
1Scientific Data | (2025) 12:942 | https://doi.org/10.1038/s41597-025-05126-1

www.nature.com/scientificdata

Metadata practices for simulation
workflows
José Villamar   1,2 ✉, Matthias Kelbling   3, Heather L. More   1,4, Michael Denker   1,
Tom Tetzlaff   1, Johanna Senk   1,5 & Stephan Thober   3

Computer simulations are an essential pillar of knowledge generation in science. Exploring,
understanding, reproducing, and sharing the results of simulations relies on tracking and organizing the
metadata describing the numerical experiments. The models used to understand real-world systems,
and the computational machinery required to simulate them, are typically complex, and produce large
amounts of heterogeneous metadata. Here, we present general practices for acquiring and handling
metadata that are agnostic to software and hardware, and highly flexible for the user. These consist of
two steps: 1) recording and storing raw metadata, and 2) selecting and structuring metadata. As a proof
of concept, we develop the Archivist, a Python tool to help with the second step, and use it to apply
our practices to distinct high-performance computing use cases from neuroscience and hydrology. Our
practices and the Archivist can readily be applied to existing workflows without the need for substantial
restructuring. They support sustainable numerical workflows, fostering replicability, reproducibility,
data exploration, and data sharing in simulation-based research.

Introduction
Recent advances in high-performance computing (HPC) technology enable simulations of increasingly large
and complex models. While these simulations offer huge potential for science and society, it becomes more and
more challenging to replicate and reproduce the results of such numerical experiments, to efficiently explore the
simulation data, and to share them with other scientists.

User stories such as the following are therefore common among researchers:

	 1.	 Replicating results: Scientist X cannot replicate the results of scientist Y due to inconsistencies between the
information provided in the scientific article and in the associated code published by Y. Even personal commu-
nication with Y does not resolve these inconsistencies1.

	 2.	 Data sharing: Each member of a group of scientists regularly runs simulations of the same mathematical
model to investigate different scientific questions. The datasets generated by each of these scientists are similar
and potentially useful to other members of the group, although what one scientist considers to be metadata
can be analyzed as primary data by another scientist with a different objective. It is therefore desirable to share
these data to minimize time and energy costs and ultimately to increase scientific productivity. However, the
scientists have no efficient way of communicating the information necessary to understand the structure of
each dataset2.

	 3.	 Data exploration: A group of scientists is developing a simulation software. After each development cycle,
the group runs a set of benchmarking experiments with different configurations and models to continuously
monitor the simulation software performance ("continuous benchmarking”3). After years of development, the
group has accumulated large amounts of benchmarking data for each software version. The scientists have
no way to easily search and view subsets of the accumulated data, for example, to compare different versions
using similar configurations or model types.

1Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany. 2RWTH Aachen University,
Aachen, Germany. 3Department of Computational Hydrosystems, Helmholtz-Centre for Environmental Research,
Leipzig, Germany. 4Institute for Advanced Simulation (IAS-9), Jülich Research Centre, Jülich, Germany. 5Sussex AI,
School of Engineering and Informatics, University of Sussex, Brighton, United Kingdom. ✉e-mail: j.villamar@fz-
juelich.de

Article

OPEN

https://doi.org/10.1038/s41597-025-05126-1
http://orcid.org/0009-0007-8791-7100
http://orcid.org/0000-0001-9303-6712
http://orcid.org/0000-0002-7514-2199
http://orcid.org/0000-0003-1255-7300
http://orcid.org/0000-0001-5794-5425
http://orcid.org/0000-0002-6304-062X
http://orcid.org/0000-0003-3939-1523
mailto:j.villamar@fz-juelich.de
mailto:j.villamar@fz-juelich.de
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-025-05126-1&domain=pdf

2Scientific Data | (2025) 12:942 | https://doi.org/10.1038/s41597-025-05126-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

One would assume that the above problems, known to different extents in various research fields, should not
exist in simulation science, due to our perception of full control over digital implementations4. However, this
assumption is typically wrong for two reasons. First, users are often not aware of every aspect of their hardware
and software systems, such as low-level hardware settings5, implementation details of a software package, or the
implications of using a specific operating system6. These aspects are of particular importance for HPC-enabled
simulations, where highly specialized hardware and software solutions and the distribution of code among mul-
tiple processors may affect the exact simulation outcome or performance measures. Given the limited lifetime of
HPC systems, long-term repeatability is practically impaired. Second, users often customize aspects of their sys-
tem without properly documenting their changes, for example modifying the behavior of off-the-shelf software.
Therefore, despite the digital nature of simulation research, it remains difficult to acquire and organize metadata
describing the details of hardware systems, software stacks, model descriptions and simulation workflows that
are necessary to replicate, reproduce, understand, and share the results of numerical experiments1,7–9. These
metadata arise at all stages of the simulation workflow, including defining and implementing a model; preparing
software; generating and executing a job; post-processing, analyzing, and visualizing data; and organizing and
storing data.

Throughout this paper, we use the terms ‘reproducibility’ and ‘replicability’ as defined by the Association for
Computing Machinery (ACM) (https://www.acm.org/publications/policies/artifact-review-and-badging-current,
last access: 12 February 2025). According to these guidelines, results from a computational experiment are repro-
duced if an independent team obtains the same results using the same experimental setup, whereas results are
replicated if an independent team obtains the same results using a different experimental setup. Here, ‘experi-
mental setup’ refers to the artifacts used to generate results, which “can be software systems, scripts used to run
experiments, input datasets, raw data collected in the experiment, or scripts used to analyze results”. For simula-
tion experiments, we consider such artifacts to be simulation engines, model and workflow implementations, and
their respective configurations. However, it is important to consider not only the software, but also the hardware
system used to obtain results. For instance, performance metrics such as time to solution or energy consumption
cannot be interpreted without knowledge of the hardware on which the experiment is run. These considerations
may blur the conceptual line between reproduction and replication. It is, for example, not always clear whether
a small change in the configuration or the hardware leads to a different experimental setup. Ultimately, it is the
research question underlying a simulation experiment that determines which aspects of the experimental setup
are important to consider when reproducing or replicating results.

Successfully capturing comprehensive metadata and provenance information describing the experiment and
its setup is a prerequisite for reproducibility and replicability7–12, allows assessment of simulation outcomes1,13,
and helps scientists explore, share, and reuse data14. Recently, several powerful tools have been developed to
organize, execute, and track complex workflows, including their resulting data and metadata, such as Sumatra10,
AiiDA15, Snakemake16, and DataLad17. Although these tools are useful for new projects, using them in existing
projects with different, possibly custom, workflow management systems requires deciding whether to rebuild the
workflow from scratch using the desired tools or look for alternative solutions.. As a consequence, scientists often
write custom code for metadata handling to compromise between adding functionality and keeping an estab-
lished workflow. The resulting inconsistency in metadata management makes it difficult to transfer knowledge
between researchers.

Other community efforts have focused on defining vocabularies or schemas such as RO-Crate18, CodeMeta
(https://codemeta.github.io, last access: 23 January 2025), or Bioschemas19. Such standards enable interoperabil-
ity of data and metadata produced by computational workflows, and provide practical ways for developers and
users to describe and document their experiments. Nonetheless, detailed information on individual workflow
executions can only be collected during runtime and often requires additional transformations to comply with
vocabularies or schemas. Examples of such information are: the software environment at runtime, computing
capabilities of the hardware system in use, or performance and resource consumption of computationally heavy
workflow steps. Furthermore, identifying where such information can be found and the methods to transform
it depend on the workflow implementation and system used. This dependency makes found solutions harder to
transfer to other workflows or systems, and consequently researchers avoid collecting and handling such infor-
mation unless required by their scientific objectives.

Here, we propose a set of practices for flexible metadata management which can readily be integrated into
existing simulation workflows without substantial refactoring. The practices apply to commonly used workflows
across diverse research fields. They advise researchers about which metadata to collect at each stage of a simula-
tion workflow, how to collect it, and how to process the metadata so that they enrich data. We further describe
our Python tool Archivist which helps process metadata files using user-defined functions and combine the
outputs into a unified file. Finally, we apply our proposed practices and the Archivist to a minimal illustrating
example, and to two real-world use cases from neuroscience and hydrology.

Results
Metadata management practices.  To better understand the metadata collection and handling processes,
we consider a generic knowledge production workflow divided into three sub-workflows (Fig. 1): an abstract sim-
ulation experiment containing processes generating data and metadata, metadata post-processing where hetero-
geneous metadata is processed into meaningful formats and structures, and usage of enriched data. Although the
implementation of these processes can and will vary across different use cases, this generic knowledge production
workflow encompasses archetypes of the components occurring in many implemented workflows.

An abstract simulation experiment comprises a sequence of steps (Fig. 1, Simulation section). We define
these steps by summarizing the processes performed in two domain-specific workflows from neuroscience and
hydrology14,20. We consider the necessary steps to be configuration of the software environment, simulation

https://doi.org/10.1038/s41597-025-05126-1
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://codemeta.github.io

3Scientific Data | (2025) 12:942 | https://doi.org/10.1038/s41597-025-05126-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

engine, and model; execution of the simulation; and storage of the generated data and metadata; depending
on the complexity of the preparation required before or after the execution of the simulation, there might be
additional steps. Note that we do not claim that this abstract simulation experiment exhaustively represents all
workflows or use cases.

After a simulation experiment, users can analyze the resulting data and metadata to gain knowledge of the
simulated model or simulation technology. The methods through which data is analyzed are tightly related to
the objectives and intentions of the user. Furthermore, in some disciplines, these methods may require a com-
plex workflow and perhaps even the use of HPC resources. Since we cannot exhaustively define the different
existing strategies for processing data, we provide an abstract description of how the generated data can be
exploited (Fig. 1, Data usage section). For instance, data can be analyzed in order to measure metrics related
to model predictions or accuracy, or simulation performance. Graphical visualizations are generated for easier
human interpretation. Additionally, differences between multiple versions of simulators, models or parameters
can be obtained by comparing with previous results. Then, newly obtained insights can be shared with peers to
disseminate knowledge.

Because processing the data may inadvertently remove or add specific features that alter the original infor-
mation, storing the original data together with a data model allows independent users to exploit individual data-
sets with different methods, or to process multiple datasets at once, which increases re-usability of the simulation
results. Over time, the data and metadata generated by different simulation experiments can be compiled and
stored in a continuously growing collection. Establishing a data model is necessary to maintain the organization
and integrity of this collection. A data model is an abstract representation of data objects and their relation-
ships that organizes relevant attributes of data and standardizes how they relate to each other21. This serves as a
blueprint for structuring data elements and their relationships, providing a clear understanding of how data is
organized, stored, and utilized within a collection. Without the data model, users may not be able to establish an
overview of the actual contents and may fail to efficiently explore the collection. For clarity we separate data and
metadata storage in Fig. 1, however this is an implementation choice left to the discretion of the user and for the
remainder of this paper we refer to both storages together as one collection for simplicity.

