$b0$$eCorresponding author 001043152 245__ $$aMetadata practices for simulation workflows 001043152 260__ $$aLondon$$bNature Publ. Group$$c2025 001043152 3367_ $$2DRIVER$$aarticle 001043152 3367_ $$2DataCite$$aOutput Types/Journal article 001043152 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1751023113_22585 001043152 3367_ $$2BibTeX$$aARTICLE 001043152 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001043152 3367_ $$00$$2EndNote$$aJournal Article 001043152 520__ $$aComputer simulations are an essential pillar of knowledge generation in science. Exploring, understanding, reproducing, and sharing the results of simulations relies on tracking and organizing the metadata describing the numerical experiments. The models used to understand real-world systems, and the computational machinery required to simulate them, are typically complex, and produce large amounts of heterogeneous metadata. Here, we present general practices for acquiring and handling metadata that are agnostic to software and hardware, and highly flexible for the user. These consist of two steps: 1) recording and storing raw metadata, and 2) selecting and structuring metadata. As a proof of concept, we develop the Archivist, a Python tool to help with the second step, and use it to apply our practices to distinct high-performance computing use cases from neuroscience and hydrology. Our practices and the Archivist can readily be applied to existing workflows without the need for substantial restructuring. They support sustainable numerical workflows, fostering replicability, reproducibility, data exploration, and data sharing in simulation-based research. 001043152 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x0 001043152 536__ $$0G:(DE-HGF)POF4-5235$$a5235 - Digitization of Neuroscience and User-Community Building (POF4-523)$$cPOF4-523$$fPOF IV$$x1 001043152 536__ $$0G:(DE-Juel-1)ZT-I-PF-3-026$$aMetaMoSim - Generic metadata management for reproducible high-performance-computing simulation workflows - MetaMoSim (ZT-I-PF-3-026)$$cZT-I-PF-3-026$$x2 001043152 536__ $$0G:(DE-Juel-1)HiRSE-20250220$$aHiRSE - Helmholtz Platform for Research Software Engineering (HiRSE-20250220)$$cHiRSE-20250220$$x3 001043152 536__ $$0G:(DE-Juel1)aca_20190115$$aAdvanced Computing Architectures (aca_20190115)$$caca_20190115$$fAdvanced Computing Architectures$$x4 001043152 536__ $$0G:(EU-Grant)101147319$$aEBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)$$c101147319$$fHORIZON-INFRA-2022-SERV-B-01$$x5 001043152 536__ $$0G:(DE-Juel1)jinb33_20220812$$aBrain-Scale Simulations (jinb33_20220812)$$cjinb33_20220812$$fBrain-Scale Simulations$$x6 001043152 536__ $$0G:(EU-Grant)800858$$aICEI - Interactive Computing E-Infrastructure for the Human Brain Project (800858)$$c800858$$fH2020-SGA-INFRA-FETFLAG-HBP$$x7 001043152 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x8 001043152 536__ $$0G:(GEPRIS)491111487$$aDFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2025 - 2027 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x9 001043152 588__ $$aDataset connected to DataCite 001043152 650_7 $$2Other$$aInformation Retrieval (cs.IR) 001043152 650_7 $$2Other$$aFOS: Computer and information sciences 001043152 7001_ $$aKelbling, Matthias$$b1 001043152 7001_ $$0P:(DE-Juel1)190225$$aMore, Heather$$b2 001043152 7001_ $$0P:(DE-Juel1)144807$$aDenker, Michael$$b3 001043152 7001_ $$0P:(DE-Juel1)145211$$aTetzlaff, Tom$$b4 001043152 7001_ $$0P:(DE-Juel1)162130$$aSenk, Johanna$$b5 001043152 7001_ $$aThober, Stephan$$b6 001043152 773__ $$0PERI:(DE-600)2775191-0$$a10.1038/s41597-025-05126-1$$p942$$tScientific data$$v12$$x2052-4436$$y2025 001043152 8564_ $$uhttps://juser.fz-juelich.de/record/1043152/files/s41597-025-05126-1.pdf$$yOpenAccess 001043152 8767_ $$8SN-2025-00897-b$$92025-08-27$$a1200217075$$d2025-09-16$$eAPC$$jZahlung erfolgt 001043152 909CO $$ooai:juser.fz-juelich.de:1043152$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$popenCost$$pdnbdelivery 001043152 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191583$$aForschungszentrum Jülich$$b0$$kFZJ 001043152 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190225$$aForschungszentrum Jülich$$b2$$kFZJ 001043152 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144807$$aForschungszentrum Jülich$$b3$$kFZJ 001043152 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145211$$aForschungszentrum Jülich$$b4$$kFZJ 001043152 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162130$$aForschungszentrum Jülich$$b5$$kFZJ 001043152 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0 001043152 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5235$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1 001043152 9141_ $$y2025 001043152 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09 001043152 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-09 001043152 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-09 001043152 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-09 001043152 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 001043152 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI DATA : 2022$$d2024-12-09 001043152 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:44:52Z 001043152 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:44:52Z 001043152 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-09 001043152 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-09 001043152 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09 001043152 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001043152 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:44:52Z 001043152 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-09 001043152 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI DATA : 2022$$d2024-12-09 001043152 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09 001043152 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09 001043152 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 001043152 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding 001043152 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten 001043152 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal 001043152 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020 001043152 920__ $$lyes 001043152 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x0 001043152 9201_ $$0I:(DE-Juel1)IAS-9-20201008$$kIAS-9$$lMaterials Data Science and Informatics$$x1 001043152 9801_ $$aFullTexts 001043152 980__ $$ajournal 001043152 980__ $$aVDB 001043152 980__ $$aUNRESTRICTED 001043152 980__ $$aI:(DE-Juel1)IAS-6-20130828 001043152 980__ $$aI:(DE-Juel1)IAS-9-20201008 001043152 980__ $$aAPC