To implement and perform the diversity of data usage tasks, metadata is required to properly describe the
simulation experiment. When exploring multiple sets of generated data, metadata categorizing each dataset
allows researchers to efficiently differentiate them. Moreover, when sharing the results, metadata enhances
the knowledge transfer between data users by detailing what, how, and where the experiment was performed.
Metadata can exist at any step of the simulation (Fig. 1, blue Data generation boxes), and can often be accessed
only when performing the experiment. The collection of metadata and their interpretation often varies and

Knowledge production workflow

Data usage

Manual user input

Processed metadata flowRaw metadata flow Knowledge flow

ArchivistMetadata post-processingRaw metadata collection

Data flow

Data generation Data usage

Optional steps* Data representation

Simulation Metadata post-processing

Configuration

Model

Machine

Software
preparation*

Software
requirements
Installation
procedures

Job generation*

Execution methods

Execution
variables

Job execution

Runtime variables

Resource
consumption
Performance
information

Post-processing*

Output data

Processing
methods

Data persistence*

Upload
information

Metadata set
selection

Structuring*

Parsing

Metadata entry
selection

Annotation
Annotated

data
storage

Configuration

Specification of
raw metadata sets,
parsing methods,
metadata
structure, and data
annotation
methods

Raw
metadata
storage

Raw metadata collection

Data
storage

Data model

Data
presentation

Data
comparison

Data
sharing

Data
analysis

Pre-processing*

Input data

Processing
methods

Fig. 1  Metadata management in a generic knowledge production workflow. We conceptually divide the
workflow into three consecutive sub-workflows: simulation, metadata post-processing, and data usage.
Simulation collects raw metadata (yellow) at each step (blue), then stores it according to a data model
describing the structures of data and raw metadata. Metadata post-processing (red) selects raw metadata, then
parses and structures it; annotation links this processed metadata to the data. During post-processing, user-
defined configuration specifies which raw metadata to select and how to process it, ensuring the final annotated
data is suitable for its application. Some of these steps (light red) can be performed by the post-processing
framework presented in “Metadata post-processing framework - the Archivist”. Data usage (green) analyzes data
to draw conclusions through presentation and comparison; data may also be shared with others. Ultimately, the
results of data usage inform subsequent simulations (green arrow). Each sub-workflow consists of autonomous
steps (rectangles), user-configured steps (rounded rectangles), data storage (cylinders), and data transfer
(arrows). This diagram aims to abstract simulation-based research; specific workflows may omit some elements
(asterisks) or have additional steps.

https://doi.org/10.1038/s41597-025-05126-1

4Scientific Data | (2025) 12:942 | https://doi.org/10.1038/s41597-025-05126-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

evolves with the systems and software used (Fig. 1, yellow Raw metadata collection boxes). We describe below
some general practices for successfully collecting and handling the variety of metadata that arises during simu-
lation (Fig. 1, Metadata post-processing section).

Collect as much information as possible.  Metadata are data that describe data. Here, we focus on information
that can be directly collected in the environment where an experiment takes place (sometimes termed “hard"
metadata22). However, the definition of what precise pieces of information should be represented as metadata
is difficult to generalize. Each experiment generates an arbitrary amount of information – separating this infor-
mation into metadata and data depends on the nature and goal of the workflow itself. For instance, if the goal
of a simulation workflow is to collect and analyze the data generated by the underlying model, then the per-
formance of the simulation (time to solution, memory consumption, etc.) would be part of the metadata. On
the contrary, if the goal of the workflow is to benchmark the simulator then the data generated by the model is
of secondary importance, as the recorded performance data would be the desired primary result. Limiting the
amount of information collected during a simulation experiment restricts how its output can be used in the
future. Therefore, to maximize the potential for reuse of shared experiment results, it is important to collect as
much information as possible10. Yet, the full extent of this collection needs to be determined on a case by case
basis. Sometimes, collecting the full breadth of information available can be redundant. For example, when
simulation models grow complex, the number of available parameters grows in volume too. Well-documented
parameter sets often use default values suitable for their corresponding model; during experiments, only a sub-
set of these may actually be modified. In this case, collecting only the modified parameters may be sufficient.
Conversely, there may be instances where keeping detailed track of the differences between experiment is nec-
essary. Sometimes, differences in software versions lead to discrepancies in experiment results1. In the case of
rapidly evolving software such as the model, simulator, or their library dependencies, it is beneficial to keep track
of the different versions used for each experiment. As a compromise between efficiency and completeness, we
propose collecting information as sustainably as possible to an extent where all currently known user needs are
satisfied.

Identify metadata sources.  Given the rapidly evolving software and hardware platforms available for simulation
alongside user-specific set-ups, it is impossible to exhaustively list all collectible metadata. Instead, we categorize
the different sources of metadata according to each step of the simulation experiment (Fig. 1, blue Data gener-
ation boxes):

•	 Configuration: Most steps during the workflow need some kind of configuration or parametrization, which
the user often saves and edits in files beforehand. These files are a type of metadata describing each step of the
simulation. This metadata includes, in particular, the configuration and parameters used by the model and
simulator.

•	 Software preparation: In this step all the required software (libraries, tools, and programs) are fetched, com-
piled if needed, and loaded into the environment. Information to collect here includes the source of the
software, the parameters related to compilation, and the environment variables defined when loading the
software.

•	 Job generation : In HPC scenarios, job schedulers are generally used to efficiently allocate and share resources
of compute clusters. Collectable metadata here include job parameters like machine name and partition used,
amount and type of resources used, resource configuration such as process binding or thread pinning, and
job time limit.

•	 Pre-processing: Some simulation experiments require input data to calibrate or parametrize the model imple-
mentation. Using this input data may involve additional calculations or transformations within the workflow.
If pre-processing is necessary, documenting the input data and procedures performed on it must be recorded
to accurately determine the starting point of the simulation.

•	 Job execution: The execution is the main part of the simulation, and involves instantiating the simulation
model and running the simulation. It is at this step that recording the status of the execution environment is
the most informative and least redundant. In contrast to Software preparation, the metadata collected in this
step should focus on the environment variables, libraries, and processes present during execution. Addition-
ally, performance information, resource consumption (memory, storage, network, etc.), and system load can
only be recorded at this step.

•	 Post-processing : Depending on the goal and implementation of the workflow, the data that is generated must
be post-processed for further use, which may involve steps such as checking, cleaning, compressing, or trans-
forming the data. If post-processing is necessary, documenting the procedures performed on data is essential
to have an overview of how the final result was obtained. Thus information about expected output and the
different methods used during this step must be recorded.

•	 Data persistence: In this step, information on the storing process can be recorded. For example: who generated
the data and metadata to be stored? When was it generated and when is it being stored? Where was it gener-
ated and where is it being stored e.g. a file server, a local or remote database? In the case of a file server, the
address of the server and the absolute path of the stored files should be recorded. When using a database, new
entries are indexed with a unique identifier; storing this identifier allows linking with future related entries
and should be recorded correspondingly.

https://doi.org/10.1038/s41597-025-05126-1

5Scientific Data | (2025) 12:942 | https://doi.org/10.1038/s41597-025-05126-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

Depending on the system and software used, the metadata present in the above mentioned categories can
often be found as parameter or configuration files. In particular, most system information can be obtained
through commands provided by the operating system or package management solutions.

Users might be able to recognize the metadata required for a specific data analysis and collect it alongside
other metadata they are aware of. However, situations could arise where reusing the generated data for unfore-
seen purposes is impossible due to missing context. Even after collecting all known metadata, it may be that
there are still unknown pieces of metadata that need to be recorded. With rapidly evolving systems and software,
this is not an uncommon scenario, and if such a situation arises then users must identify what information is
lacking, and add it to the list of metadata to be recorded for future experiments.

Metadata collection does not need to be complicated.  There are two possible ways of collecting metadata:
retrieval by a dedicated parallel process “pulling” the relevant pieces of information from each simulation step,
or autonomous “pushing” by each component to a metadata storage. The pull-based approach relies on an over-
arching metadata-monitoring module that is adapted to the specific simulation. The push-based approach, in
contrast, does not require such infrastructure at run time. At each step, the governing process simply dumps
its metadata in some arbitrary, more or less raw format, independent of other simulation steps. The push-based
approach is therefore much more flexible and can readily be applied to existing simulations. With each compo-
nent presenting its own metadata it is likely that the final collection of metadata contains different structures
and formats. Although it is possible to standardize the presentation of metadata across all components, this
process would require transformations that are dependent on the objective for which the data is being gener-
ated, and can vary from user to user, or the interoperability standard that the researcher must adhere to. In some
situations, transformations of metadata may even depend on other metadata, making it difficult to perform an
ad-hoc transformation process. We therefore propose extracting and structuring the raw metadata in a separate
step after the simulation. This presents a clear advantage by decoupling metadata collection processes from user
goals and processing software. Collecting as much metadata as possible is essential as it is impossible to get the
corresponding metadata after a simulation is performed. Thus, gathering the metadata regardless of format and
storing it during simulation for later processing is an efficient way to keep track of the information describing
the experiment. We call the collection of these unprocessed metadata files the “raw" metadata (Fig. 1, yellow Raw
metadata collection boxes).

Post-process recorded metadata according to your goals.  Transforming the heterogeneous raw metadata into
a unified comprehensive format is essential in order to be able to exploit it alongside the data. Given that each
workflow is run with a specific objective in mind, the collection of raw metadata often contains much more
than needed. Although this is desirable to maximize possible reusability of simulation data, for a given objec-
tive the raw metadata should be filtered. For this, a dedicated read operation that extracts the relevant entries
from a collection of metadata is performed according to the given objective. The extracted metadata is parsed
and might be immediately usable depending on the output format of the parsing operations, however a specific
structure might be needed to increase interoperability between the processed metadata and other data exploita-
tion software. Therefore, structuring the metadata according to a standard is often a beneficial step to easily and
unambiguously leverage the metadata information. With this, the previously heterogeneous metadata collection
is now unified, possibly structured according to a standard, and ready to be exploited.

Combine your data with metadata.  Before being able to use processed metadata with data, these need to be
combined. Here, we refer to combining as a referencing procedure in which any data entity that makes up a
complete data record is cross-referenced with any metadata (item or collection) that assists in using and inter-
preting the data entity. Although it is possible to exploit metadata and data independently for specific purposes,
combining them quickly becomes necessary when the volume and dimension of a dataset start to grow. When
amassing data from multiple simulations, each with varying degrees of different configuration and/or models, it
becomes apparent that simulation results need to be described at a higher level. For this, “tagging” or annotating
the data with the processed metadata creates an enriched dataset. When appropriately stored, users can exploit
indexing engines to navigate through enriched datasets and generate complex data projections. Again, the level
of granularity with which data entities are identified and matched to metadata will need to be decided based on
the objective of the workflow.

Following the above practices will help in collecting and handling large heterogeneous volumes of metadata;
additionally, combining datasets with processed metadata increases their explorability and exploitability. The
actual methods through which these practices can be followed or implemented depend on the technology used
to manage the simulation experiment and data processing pipeline. In particular some existing technologies
offer support for these practices and are addressed in the “Discussion”.

Metadata post-processing framework – the Archivist.  Users who follow the metadata collection prac-
tices outlined in the previous section might end up with large volumes of heterogeneous metadata. For exam-
ple, users could potentially collect: code; documentation; system information; human readable and non-human
readable data; binary, encoded, and compressed files; etc... Immediately exploiting the information found in this
collection might be practically unfeasible due to the variety of file structure and formats. In particular, database
systems and analysis tools often require specific input structures or formats without much flexibility. To be able to
use their collected metadata, users need to individually transform the information in each file and then combine
it into a specific output, or look for available software to aid in this process.

Although there exist tools capable of doing these kinds of operations, e.g. AiiDA15 parsers (https://readthe-
docs.io/projects/-core/en/latest/reference/apidoc/parsers.html, last access: 23 February 2024), and DataLad17

https://doi.org/10.1038/s41597-025-05126-1
https://readthedocs.io/projects/-core/en/latest/reference/apidoc/parsers.html
https://readthedocs.io/projects/-core/en/latest/reference/apidoc/parsers.html

6Scientific Data | (2025) 12:942 | https://doi.org/10.1038/s41597-025-05126-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

metadata extractors (https://docs.datalad.org/projects/metalad/en/latest/extractors.html, last access: 23
February 2024), they may constrain how metadata is processed, and/or may be an inseparable component of a
larger framework without the ability to be used independently.

Here, we propose the Archivist as a framework for performing parsing and structuring operations. Our goal
is to facilitate the implementation of our metadata handling practices by providing the Archivist as an intermedi-
ary tool to extract information from a heterogeneous metadata file collection and unify it into a single file. Some
users will want to structure the unified metadata file according to a vocabulary or schema such as RO-Crate18,
CodeMeta, or Bioschemas19. Whereas our proposed metadata practices aim to collect information describing
the conditions under which an individual result was obtained, vocabularies and schemas provide a higher level
of description for entities, context, and goals surrounding the experiment itself. Nonetheless, some of the col-
lected metadata can help to generate documents according to these defined standards. To do this, users can
define data templates to structure the extracted information from the collection of metadata files into a compre-
hensive output compliant with their desired standard. Still, users will likely need to provide additional input to
fully exploit the expressivity of the vocabularies. An example output compliant with the Bioschemas vocabulary
for computational workflows is shown in “Methods”.

The Archivist doesn’t currently support data annotation, i.e., linking metadata records to relevant parts of the
data in the post-processing pipeline (Fig. 1, red Annotation box), because the heavy customizations required to
fit the underlying structure of the data are difficult to formalize. For example, while data structured according
to HDF5-based23 formats like the NIX24 standard can make use of built-in mechanisms for linking collections
of metadata entries to data, such mechanisms cannot necessarily be generalized to other file formats and data
models.

To illustrate the Archivist framework, we show a representative example implementation of a workflow to
parse and structure metadata in Fig. 2. The framework, coded in Python (http://www.python.org, last access: 23
February 2024), is primarily composed of four processing classes and one interface class. The processing classes
perform different aspects of the metadata parsing and structuring (exploration of metadata files, parsing of
metadata sources, formatting and structuring of collected metadata, and exporting to a selected format), while
the central interface class orchestrates the other classes.

Below, we introduce the functionalities of each of these classes. Source code, example implementations, and
additional details can be found at https://doi.org/10.5281/zenodo.13442425 (last access: 30 August 2024).

Archivist class.  The Archivist class is a convenience interface class which instantiates and orchestrates the pro-
cessing classes. As input, the class accepts a collection of raw metadata, the parsing operations to apply, and
optionally a data template. This interface is necessary because each processing class uses specifically structured
inputs and outputs, which can be cumbersome and error-prone for users to generate themselves. We designed
the interface to be configurable, giving it enough flexibility to customize the behavior of the processing classes
while providing simple inputs and outputs.

Explorer class.  The Explorer class processes inputs given to the Archivist. These can be raw metadata archives
or directories containing raw metadata files. To enhance flexibility, no assumption is made about the structure
and contents of the archives or directories. As such, the user must define rules identifying which files to parse
– we refer to this as a file target rule. To do this, the user can provide precise file names or regular expressions
describing these names. We refer to these as file description rules. Using these rules, the Explorer searches the
input (archive or directory) for corresponding files and provides a list of files to parse.

Parser abstract class.  The Parser is an abstract class designed to be extended by users to extract metadata from
files. When instantiating a Parser, the user must associate one of the file target rules provided to the Explorer.
Depending on the rule, the Archivist instance dispatches each file to the respective Parser.

Additionally each user must provide their own parsing methods. Two examples of such instances are shown
in Fig. 2: the config_parser which employs the PyYAML (https://github.com/yaml/pyyaml, last access: 26
January 2025) package to read YAML files, and the time_parser which uses a custom ASCII file reader. The
ASCII reader consists of a simple line-by-line parsing loop over the input file, using a regular expression to select
only lines starting with a word followed by a space then a time marker composed of minutes and seconds. If
the word matches the string “real", then the time marker is stored and its time value converted to seconds. The
final output is a dictionary containing the value in seconds of the real time and a unit description. Additional
examples of parsing classes are provided with our source code and we hope to build a user base around shared
methods to foster reusability and replicability.

Formatter class.  The Formatter combines the output of the Parser instances into a unified metadata file.
Although parsing the desired metadata files and listing the results in a single file might be sufficient for some
workflows, in other cases it may be necessary to transform the collection of parsing results into a cohesive and
comprehensive structure. For this, the user must provide a data template to match a parsing result to the desired
structure. These data templates are defined with an extended implementation of the JSON Schema25 which the
Formatter can interpret to link data structures with extracted information. As a simplified example in Fig. 2,
given the parsed information from the configuration file and time file, the user can combine the simulation time
with the real time in a single field as the real_time_factor.

Exporter class.  The Exporter saves the internal data representation of the structured metadata to a file with
specific output format. Like the Parser, though not an abstract class itself, this class was designed to be extensible

https://doi.org/10.1038/s41597-025-05126-1
https://docs.datalad.org/projects/metalad/en/latest/extractors.html
http://www.python.org
https://doi.org/10.5281/zenodo.13442425
https://github.com/yaml/pyyaml

7Scientific Data | (2025) 12:942 | https://doi.org/10.1038/s41597-025-05126-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

to enable serialization to arbitrary formats. In particular, users define the output format that enhances compat-
ibility with their annotation method of choice. In Fig. 2, the Archivist employs the JSON format to export the
structured metadata.

Using this class hierarchy, users only need to define the parsing functionalities they are interested in along
with the file target rules, and provide a metadata collection to process. The Archivist class takes care of coordi-
nating the other classes and generating the output. For more complex operations, users can provide a data tem-
plate for the Formatter class, and extend the Exporter class to change the output format. With this flexibility, the
Archivist framework provides a re-usable parsing and structuring pipeline that can operate on existing metadata
or be attached to a workflow for automated post-processing. A Jupyter tutorial explaining how to implement the
metadata processing pipeline shown in Fig. 2 is available at https://github.com/INM-6/metadata-archivist/blob/
main/examples/schema_example4/schema_tutorial.ipynb (last access: 26 January 2025).

Examples.  To illustrate how the proposed metadata practices (“Metadata management practices”) and
the Archivist framework (“Metadata post-processing framework - the Archivist”) can be implemented into spe-
cific simulation workflows, we provide here one minimal and two real-world examples. The first example
(“Minimal example”) constitutes a toy workflow applicable to simulations where the user conducts a param-
eter scanning experiment and leverages recorded metadata to identify suitable configurations. The second
example (“Neuroscience use case”) describes a workflow for the benchmarking and the verification of a specific

User-written files

Processed metadata flowRaw metadata flow

metadata_archive.tgz data_template.jsonparsers.py structured_metadata.json

Archivist

StructuringParsingMetadata entry selection

Time parser

Configuration parserconfig.yaml

Explorer

time.txt

Parameter flow Archivist output

Internal data representationPython classesProcessing step Raw metadata

config

time

Formatter

structured_metadata

Exporter

Fig. 2  Implementation of an Archivist metadata processing pipeline with two example parsers. From the
user perspective, the Archivist class is provided with all inputs associated with the pipeline (bottom yellow
and grey boxes). Internally, the Explorer class extracts the individual files to process from a collection of raw
metadata files, and dispatches them to corresponding Parser classes, here the Configuration parser and the Time
parser classes. Then, each Parser class employs a user-defined function to extract specific information from
its respective files. After this, the Formatter class collects the parsing results. If a data template is provided, the
composite result can also be restructured. The final processed metadata is output in a format of choice by the
Exporter class. A Jupyter tutorial explaining how to implement the metadata processing pipeline shown here is
available at https://github.com/INM-6/metadata-archivist/blob/main/examples/schema_example4/schema_
tutorial.ipynb (last access: 26 January 2025).

https://doi.org/10.1038/s41597-025-05126-1
https://github.com/INM-6/metadata-archivist/blob/main/examples/schema_example4/schema_tutorial.ipynb
https://github.com/INM-6/metadata-archivist/blob/main/examples/schema_example4/schema_tutorial.ipynb
https://github.com/INM-6/metadata-archivist/blob/main/examples/schema_example4/schema_tutorial.ipynb
https://github.com/INM-6/metadata-archivist/blob/main/examples/schema_example4/schema_tutorial.ipynb

8Scientific Data | (2025) 12:942 | https://doi.org/10.1038/s41597-025-05126-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

neuroscience simulation architecture. The third example (“Hydrology use case”) showcases a routine procedure
for the calibration of a hydrological model.

Minimal example.  The first example addresses a typical question in computational science (Fig. 3): how
can we choose the parameters of a given model such that the accuracy of its predictions is high while the
time-to-solution is small? In many applications, a typical parameter which improves the model prediction but
slows down the simulation is the model size, here referred to as the scale. Examples are the number of ele-
ments in a finite element simulation, or the number of neurons in an artificial neuronal network. The minimal
example described here illustrates how the enrichment of simulation results with processed metadata helps find
an answer to the above question. For simplicity, we assume that the example runs in a local simulation environ-
ment where the required software stack is already installed, no job manager is used, and the data is stored locally.
In accordance with Fig. 1, we subdivide the entire workflow into the three components: Simulation, Metadata
post-processing, and Data usage. Below, we describe each of these components in detail.

Knowledge flowRe-usability

Simulation 1

Simulation N Database

Data usage

parsers.pyMetadata post-processing 1

data_template.json

Scale

R
ea

l t
im

e
fa

ct
or

Scale

1...N

metadata

Structuring

Annotation

1...N

M
od

el
 a

cc
ur

ac
y

... ...
Query

Data selection

Presentation

Metadata post-processing N

Processed metadata flowRaw metadata flow

ArchivistMetadata post-processingRaw metadata

Data flow

Data generation Data usage

Parameter flow

Archivist output

Archivist configuration

Internal data representation Database exploration outputSimulation output

structured_metadata.json

Parsing

results.dat

Job execution

config.yaml time.txt

metadata_archive.tgz

Configuration

Fig. 3  Minimal example. Illustration of the Archivist’s functionality in a simple example use case. In a parameter
scanning experiment, several instances of a model with different configurations (parameters) are simulated
(“Simulation 1”, …, “Simulation N”; blue boxes on the left). During each simulation, configuration and
performance information are recorded and stored in a (raw) metadata archive (yellow). After each simulation,
the stored metadata is post-processed (“Metadata post-processing 1”, …, “Metadata post-processing N”; red):
first, the relevant information is extracted by user-defined Parser classes (gray box parsers.py). Non-
relevant information is discarded (see light gray text in the raw metadata files). The extracted metadata are then
structured according to a provided data template (gray box data_template.json). Finally, the simulation
results are annotated with the structured metadata and stored in a database (red cylinder). After all simulation
and metadata post-processing instances are finished and their corresponding results are stored in the database,
the annotated data can be queried and presented (green).

https://doi.org/10.1038/s41597-025-05126-1

9Scientific Data | (2025) 12:942 | https://doi.org/10.1038/s41597-025-05126-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

The Simulation section consists of the configuration of the model and the simulation architecture, the sim-
ulation execution, and the collection of the generated data and metadata (Fig. 3, blue box). Here, we do not
further specify the actual structure and dynamics of the underlying hypothetical model. We merely assume that
it contains a parameter scale representing the model size. During the simulation, the model dynamics are
propagated forward in time with some time resolution (step_size), up to a total model time (sim_time).
We further assume that the simulation architecture is equipped with a parallelization infrastructure, which is
parameterized by the total number of processes (procs) and the number of computing threads used by each
process (threads). Model and architecture parameters are stored in a configuration file (config.yaml).
During each simulation, some primary simulation data (which we do not further specify here) is generated and
stored in a data file (results.dat). In addition, the simulation scripts monitor the duration of each simula-
tion run with the help of the Linux time command (https://www.man7.org/linux/man-pages/man1/time.1.html,
last access: 25 August 2024). It returns three different types of durations: the real time represents the actual
wall-clock time, i.e., the total time taken by the simulation process from invocation to termination, while the
user and the sys times measure the cumulative CPU (thread) time spent in the user and in the kernel mode,
respectively. All three times (real, user, sys) are stored in a text file (time.txt). The simulation is re-run
for a range of scale’s, procs, and threads. At the end of each simulation run, the configuration and the
time files are collected in the form of a raw metadata archive (metadata_archive.tgz).

Within the Metadata post-processing section, relevant configuration information and simulation times are
parsed from the raw metadata archive and combined into a structured metadata file (Fig. 3, red box). For the
question at hand, not all metadata collected during the simulation needs to be extracted. Let’s, for example,
assume that the time resolution (step_size) was kept constant for all simulations. Moreover, we are only
interested in the real but not in the user and in the sys times. During the parsing of the raw metadata, only
a subset of metadata is therefore extracted (black items in config.yaml and time.txt in Fig. 3). In addition,
physical units are added to the time quantities. The metadata extraction is performed by the Archivist with the
help of user-defined parsing classes (parsers.py). The Archivist further structures the extracted metadata
according to a user-defined template (data_template.json). In this example, the template introduces the
total number of virtual processes (virtual_processes) calculated by multiplying the number of processes
by the number of threads per process, as well as the real time factor (real_time_factor) calculated by
taking the ratio between the measured wall-clock (real) time and the model time (sim_time). Finally, the
primary simulation data are annotated by the structured metadata. In this example, annotation is performed
by uploading the primary simulation data and the corresponding structured metadata as a single entry to a
local database. An implementation of the metadata post-processing performed for this example can be found at
https://doi.org/10.5281/zenodo.13442425 (last access: 30 August 2024).

In the Data usage section, the local database containing the accumulated annotated simulation results is
queried to ultimately find model sizes where the model accuracy is sufficiently high while the time-to-solution
is low (Fig. 3, green box). To this end, the parameter search is restricted to a subset of simulations where a given
amount of computational ressources have been used. In this example, only those entries are extracted from the
database where the total number of virtual processes equals 16. Based on the selected primary simulation data,
the user assesses the model accuracy, for example, by comparing the model predictions with some observed or
experimental data (for a real-world example, see “Hydrology use case”). At the same time, the user extracts the
real time factor from the corresponding structured metadata. A subsequent analysis of the dependence of the
model accuracy and the real time factor on the model size (scale), and an account of additional constraints
such as the maximum acceptable real time factor or the minimal acceptable model accuracy, permits an identi-
fication of appropriate model sizes.

Neuroscience use case.  Understanding how the brain “computes”, what principles it employs to solve complex
tasks with minimal energy consumption, how it evolves and changes during the lifetime of an organism, what
the origins and effects of neurodegenerative diseases are, and what possibilities of treatment exist has huge
social, economical, and ecological impact. The human brain consists of about 1011 nerve cells (neurons)26, which
form a complex network. Each neuron receives inputs from thousands of other neurons, both from its local
neighborhood and from distant brain areas. The connectivity structure is highly heterogeneous and depends on
the involved neuron types and brain areas. Furthermore, the connections between neurons (synapses) are not
static but change depending on sensory inputs and other factors. The mathematical description of the brain’s
dynamics at cellular resolution therefore involves large sets of coupled differential equations. Even for a single
cubic millimeter of brain tissue, this number is on the order of at least 104. Neuroscience is thus dealing with
complicated mesoscopic dynamical systems, which are neither small nor in the thermodynamic limit. They can
not be fully understood by means of analytical mathematical methods from dynamical systems theory or statis-
tical physics. State-of-the-art neuroscience hence relies on simulation.

Simulating brain-scale neuronal networks at cellular resolution, i.e., instantiating the corresponding models
and simulating them in a reasonable time, is challenging. In particular, investigating slow biological processes,
such as learning or brain development, requires accelerated simulations where the wall-clock times Twall are
substantially smaller than the duration Tmodel of the simulated time interval. Due to the large number of neurons
and connections, brain-scale neuronal-network simulation requires substantial amounts of memory to store
all involved state variables27. At each instance of time, large numbers of differential equations have to be solved
simultaneously. Brain simulation thus typically employs parallel, distributed computing. One of the key chal-
lenges in distributed brain simulation, however, is the communication between neurons, which are typically
located on different compute nodes. Developing efficient algorithms and simulation software that can exploit the
possibilities of continuously evolving high-performance computing architectures and incorporate new insights
from experimental and theoretical neuroscience is hence a fundamental activity in this field28–36. It depends on

https://doi.org/10.1038/s41597-025-05126-1
https://www.man7.org/linux/man-pages/man1/time.1.html
https://doi.org/10.5281/zenodo.13442425

1 0Scientific Data | (2025) 12:942 | https://doi.org/10.1038/s41597-025-05126-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

large teams of software developers, who coordinate their work over years of development with many and fast
update cycles. Continuously monitoring the quality (correctness, usability, reproducibility) and the performance
(speed, memory demands, energy costs) of the simulation code is mandatory3,37. Without regularly testing the
simulation code, the integration of new features or new optimizations may unknowingly lead to wrong results or
performance breakdowns14. Detecting and understanding such unwanted behavior, comparing different hard-
ware configurations or testing procedures, and sharing test results with other developers relies on an efficient
tracking and organization of the corresponding benchmarking data and metadata.

The use case presented here demonstrates how the proposed metadata management practices and the
Archivist can help in fulfilling this task. It illustrates a verification and performance benchmarking workflow
for the neuronal-network simulation code NEST GPU38,39 executed on a range of different hardware platforms
(Fig. 4). It shows that the simulation code generates identical results on all tested platforms (Fig. 4B), and high-
lights differences in the simulation speed (Fig. 4C). For illustration, we restrict this example to

•	 a specific test case: a model40 of a small piece of the mammalian cortex comprising about 80, 000 neurons and
300 million synapses (Fig. 4A),

•	 a specific set of hardware platforms: four different GPU architectures (see axis labels in Fig. 4B,C),
•	 a specific verification metric: the average firing rates of neurons in different subpopulations of the network

model (Fig. 4B), and
•	 a specific performance metric: the real time factor, i.e., the ratio between the wall-clock time and the simu-

lated biological time Fig. 4C).

 Details on each of these aspects are given in“Methods”. In a real performance-benchmarking setting, the
same workflow would be (and has been14,31,39,41–45) executed for a broader range of test cases, hardware configu-
rations, verification metrics, and performance metrics.

The entire pipeline underlying this use case is implemented using Snakemake16 – a lightweight yet pow-
erful and flexible workflow manager. Individual workflow components, such as the software deployment and
compilation, the simulation execution, the storage of simulation data and raw metadata, the data and meta-
data post-processing, as well as the data exploration and presentation, correspond to specific Snakemake rules

Fig. 4  Neuroscience use case. (A) Left: Sketch of a model40 describing the activity dynamics generated by a
local neuronal circuit of the mammalian neocortex (adapted from42). The network model is composed of four
excitatory (E; blue triangles) and four inhibitory neuronal populations (I; red circles); distributed across four
cortical layers 2/3, 4, 5 and 6; and driven by background inputs. Neurons in the network are interconnected in
a cell-type and layer specific manner (blue and red arrows). Right: The model generates neuronal activity data
(“spikes” and firing rates) as the primary neuroscientific data (blue cylinder). For each simulation instance,
information about the model parameterization, random number generator (RNG) seeds, the hard- and
software configuration, as well as the wall-clock times are stored in various files and formats as raw metadata
(yellow cylinder). In a subsequent post-processing step (red gear), the metadata is parsed and structured by the
Archivist. The simulation data is annotated with this structured metadata and stored in a database for further
usage (red cylinder). The database can flexibly be queried according to user interests (curved red arrows).
(B, C) Verification (B) and performance benchmarking (C) as two exemplary types of data usage. (B) Average
activity level (firing rate) in each of the 8 neuronal populations 2/3E, …, 6I depicted in panel A, obtained from
simulations of the model on four different GPU platforms (see labels at horizontal axis in panel (C). (C) Real
time factor (ratio between wall-clock time Twall and simulated biological time Tmodel = 10 s) for four different
GPU computing platforms. Error bars (red) in (B) and (C) depict standard deviations across ten different model
realizations (random-number generator [RNG] seeds) and simulation runs for each platform (error bars are
partly too small to be visible).

https://doi.org/10.1038/s41597-025-05126-1

1 1Scientific Data | (2025) 12:942 | https://doi.org/10.1038/s41597-025-05126-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

(for details, see “Methods”). During each execution of the simulation workflow, the (probabilistic) network
model is simulated with 10 different random realizations of the initial state and the network connectivity (differ-
ent random-number-generator [RNG] seeds). Each simulation instance generates single-neuron activity traces
(spike trains) as well as population and time averaged firing rates as the primary neuroscientific data (blue cylin-
der in Fig. 4A). In addition, information about the model parameterization, RNG seeds, the hard- and software
configuration, as well as the wall-clock times and real time factors are stored in various files and formats as raw
metadata (yellow cylinder in Fig. 4A). After the simulation, the data and raw metadata are compressed, labe-
led with a unique identifier (uid), and uploaded to an instance of a Mongo database (MongoDB, https://www.
mongodb.com, last access: 23 February 2024). During the metadata post-processing (red gear in Fig. 4A), the
Archivist uses specific parsers to extract the type of the computing platform, the RNG seed, and the real time
factor from the raw metadata archives. Subsequently, the extracted information is structured according to a
user-specific template. The link between the data and the metadata (data annotation) is established by attaching
the data uid to the structured metadata. At the end of the metadata post-processing, the structured metadata
are uploaded to the database containing the data and raw metadata (red cylinder in Fig. 4A). The workflow is
executed on four different GPU platforms, each sweep individually enriching the same database with its raw and
structured metadata and annotated data. The database containing the accumulated data and metadata from vari-
ous instantiations of the simulation and metadata post-processing workflow can be efficiently queried according
to user interest (curved red arrows in Fig. 4A). For the verification and the performance assessment of the NEST
GPU code, we extract the average firing rates and the real time factors, respectively, for each network realization
(RNG seed) and computing platform, and plot the corresponding across-trial averages and standard deviations
(Fig. 4B,C).

The source code underlying the workflow of this example can be found at https://doi.org/10.5281/
zenodo.13585723 (last access: 30 August 2024).

Hydrology use case.  The simulation of the hydrologic cycle is fundamental in environmental modeling. The
movement and storage of water in the terrestrial system includes diverse processes. Key processes are the infil-
tration of precipitation into the subsurface, the storage of water in soils, and the removal of water from the soil
via plant transpiration and subsurface runoff. A reliable estimation of water fluxes and storages is relevant for a
wide range of sectors, like drinking water supply, agriculture, forestry, energy production, and transportation.
Hydrologic models simulate hydrologic state variables and fluxes and their interaction. These models are created
for different purposes according to the needs of specific sectors outlined above. These range from infrastructure
planning for drinking water supply to drought quantification for agriculture and to climate projections for future
water management. Hydrologic models represent fundamental processes like snow accumulation and melting,
soil infiltration, evaporation and plant transpiration, surface and subsurface runoff, and river routing. Typical
output variables are river discharge, evapotranspiration and soil moisture among others. Input variables are
precipitation and air temperature. There are a wide range of computational workflows given the diverse pur-
poses that hydrologic models are used for. Some of the most complex workflows are related to climate change
projections where input variables are taken from different sources like climate model ensembles46. Currently,
metadata tracking in such workflows is often very limited and does not contain the comprehensive settings that
are necessary to execute these workflows.

Fig. 5  Hydrology use case. (A) A hydrologic model, here represented by the logo of the mesoscale Hydrologic
Model (mHM https://mhm-ufz.org, last access: 25 June 2024), creates output (i.e., hydrological variables shown
by the blue cylinder) and additional metadata information (yellow cylinder). A hydrologic model simulates the
water cycle at the land surface. A typical output variable is river discharge (m3s−1). Hydrological data is
annotated by metadata post-processed by the Archivist. (B) Distribution of prediction performances of the
hydrologic model across measurement stations for two parameter sets P1 and 2P . Prediction performance is
estimated by comparing simulated and observed river discharge for each measurement station. (C) Time series
of observed (black) and predicted river discharge (red; parameter set P1).

https://doi.org/10.1038/s41597-025-05126-1
https://www.mongodb.com
https://www.mongodb.com
https://doi.org/10.5281/zenodo.13585723
https://doi.org/10.5281/zenodo.13585723
https://mhm-ufz.org

1 2Scientific Data | (2025) 12:942 | https://doi.org/10.1038/s41597-025-05126-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

Here, we show how the proposed metadata management practices and the Archivist can be applied to a
workflow using a hydrologic model and which results can be derived from these (Fig. 5). A hydrologic model
is visually represented by the logo of the mesoscale Hydrologic Model (mHM20,47,48) on the left in Fig. 5A. Both
output variables and metadata information, represented by the blue and yellow cylinder, respectively, are stored.
In the hydrology use case, it is worth noting that the model output is orders of magnitude larger in terms of size
than the associated metadata. The output variables are user-specified and contain a minimal set of metadata like
unit and creation date. The practices presented here also allow us to create a set of additional metadata that pro-
vide comprehensive information about the workflow at hand (yellow cylinder in Fig. 5). For example, the entire
configuration of the hydrologic model and its parameters can be recorded as well as the execution environment,
version information, and all inputs and outputs. The Archivist is then able to process the metadata information
in a user-specific way. Two potential applications of the Archivist are shown in Fig. 5B,C.

In Fig. 5B, a performance analysis of the hydrologic model is shown. A routine exercise in hydrologic mode-
ling is parameter calibration. This stems from the fact that hydrologic modeling follows the paradigm that model
parameters govern model behavior. For example, water infiltration into the soil is controlled by a shape param-
eter that dictates how fast soil infiltration is decreasing when the soil is drying. This flexibility is fundamental to
account for highly conductive soils (i.e., sandy soils) and low conductive soils (i.e., clay soil). Here, we are able to
analyze how model performance depends on the particular choice of a parameter (Fig. 5B). This can be done in
principle over all the simulations that have ever been done using the hydrologic model, which is not possible
without this comprehensive set of metadata. Performance is measured by comparing the model output, typically
river discharge, with observations and calculating a performance measure from the simulated and observed time
series. These performance measures are created in a way that the optimal value is at one and decreases to −∞ for
simulated and observed time series that are unrelated49. Hydrologic models are run over a set of model parame-
ters and given the performance of these, a cumulative distribution function can be calculated (Fig. 5B)20,50.
Figure 5B shows that model configuration 1P is outperforming model configuration P2. Parameter set P1 leads to
a larger frequency of performance around 0.5 and higher, while parameter set P2 has larger relative frequency for
lower performance values of zero and less. Such an analysis can be done with all available parameter configura-
tions, moreover subsets of parameters of interest can be created so that their performances are investigated. This
allows users to obtain a deeper understanding of how combinations of model parameters are affecting model
performance at a level of detail that is currently not possible.

A critical task in the evaluation of hydrologic models is the visual inspection of the simulated and observed
time series of a variable of interest. Figure 5C depicts two time series of river discharge. The time series are
based on simulations (red line in Fig. 5C) and the black line is based on observations. The visual inspection then
allows an understanding of the impact of the parameter calibration. More precisely, it allows an understanding
of which part of the hydrograph is simulated well (e.g., high river discharge values, low river discharge values,
or the transition phase between high and low values). Having an annotated database at hand, as shown in Fig. 5,
allows users to freely select parameter configurations from already created simulations, not necessarily related
to parameter optimization. Ongoing discussions on modern hydrologic sciences raise the need for reusability
of hydrologic models results to better understand how process parametrizations are affecting model perfor-
mance and behavior51. Such efforts largely benefit from enriching model results with metadata describing the
simulation experiment. For example, discrepancies in model performance can be found to not only be due to
differences in model parameters, but also model configuration.

Discussion
Motivated by the expectation that rigorous metadata management is a prerequisite of reproducibility and inter-
pretability of scientific results, this work proposes and applies practices for handling metadata in simulation
research. We derived a generic knowledge production workflow to illustrate that different types of metadata
can be collected at different steps of a simulation, then be post-processed, and finally exploited alongside data.
To facilitate post-processing, we developed the Archivist framework, a Python-based tool for parsing raw meta-
data files and combining the extracted information into a structured file. The primary purpose of the tool is to
attach it to existing workflows that require routine execution and do not incorporate other means of metadata
tracking functionality yet. As example implementations, we presented a conceptual example and two use cases
with varying degrees of complexity. Our first use case was a hypothetical minimal example consisting of simple
time-driven simulations where the collected metadata was used to track the performance of the simulation
measured by the real time factor and the accuracy of the model obtained by analyzing the generated results.
Even if processing a single metadata entry is simple in nature, processing large volumes of metadata stemming
from these simulations can prove challenging. As the goal of the experiment was to find a compromise between
performance and accuracy by exploring the parameter space, a consequently large amount of data and meta-
data was generated. By automating metadata processing and structuring with the Archivist, the experiment
pipeline, from data generation to data usage, was streamlined. Our second use case was a proof of concept of
a benchmarking and verification workflow. By running several simulations of the same model40 with NEST
GPU38, the simulation performance was compared and simulation results were statistically verified across multi-
ple hardware platforms. Although the software setup was similar on all platforms, the format of the information
retrieved directly from the hardware varied. By leveraging the modularity of the Archivist, parsing functions
specific to each platform were implemented and could be exchanged without needing to modify the experiment
workflow. Because we uniformly structured the parsing output, the processed metadata describing different
hardware platforms was homogenized and could be accessed the same way. Our last use case was a routine
parameter calibration procedure where multiple parameters for the mesoscale Hydrologic Model (mHM20,47,48)
were evaluated across several simulation configurations. Due to its routine nature, data and metadata for each
procedure had accumulated over time. Furthermore, the collection of raw metadata is large even within a single

https://doi.org/10.1038/s41597-025-05126-1

13Scientific Data | (2025) 12:942 | https://doi.org/10.1038/s41597-025-05126-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

calibration procedure, because information from each parameter set is collected. The Archivist helped combine
and structure the metadata entries, allowing them to be stored in a database which could be queried for specific
parameter sets to efficiently explore the results.

The current version of the Archivist helps access and structure heterogeneous metadata collected from
simulation workflows, yet it has limitations and room for improvement. With the Archivist’s modular design,
described in “Metadata post-processing framework - the Archivist”, users only need to define parsing functions to
extract information from metadata entries, and use a data template to combine the results into desirable struc-
tures and formats. Both parsing functions and data templates can be shared among groups to foster reusability of
implemented workflows. However, we note the need to properly document the defined functions and structures.
The same information can be interpreted differently by multiple users; one might mistakenly extract information
with a different interpretation than expected. A simple example would be reading a number with a large amount
of decimal digits. Functions can be implemented to use the exact number with all decimals, truncate after an
arbitrary significance of decimal digits, or round to the nearest integer. All of these implementations are valid
interpretations and their use depends on how the information will be exploited later. Appropriate documenta-
tion solves this problem by disambiguating implementations and increasing interpretability of the processed
metadata. Much like the source code and version of used models and simulators help describe a simulation
experiment, the implementation and version of parsing functions describe the post-processing operations. This
is of particular importance considering that metadata processing for a given dataset is not a single final process,
but can be refined for different needs. By keeping a copy and sharing the raw metadata set, data can be subse-
quently annotated by the same or other users even if certain metadata entries were filtered out after an initial
processing and annotation step. Data is then further enriched by extending the available annotated information
and can later be used for new studies. Future contributions to the Archivist could automatically interpret infor-
mation in a data model to deduce the locations of files in a dataset and generate file target rules without the need
for user definition Given a sufficiently detailed description of dataset contents, parsing functions could also
potentially be generated.

As mentioned in the Section titled “Metadata post-processing framework - the Archivist”, there exist alterna-
tive tools for metadata post-processing, such as the AiiDA15 parsers or DataLad17 metadata extractors. AiiDA
is a workflow manager that can use parsing plugins to extract information from files generated during the sim-
ulation workflow. The parsed information can then be used as an output of a workflow step or attached as
additional metadata for data provenance tracking. DataLad is a distributed data management system where
users can define extractors to parse files present in the database and extract metadata to annotate their respec-
tive datasets based on the data versioning system git-annex (https://git-annex.branchable.com, last access: 01
March 2024). Conceptually, both these tools perform similar operations to the Archivist: users define functions
to extract information from files, these functions are used to parse the contents of the generated or stored data
and extract metadata according to specific needs, and users can share these functions for further reusability. The
difference lies in how parsing is orchestrated and how the extracted metadata is handled. In both AiiDA and
DataLad, parsing is triggered on a file-by-file basis. Although the metadata can be integrated into a knowledge
base (i.e., the provenance graph for AiiDA or as annotated information for DataLad), each piece of parsed
information is treated independently and further processing is required to combine it into a comprehensive
output. In contrast, the parsers employed by the Archivist operate on an arbitrary number of files automatically
determined by user-defined rules. Furthermore, the Archivist empowers users with the possibility to define
a custom data template based on JSON Schema to structure and combine the parsed metadata. The ability
to use a custom data template helps ensure that previous and future post-processing results are consistently
structured. Because our practices promote storing unprocessed workflow results as well as processed results,
previous results can be reprocessed with a newer data template if a different structure is needed for a new pur-
pose, thereby fostering reusability. Additionally, users can base their template on vocabularies or schemas such
as RO-Crate18, CodeMeta, or Bioschemas19 for further interoperability of their post-processing results. We note
that our intention is not to create a replacement for features in AiiDA or DataLad, but to implement a standalone
tool that can transparently suit specific user needs. Dedicated workflow manager tools such as Snakemake16 or
AiiDA are particularly useful for implementing a completely new workflow - in addition to increased reusability
and interoperability of workflows, these tools offer software environment handling, HPC cluster job handling,
and data provenance tracking among other features52. Data provenance in particular is useful for describing
the contents of data generated during simulations. Rather than being incompatible with our framework, these
alternative tools could actually be combined with it by using the Archivist as a parsing and structuring backend.
This combined implementation would feature automated experiment description, flexible data characterization,
and efficient data annotation and exploration. To this end, future work could be done on a combined implemen-
tation of the Archivist with existing tools for automated provenance tracking and enhanced storage platforms.

We note that, although our abstract simulation workflow Fig. 1 (blue) can represent a wide range of real-world
workflows, it is certainly not an absolute representation. This implies that our metadata management practices
defined through this abstract workflow are not fully applicable to all workflows. Very intricate workflows, for exam-
ple, may deal with challenges that do not allow for a one-off intervention of incorporating the Archivist, but call for
further customized solutions instead. Particular examples are highly evolving workflows containing steps that are
frequently swapped, added, or removed which require keeping track of which metadata to collect and updating
the corresponding post-processing methods. Even updating only the simulation workflow is time-consuming,
so updating the metadata post-processing workflow too will require even more effort. Furthermore, simulation
workflows that require complex dynamical inputs prepared in a separate preceding workflow, or that incorporate
separate subsequent post-processing workflows – if metadata on these inputs or subsequent workflows is not
collected during execution, they would be irretrievably lost. A final example where our practices may not be fully
applicable are simulations where the size of produced data and/or metadata is too large to store both in “raw” and

https://doi.org/10.1038/s41597-025-05126-1
https://git-annex.branchable.com

1 4Scientific Data | (2025) 12:942 | https://doi.org/10.1038/s41597-025-05126-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

processed format. These workflows require that data and metadata are processed, possibly filtered, and annotated
during runtime before being able to be stored. Decoupling the post-processing of metadata describing data gener-
ated during the simulation experiment is not beneficial in these cases and would most likely lead to inconsistency
issues. Nonetheless, even if not fully applicable, our practices can serve as a stepping stone for these complex work-
flows as metadata describing scientific experiments remain essential for long-term storage and sharing results.

Our proposed practices for handling metadata in simulation workflows are applicable to a wide range of
scientific disciplines with domain-specific workflows and metadata conventions. New workflows can benefit
from these practices to ensure that metadata is handled accordingly. The practices can also be implemented in
existing workflows without major restructuring of established code. In this case, our proof of concept tool, the
Archivist, provides a flexible solution for parsing and structuring heterogeneous metadata files. Through the use
cases presented in this work we illustrate how our practices and tool support sustainable numerical workflows,
fostering reproducibility and data reuse in simulation-based research.

Methods
Details on the neuroscience use case.  The “Neuroscience use case” focuses on a workflow for benchmark-
ing and verification of a spiking neural network simulator across multiple hardware platforms. The workflow
implementation can be found at https://doi.org/10.5281/zenodo.13585723 (last access: 30 August 2024).

NEST GPU.  The simulator used is NEST GPU38,39, an open library for simulation of large-scale networks of
spiking neurons, written in the C++ and CUDA-C++ programming languages (source code: https://github.
com/nest/nest-gpu, last access: 23 February 2024; documentation: https://nest-gpu.readthedocs.io, last access:
23 February 2024).

Hardware platforms.  The goal of this experiment is to determine whether the simulator would produce the
same results across different hardware platforms. As the models simulated rely on floating point calculations,
artifacts during numerical computations may arise during simulation and could potentially accumulate to
observable differences in produced results. In particular, GPU architectures can vary highly between genera-
tions, which increases the chances of such divergence. For this reason we test the simulator with different GPUs
models, both consumer and data center level, with varying architectures Table 1): one laptop with the consumer
GPU RTX 3070 Ti Mobile with CUDA version 12.2; two compute clusters, JUSUF53 and JURECA-DC54, both
using CUDA version 11.3 and equipped with the data center GPUs V100 and A100, respectively; and a worksta-
tion with the consumer GPU RTX 4090 with CUDA version 11.4.

Network model.  The model used to evaluate the simulator is the cortical microcircuit of Potjans and
Diesmann40 which represents a 1 mm2 patch of early sensory cortex at the biological plausible density of neurons
and synapses (depicted in Fig. 4A). The model was simulated previously on different simulation platforms38,42,55,
and in a recent study dynamics and performance were evaluated using NEST GPU39. The availability of both
dynamics and performance data make this model ideal for verification tests. Furthermore, the inherent com-
plexity and scale of the network are good candidates to confirm whether numerical artifacts would be generated
even on data center level GPUs.

Verification metrics.  To verify the simulated dynamics, we collect spiking activity of all neuron populations
of the model, and compute their average firing rate. Simulations are performed using a time step of 0.1 ms and
500 ms of network dynamics are simulated before recording spiking activity to avoid transients. Then, we record
spiking activity of the subsequent 10 s of network dynamics. As shown in previous studies56, the average firing
rate of a population is computed as the number of recorded spikes emitted by all neurons in the population,
averaged by the number of neurons in the population, and normalized by the duration of the recording.

Performance metrics.  To measure the performance of the simulation in each hardware platform we use the
real time factor as defined in “Minimal example”. Here we use internal timers included in the model definition to
compare the time needed for state propagation of model dynamics and the simulated biological time.

Data generation.  As a proof of concept, we devised a minimal workflow where we follow our previously defined
practices on metadata collection, post-processing, and annotation to populate a database. Here, we describe
the steps for software preparation, simulation execution, and metadata collection (see Fig. 1). For simplicity, we
assume that all software dependencies for the simulator and for the data processing pipeline are already present in
the target platform. We also assume that no job schedulers are needed for execution. The workflow, implemented
using Snakemake, consists of nine rules underlying the production and storage of raw simulation data and meta-
data, two rules for metadata post-processing, and one rule for data exploration and usage. This implementation
was designed so each rule can be dynamically configured through a dedicated file to increase flexibility and
reusability for different simulation scenarios (such as different simulators and models). The workflow starts by
cloning two separate repositories, one for the simulator and another for the model. Following this, the simulator
is compiled using its CMake (https://cmake.org, last access: 23 February 2024) installation infrastructure. Then
the model is consecutively run in a sequence of independent simulations each with a different random number
generation seed. The spiking activity predicted by the model is recorded and constitutes the primary data output
of each simulation. Special care is also taken to monitor the simulated biological time and the wall-clock time for
performance data. Information on the system environment before and after job execution is recorded through
a dedicated metadata collection script. This allows us to compare the state of the system before and after setting
up the simulation environment. Additional metadata produced before execution, such as configuration files,

https://doi.org/10.1038/s41597-025-05126-1
https://doi.org/10.5281/zenodo.13585723
https://github.com/nest/nest-gpu
https://github.com/nest/nest-gpu
https://nest-gpu.readthedocs.io
https://cmake.org

1 5Scientific Data | (2025) 12:942 | https://doi.org/10.1038/s41597-025-05126-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

execution scripts, compilation output, shell output logs, and the internal metadata tracked by Snakemake itself,
are stored as raw metadata. After each simulation run and metadata collection, a post-processing step com-
putes the population-averaged firing rates from the recorded spike data (Fig. 4B), as well as the real time factor
(Fig. 4C). Finally, the produced data and metadata are compressed into archives. As storage platform, we use an
instance of a MongoDB. By employing its file storage system GridFS (https://www.mongodb.com/docs/manual/
core/gridfs, last access 23 February 2024), we can upload the compressed archives and get a unique identifier for
each.

Vocabulary usage example.  In Listing 1 we show a partial example output of a metadata post-processing pipe-
line. In this example, input and output file names were extracted from the workflow configuration file and
formatted according to the Bioschemas vocabulary (https://bioschemas.org/types/ComputationalWorkflow/1.0-
RELEASE, last access: 23 January 2025). If specific file names are changed in the configuration this update would
be reflected in the output of a subsequent metadata post-processing pipeline. These were then used to complete
a simple Bioschemas document bioschemas.jsonld included with the workflow source code. Although
valid, the document content is minimal and only shown as a proof of feasibility. Users would naturally employ
the full capabilities of Bioschemas to describe their own workflows.

Listing 1 Partial output of an Archivist post-processing pipeline. Extracted information from workflow configu-
ration file was formatted according to the Bioschemas vocabulary.

Details on the hydrology use case.  The ‘‘Hydrology use case” presents how the metadata Archivist can be
applied in the hydrological modeling sciences.

mHM.  An essential tool of this use case is the employed mesoscale hydrologic model mHM20,47,48 (https://
mhm-ufz.org, last access: 21 March 2025). mHM is a grid-based, spatially distributed hydrological model driven by
daily precipitation, temperature, and potential evapotranspiration. It accounts for major hydrological processes such
as snow accumulation and melt, canopy interception, soil infiltration, evapotranspiration, deep percolation, baseflow
generation, and river routing. The open-source model code repository is available and is under active development

System CPU GPU

Laptop Intel Core i7-12800H vPro, 14 cores (6 P-cores + 8
E-cores), P-core 4.8GHz / E-core 3.7GHz

NVIDIA RTX 3070 Ti Mobile2, 1410 MHz, 8 GB GDDR6,
5888 CUDA cores

JUSUF cluster 2 × AMD EPYC 7742, 2 × 64 cores, 2.25 GHz NVIDIA V1001, 1530 MHz, 16 GB HBM2e, 5120 CUDA
cores

JURECA-DC cluster 2 × AMD EPYC 7742, 2 × 64 cores, 2.25 GHz NVIDIA A1002, 1410 MHz, 40 GB HBM2e, 6912 CUDA
cores

Workstation Intel Core i9-10940X, 14 cores, 3.30 GHz NVIDIA RTX 40903, 2520 MHz, 24 GB GDDR6X, 16384
CUDA cores

Table 1.  Hardware configuration of the different platforms used. Cluster information is given on a per node basis.
1Volta architecture: https://developer.nvidia.com/blog/inside-volta, last access: 25 June 2024.
2Ampere architecture: https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth, last access:
 25 June 2024.
3Ada Lovelace architecture: https://www.nvidia.com/en-us/technologies/ada-architecture/, last access:
25 June 2024.

https://doi.org/10.1038/s41597-025-05126-1
https://www.mongodb.com/docs/manual/core/gridfs
https://www.mongodb.com/docs/manual/core/gridfs
https://bioschemas.org/types/ComputationalWorkflow/1.0-RELEASE
https://bioschemas.org/types/ComputationalWorkflow/1.0-RELEASE
https://mhm-ufz.org
https://mhm-ufz.org
https://developer.nvidia.com/blog/inside-volta
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth
https://www.nvidia.com/en-us/technologies/ada-architecture/

1 6Scientific Data | (2025) 12:942 | https://doi.org/10.1038/s41597-025-05126-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

and maintenance (https://git.ufz.de/mhm/mhm, last access: 21 March 2025). A general overview on the model pro-
cesses and parameterization can be obtained from47 and48. The model is an integral part of the German Drought
Monitor (https://www.ufz.de/duerremonitor, last access: 21 March 2025). mHM was also applied and evaluated in
multiple climatological regions, including Europe57,58, West Africa59, India60, and the conterminous United States50,61.

Hardware platforms.  mHM simulations were carried out on the Computing Cluster EVE, a joint effort of both
the Helmholtz Centre for Environmental Research - UFZ (http://www.ufz.de/, last access: 21 March 2025) and
the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig (https://www.idiv.de/, last
access: 25 June 2024). The main compute hardware of EVE comprises a) 42 compute nodes with dual socket
Intel Xeon 6348 CPUs with 512 Gigabytes of DDR4 main memory, two of these also include NVIDIA Tesla A100
GPGPUs, and b) 27 compute nodes with dual socket Intel Xeon Gold 6148 CPUs with up to 1536 Gigabytes of
DDR4 main memory, two of which include NVIDIA Tesla V100 GPGPUs. The central network component of
the cluster is an Intel Omni-Path 100 Series high performance interconnect, providing all compute nodes with
non-blocking EDR bandwidth (100 Gigabit per second). All compute nodes share a 4.5 Petabyte IBM Spectrum
Scale file system. The system performed with over 164 teraFLOPS under a High-Performance LINPACK (HPL)
benchmark. For the simulations of this project, we have used CPU cores exclusively.

Model setup.  The mHM model is executed within the test basin provided along with the model source code,
the so called “test basin". The test basin coming with the mHM source code is for the Moselle River basin
upstream of Perl, a place, where the Moselle River leaves France and enters Luxembourg and Germany (Moselle
Basin). The catchment area is approximately 11, 500km2, altitude ranges between 150 and 1300 m. a.m.s.l. The
Moselle River originates from the Vosges Mountains and is a tributary of the Rhine River. The origin of data used
in the test example is provided on https://mhm-ufz.org/docs/ (last access: July 18th, 2024).

Performance metrics.  The hydrology use cases makes use of performance metrics that are commonly used in
hydrologic modeling. Explicitly, it is the Kling-Gupta efficiency (KGE49), that can be used to compare two time
series. The metric combines the long-term mean, long-term variance, and Pearson correlation coefficient.

Data generation.  The mHM simulations have been facilitated using the ecFlow workflow manager62 developed
at the European Centre for Medium-Range Weather Forecasts (ECMWF). ecFlow is a client/server workflow
package that allows users to execute any number of simulations. It is tailored to work on HPCs and allows to
easily restart workflows if hardware and software failures occur. We have created a simple suite with three tasks.
The first task is the compilation of mHM using CMake (https://cmake.org, last access: 23 February 2024). The
second tasks executes the hydrologic model. The third task is a post-processing step that creates plots like the
ones shown in Fig. 5B,C. We have now also added the Archivist to these workflows to manage the metadata.

Data availability
No external dataset or input data were used for this study.

Code availability
Source code, example implementations, and additional details of the Archivist framework can be found at https://
doi.org/10.5281/zenodo.13442425 (last access: 30 August 2024). An implementation of the metadata post-
processing performed for the “Minimal example” can be found at https://doi.org/10.5281/zenodo.13442425 (last
access: 30 August 2024). The workflow implementation for the“Neuroscience use case” as well as the data and
script required to create Fig. 4 can be found at https://doi.org/10.5281/zenodo.13585723 (last access: 30 August
2024). The model implementation of the “Hydrology use case” used to generate the data required to create Fig. 5 is
available at https://doi.org/10.5281/zenodo.1069202 (last access: 26 January 2025).

Received: 11 September 2024; Accepted: 1 May 2025;
Published: xx xx xxxx

References
	 1.	 Pauli, R., Weidel, P., Kunkel, S. & Morrison, A. Reproducing polychronization: a guide to maximizing the reproducibility of spiking

network models. Front. Neuroinform. 12, https://doi.org/10.3389/fninf.2018.00046 (2018).
	 2.	 Leipzig, J., Nüst, D., Hoyt, C. T., Ram, K. & Greenberg, J. The role of metadata in reproducible computational research. Patterns 2,

100322, https://doi.org/10.1016/j.patter.2021.100322 (2021).
	 3.	 Anzt, H. et al. Towards Continuous Benchmarking: An Automated Performance Evaluation Framework for High Performance

Software. In Proceedings of the Platform for Advanced Scientific Computing Conference, PASC ’19, https://doi.org/10.1145/3324989.3325719
(Association for Computing Machinery, New York, NY, USA, 2019).

	 4.	 Penders, B., Holbrook, J. B. & de Rijcke, S. Rinse and Repeat: Understanding the Value of Replication across Different Ways of
Knowing. Publications 7, 52, https://doi.org/10.3390/publications7030052 (2019).

	 5.	 Gutzen, R. et al. Reproducible neural network simulations: Statistical methods for model validation on the level of network activity
data. Front. Neuroinform. 12, 90, https://doi.org/10.3389/fninf.2018.00090 (2018).

	 6.	 Glatard, T. et al. Reproducibility of Neuroimaging Analyses across Operating Systems. Frontiers in Neuroinformatics 9, 12, https://
doi.org/10.3389/fninf.2015.00012 (2015).

	 7.	 Nordlie, E., Gewaltig, M.-O. & Plesser, H. E. Towards reproducible descriptions of neuronal network models. PLOS Comput. Biol. 5,
e1000456, https://doi.org/10.1371/journal.pcbi.1000456 (2009).

	 8.	 Ivie, P. & Thain, D. Reproducibility in Scientific Computing. ACM Computing Surveys 51, 1–36, https://doi.org/10.1145/3186266 (2018).
	 9.	 McDougal, R. A., Bulanova, A. S. & Lytton, W. W. Reproducibility in computational neuroscience models and simulations. IEEE

Trans. Biomed. Eng. 63, 2021–2035, https://doi.org/10.1109/TBME.2016.2539602 (2016).

https://doi.org/10.1038/s41597-025-05126-1
https://git.ufz.de/mhm/mhm
https://www.ufz.de/duerremonitor
http://www.ufz.de/
https://www.idiv.de/
https://mhm-ufz.org/docs/
https://cmake.org
https://doi.org/10.5281/zenodo.13442425
https://doi.org/10.5281/zenodo.13442425
https://doi.org/10.5281/zenodo.13442425
https://doi.org/10.5281/zenodo.13585723
https://doi.org/10.5281/zenodo.1069202
https://doi.org/10.3389/fninf.2018.00046
https://doi.org/10.1016/j.patter.2021.100322
https://doi.org/10.1145/3324989.3325719
https://doi.org/10.3390/publications7030052
https://doi.org/10.3389/fninf.2018.00090
https://doi.org/10.3389/fninf.2015.00012
https://doi.org/10.3389/fninf.2015.00012
https://doi.org/10.1371/journal.pcbi.1000456
https://doi.org/10.1145/3186266
https://doi.org/10.1109/TBME.2016.2539602

17Scientific Data | (2025) 12:942 | https://doi.org/10.1038/s41597-025-05126-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

	10.	 Davison, A. Automated capture of experiment context for easier reproducibility in computational research. Computing in Science &
Engineering 14, 48–56 (2012).

	11.	 Manninen, T., Aćimović, J., Havela, R., Teppola, H. & Linne, M.-L. Challenges in Reproducibility, Replicability, and Comparability
of Computational Models and Tools for Neuronal and Glial Networks, Cells, and Subcellular Structures. Frontiers in
Neuroinformatics 12, https://doi.org/10.3389/fninf.2018.00020 (2018).

	12.	 Plesser, H. E. Reproducibility vs. Replicability: A Brief History of a Confused Terminology. Frontiers in Neuroinformatics 11, 76,
https://doi.org/10.3389/fninf.2017.00076 (2018).

	13.	 Guilyardi, E. et al. Documenting Climate Models and Their Simulations. Bulletin of the American Meteorological Society 94, 623–627,
https://doi.org/10.1175/bams-d-11-00035.1 (2013).

	14.	 Albers, J. et al. A modular workflow for performance benchmarking of neuronal network simulations. Front. Neuroinform. 16,
837549, https://doi.org/10.3389/fninf.2022.837549 (2022).

	15.	 Huber, S. P. et al. Aiida 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance. Sci.
Data 7, 1–18, https://doi.org/10.1038/s41597-020-00638-4 (2020).

	16.	 Mölder, F. et al. Sustainable data analysis with Snakemake. F1000Research 10, 33, https://doi.org/10.12688/f1000research.29032.1 (2021).
	17.	 Halchenko, Y. et al. DataLad: distributed system for joint management of code, data, and their relationship. Journal of Open Source

Software 6, 3262, https://doi.org/10.21105/joss.03262 (2021).
	18.	 Soiland-Reyes, S. et al. Packaging research artefacts with RO-Crate. Data Science 5, 97–138, https://doi.org/10.3233/ds-210053 (2022).
	19.	 Gray, A., Goble, C. & Jimenez, R. Bioschemas: From Potato Salad to Protein Annotation. In Nikitina, N., Song, D., Fokoue, A. &

Haase, P. (eds.) ISWC 2017 Posters & Demonstrations and Industry Tracks, CEUR workshop proceedings (RWTH Aachen University,
Germany, 2017). The 16th International Semantic Web Conference 2017, ISWC 2017 ; Conference date: 21-10-2018 Through
25-10-2018.

	20.	 Thober, S. et al. The multiscale routing model mRM v1.0: simple river routing at resolutions from 1 to 50 km. Geoscientific Model
Development 12, 2501–2521, https://doi.org/10.5194/gmd-12-2501-2019 (2019).

	21.	 Alagić, S.Data Model, 20-63 (Springer New York, 1986).
	22.	 Grewe, J., Wachtler, T. & Benda, J. A Bottom-up Approach to Data Annotation in Neurophysiology. Frontiers in Neuroinformatics5,

https://doi.org/10.3389/fninf.2011.00016 (2011).
	23.	 Koranne, S.Hierarchical Data Format 5 : HDF5, 191-200 (Springer US, 2010).
	24.	 Adrian, S., Christian, K., Jan, B., Thomas, W. & Jan, G. File format and library for neuroscience data and metadata. Frontiers in

Neuroinformatics 8, https://doi.org/10.3389/conf.fninf.2014.18.00027 (2014).
	25.	 Pezoa, F., Reutter, J. L., Suarez, F., Ugarte, M. & Vrgoč, D. Foundations of JSON Schema. In Proceedings of the 25th International

Conference on World Wide Web, WWW ’16, https://doi.org/10.1145/2872427.2883029 (International World Wide Web Conferences
Steering Committee, 2016).

	26.	 Herculano-Houzel, S. The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3, 31, https://doi.
org/10.3389/neuro.09.031.2009 (2009).

	27.	 Kunkel, S. et al. Meeting the memory challenges of brain-scale simulation. Front. Neuroinform. 5, 35, https://doi.org/10.3389/
fninf.2011.00035 (2012).

	28.	 Morrison, A., Mehring, C., Geisel, T., Aertsen, A. & Diesmann, M. Advancing the boundaries of high connectivity network
simulation with distributed computing. Neural Comput. 17, 1776–1801, https://doi.org/10.1162/0899766054026648 (2005).

	29.	 Morrison, A. & Diesmann, M. Maintaining causality in discrete time neuronal network simulations. In Graben, P. b., Zhou, C., Thiel,
M. & Kurths, J. (eds.) Lectures in Supercomputational Neurosciences: Dynamics in Complex Brain Networks 267–278, https://doi.
org/10.1007/978-3-540-73159-7_10 (Springer, Berlin, Heidelberg, 2008).

	30.	 Kunkel, S. et al. Spiking network simulation code for petascale computers. Front. Neuroinform. 8, 78, https://doi.org/10.3389/
fninf.2014.00078 (2014).

	31.	 Jordan, J. et al. Extremely scalable spiking neuronal network simulation code: From laptops to exascale computers. Front.
Neuroinform. 12, 2, https://doi.org/10.3389/fninf.2018.00002 (2018).

	32.	 Pronold, J. et al. Routing brain traffic through the von Neumann bottleneck: Parallel sorting and refactoring. Front. Neuroinform. 15,
785068, https://doi.org/10.3389/fninf.2021.785068 (2022).

	33.	 Pronold, J. et al. Routing brain traffic through the von Neumann bottleneck: Efficient cache usage in spiking neural network
simulation code on general purpose computers. Parallel Comput. 113, 102952, https://doi.org/10.1016/j.parco.2022.102952 (2022).

	34.	 Hines, M. & Carnevale, N. T. The NEURON simulation environment. Neural Comput. 9, 1179–1209 (1997).
	35.	 Stimberg, M., Brette, R. & Goodman, D. F. Brian 2, an intuitive and efficient neural simulator. eLife8, https://doi.org/10.7554/

elife.47314 (2019).
	36.	 Yavuz, E., Turner, J. & Nowotny, T. GeNN: a code generation framework for accelerated brain simulations. Sci. Rep. 6, https://doi.

org/10.1038/srep18854 (2016).
	37.	 Saam, N. J.Validation Benchmarks and Related Metrics, 433-461 (Springer International Publishing, 2019).
	38.	 Golosio, B. et al. Fast simulations of highly-connected spiking cortical models using GPUs. Front. Comput. Neurosci. 15, 627620,

https://doi.org/10.3389/fncom.2021.627620 (2021).
	39.	 Golosio, B. et al. Runtime construction of large-scale spiking neuronal network models on GPU devices. Applied Sciences 13, 9598,

https://doi.org/10.3390/app13179598 (2023).
	40.	 Potjans, T. C. & Diesmann, M. The cell-type specific cortical microcircuit: Relating structure and activity in a full-scale spiking

network model. Cereb. Cortex 24, 785–806, https://doi.org/10.1093/cercor/bhs358 (2014).
	41.	 Senk, J. et al. A collaborative simulation-analysis workflow for computational neuroscience using HPC. In Di Napoli, E., Hermanns,

M.-A., Iliev, H., Lintermann, A. & Peyser, A. (eds.) High-Performance Scientific Computing. JHPCS 2016., vol.10164 of Lecture Notes
in Computer Science, 243–256, https://doi.org/10.1007/978-3-319-53862-4_21 (Springer, Cham, 2017).

	42.	 van Albada, S. J. et al. Performance comparison of the digital neuromorphic hardware SpiNNaker and the neural network simulation
software NEST for a full-scale cortical microcircuit model. Front. Neurosci. 12, 291, https://doi.org/10.3389/fnins.2018.00291 (2018).

	43.	 Heittmann, A. et al. Simulating the cortical microcircuit significantly faster than real time on the ibm inc-3000 neural
supercomputer. Front. Neurosci. 15, https://doi.org/10.3389/fnins.2021.728460 (2022).

	44.	 Kurth, A. C., Senk, J., Terhorst, D., Finnerty, J. & Diesmann, M. Sub-realtime simulation of a neuronal network of natural density.
Neuromorphic Comput. Eng. 2, 021001, https://doi.org/10.1088/2634-4386/ac55fc (2022).

	45.	 Kauth, K., Stadtmann, T., Sobhani, V. & Gemmeke, T. neuroaix-framework: design of future neuroscience simulation systems
exhibiting execution of the cortical microcircuit model 20× faster than biological real-time. Front. Comput. Neurosci. 17, https://doi.
org/10.3389/fncom.2023.1144143 (2023).

	46.	 Samaniego, L. et al. Hydrological Forecasts and Projections for Improved Decision-Making in the Water Sector in Europe. Bulletin
of the American Meteorological Society 100, 2451–2472, https://doi.org/10.1175/bams-d-17-0274.1 (2019).

	47.	 Samaniego, L., Kumar, R. & Attinger, S. Multiscale parameter regionalization of a grid–based hydrologic model at the mesoscale.
Water Resources Research 46, https://doi.org/10.1029/2008wr007327 (2010).

	48.	 Kumar, R., Samaniego, L. & Attinger, S. Implications of distributed hydrologic model parameterization on water fluxes at multiple
scales and locations. Water Resources Research 49, 360–379, https://doi.org/10.1029/2012wr012195 (2013).

	49.	 Gupta, H. V., Kling, H., Yilmaz, K. K. & Martinez, G. F. Decomposition of the mean squared error and NSE performance criteria:
Implications for improving hydrological modelling. Journal of Hydrology 377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003 (2009).

https://doi.org/10.1038/s41597-025-05126-1
https://doi.org/10.3389/fninf.2018.00020
https://doi.org/10.3389/fninf.2017.00076
https://doi.org/10.1175/bams-d-11-00035.1
https://doi.org/10.3389/fninf.2022.837549
https://doi.org/10.1038/s41597-020-00638-4
https://doi.org/10.12688/f1000research.29032.1
https://doi.org/10.21105/joss.03262
https://doi.org/10.3233/ds-210053
https://doi.org/10.5194/gmd-12-2501-2019
https://doi.org/10.3389/fninf.2011.00016
https://doi.org/10.3389/conf.fninf.2014.18.00027
https://doi.org/10.1145/2872427.2883029
https://doi.org/10.3389/neuro.09.031.2009
https://doi.org/10.3389/neuro.09.031.2009
https://doi.org/10.3389/fninf.2011.00035
https://doi.org/10.3389/fninf.2011.00035
https://doi.org/10.1162/0899766054026648
https://doi.org/10.1007/978-3-540-73159-7_10
https://doi.org/10.1007/978-3-540-73159-7_10
https://doi.org/10.3389/fninf.2014.00078
https://doi.org/10.3389/fninf.2014.00078
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.3389/fninf.2021.785068
https://doi.org/10.1016/j.parco.2022.102952
https://doi.org/10.7554/elife.47314
https://doi.org/10.7554/elife.47314
https://doi.org/10.1038/srep18854
https://doi.org/10.1038/srep18854
https://doi.org/10.3389/fncom.2021.627620
https://doi.org/10.3390/app13179598
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.1007/978-3-319-53862-4_21
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.3389/fnins.2021.728460
https://doi.org/10.1088/2634-4386/ac55fc
https://doi.org/10.3389/fncom.2023.1144143
https://doi.org/10.3389/fncom.2023.1144143
https://doi.org/10.1175/bams-d-17-0274.1
https://doi.org/10.1029/2008wr007327
https://doi.org/10.1029/2012wr012195
https://doi.org/10.1016/j.jhydrol.2009.08.003

1 8Scientific Data | (2025) 12:942 | https://doi.org/10.1038/s41597-025-05126-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

	50.	 Rakovec, O. et al. Diagnostic Evaluation of Large-Domain Hydrologic Models Calibrated Across the Contiguous United States.
Journal of Geophysical Research: Atmospheres 124, 13991–14007, https://doi.org/10.1029/2019JD030767 (2019).

	51.	 Clark, M. P. et al. A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resources Research 51,
2498–2514, https://doi.org/10.1002/2015WR017198 (2015).

	52.	 Diercks, P. et al. Evaluation of tools for describing, reproducing and reusing scientific workflows. ing.grid 1, https://doi.org/10.48694/
inggrid.3726 (2023).

	53.	 Vieth, B. V. S. JUSUF: Modular tier-2 supercomputing and cloud infrastructure at jülich supercomputing centre. Journal of large-
scale research facilities JLSRF 7, https://doi.org/10.17815/jlsrf-7-179 (2021).

	54.	 Thörnig, P. JURECA: Data centric and booster modules implementing the modular supercomputing architecture at jülich
supercomputing centre. Journal of large-scale research facilities JLSRF 7, https://doi.org/10.17815/jlsrf-7-182 (2021).

	55.	 Knight, J. C., Komissarov, A. & Nowotny, T. PyGeNN: A python library for GPU-enhanced neural networks. Front. Neuroinform. 15,
659005, https://doi.org/10.3389/fninf.2021.659005 (2021).

	56.	 Dasbach, S., Tetzlaff, T., Diesmann, M. & Senk, J. Dynamical characteristics of recurrent neuronal networks are robust against low
synaptic weight resolution. Front. Neurosci. 15, 757790, https://doi.org/10.3389/fnins.2021.757790 (2021).

	57.	 Thober, S. et al. Seasonal Soil Moisture Drought Prediction over Europe Using the North American Multi-Model Ensemble
(NMME). Journal of Hydrometeorology 16, 2329 – 2344, https://doi.org/10.1175/JHM-D-15-0053.1 (2015).

	58.	 Rakovec, O., Kumar, R., Attinger, S. & Samaniego, L. Improving the realism of hydrologic model functioning through multivariate
parameter estimation: IMPROVING THE REALISM OF HYDROLOGIC MODEL FUNCTIONING. Water Resources Research 52,
7779–7792, https://doi.org/10.1002/2016wr019430 (2016).

	59.	 Dembélé, M., Hrachowitz, M., Savenije, H. H. G., Mariéthoz, G. & Schaefli, B. Improving the Predictive Skill of a Distributed
Hydrological Model by Calibration on Spatial Patterns With Multiple Satellite Data Sets. Water Resources Research 56, https://doi.
org/10.1029/2019wr026085 (2020).

	60.	 Saha, T. R., Shrestha, P. K., Rakovec, O., Thober, S. & Samaniego, L. A drought monitoring tool for South Asia. Environmental
Research Letters 16, 054014, https://doi.org/10.1088/1748-9326/abf525 (2021).

	61.	 Livneh, B. et al. A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and Southern Canada 1950-2013.
Scientific Data 2, https://doi.org/10.1038/sdata.2015.42 (2015).

	62.	 Bahra, A. Managing work flows with ecFlow. ECMWF Newsletter 129, 30–32, https://doi.org/10.21957/nr843dob (2011).

Acknowledgements
The authors thank Dennis Terhorst, and Guido Trensch for constructive discussions. This project has received
funding from the Initiative and Networking Fund of the Helmholtz Association in the framework of the
Helmholtz Metadata Collaboration (HMC) project call (ZT-I-PF-3-026) and under project number SO-092
(Advanced Computing Architectures, ACA), the Helmholtz Joint Lab “Supercomputing and Modeling for the
Human Brain”, the European Union’s Horizon Europe Programme under the Specific Grant Agreement No.
101147319 (EBRAINS 2.0 Project), and HiRSE_PS, the Helmholtz Platform for Research Software Engineering -
Preparatory Study, an innovation pool project of the Helmholtz Association. Open access publication was funded
by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) project 491111487. The authors
gratefully acknowledge the computing time granted by the JARA Vergabegremium and provided on the JARA
Partition part of the supercomputer JURECA at Forschungszentrum Jülich (computation grant JINB33). They
further acknowledge the use of Fenix Infrastructure resources, which are partially funded from the European
Union’s Horizon 2020 research and innovation programme through the ICEI project under the grant agreement
No. 800858. The work was carried out in part within the HMC Hub Information at the Forschungszentrum Jülich.

Author contributions
All authors contributed to the conceptual metadata management framework, and the design of the example
use cases. J.V. and M.K. implemented the metadata Archivist. J.V. implemented the neuroscience use case. M.K.
implemented the hydrology use case. All authors wrote and reviewed the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.V.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s41597-025-05126-1
https://doi.org/10.1029/2019JD030767
https://doi.org/10.1002/2015WR017198
https://doi.org/10.48694/inggrid.3726
https://doi.org/10.48694/inggrid.3726
https://doi.org/10.17815/jlsrf-7-179
https://doi.org/10.17815/jlsrf-7-182
https://doi.org/10.3389/fninf.2021.659005
https://doi.org/10.3389/fnins.2021.757790
https://doi.org/10.1175/JHM-D-15-0053.1
https://doi.org/10.1002/2016wr019430
https://doi.org/10.1029/2019wr026085
https://doi.org/10.1029/2019wr026085
https://doi.org/10.1088/1748-9326/abf525
https://doi.org/10.1038/sdata.2015.42
https://doi.org/10.21957/nr843dob
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Metadata practices for simulation workflows

	Introduction

	Results

	Metadata management practices.
	Collect as much information as possible.
	Identify metadata sources.
	Metadata collection does not need to be complicated.
	Post-process recorded metadata according to your goals.
	Combine your data with metadata.

	Metadata post-processing framework – the Archivist.
	Archivist class.
	Explorer class.
	Parser abstract class.
	Formatter class.
	Exporter class.

	Examples.
	Minimal example.
	Neuroscience use case.
	Hydrology use case.

	Discussion

	Methods

	Details on the neuroscience use case.
	NEST GPU.
	Hardware platforms.
	Network model.
	Verification metrics.
	Performance metrics.
	Data generation.
	Vocabulary usage example.

	Details on the hydrology use case.
	mHM.
	Hardware platforms.
	Model setup.
	Performance metrics.
	Data generation.

	Acknowledgements

	Fig. 1 Metadata management in a generic knowledge production workflow.
	Fig. 2 Implementation of an Archivist metadata processing pipeline with two example parsers.
	Fig. 3 Minimal example.
	Fig. 4 Neuroscience use case.
	Fig. 5 Hydrology use case.
	﻿Table 1 Hardware configuration of the different platforms used.

