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Metadata practices for simulation 
workflows
José Villamar   1,2 ✉, Matthias Kelbling   3, Heather L. More   1,4, Michael Denker   1, 
Tom Tetzlaff   1, Johanna Senk   1,5 & Stephan Thober   3

Computer simulations are an essential pillar of knowledge generation in science. Exploring, 
understanding, reproducing, and sharing the results of simulations relies on tracking and organizing the 
metadata describing the numerical experiments. The models used to understand real-world systems, 
and the computational machinery required to simulate them, are typically complex, and produce large 
amounts of heterogeneous metadata. Here, we present general practices for acquiring and handling 
metadata that are agnostic to software and hardware, and highly flexible for the user. These consist of 
two steps: 1) recording and storing raw metadata, and 2) selecting and structuring metadata. As a proof 
of concept, we develop the Archivist, a Python tool to help with the second step, and use it to apply 
our practices to distinct high-performance computing use cases from neuroscience and hydrology. Our 
practices and the Archivist can readily be applied to existing workflows without the need for substantial 
restructuring. They support sustainable numerical workflows, fostering replicability, reproducibility, 
data exploration, and data sharing in simulation-based research.

Introduction
Recent advances in high-performance computing (HPC) technology enable simulations of increasingly large 
and complex models. While these simulations offer huge potential for science and society, it becomes more and 
more challenging to replicate and reproduce the results of such numerical experiments, to efficiently explore the 
simulation data, and to share them with other scientists.

User stories such as the following are therefore common among researchers: 

	 1.	 Replicating results: Scientist X cannot replicate the results of scientist Y due to inconsistencies between the 
information provided in the scientific article and in the associated code published by Y. Even personal commu-
nication with Y does not resolve these inconsistencies1.

	 2.	 Data sharing: Each member of a group of scientists regularly runs simulations of the same mathematical 
model to investigate different scientific questions. The datasets generated by each of these scientists are similar 
and potentially useful to other members of the group, although what one scientist considers to be metadata 
can be analyzed as primary data by another scientist with a different objective. It is therefore desirable to share 
these data to minimize time and energy costs and ultimately to increase scientific productivity. However, the 
scientists have no efficient way of communicating the information necessary to understand the structure of 
each dataset2.

	 3.	 Data exploration: A group of scientists is developing a simulation software. After each development cycle, 
the group runs a set of benchmarking experiments with different configurations and models to continuously 
monitor the simulation software performance ("continuous benchmarking”3). After years of development, the 
group has accumulated large amounts of benchmarking data for each software version. The scientists have 
no way to easily search and view subsets of the accumulated data, for example, to compare different versions 
using similar configurations or model types.
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One would assume that the above problems, known to different extents in various research fields, should not 
exist in simulation science, due to our perception of full control over digital implementations4. However, this 
assumption is typically wrong for two reasons. First, users are often not aware of every aspect of their hardware 
and software systems, such as low-level hardware settings5, implementation details of a software package, or the 
implications of using a specific operating system6. These aspects are of particular importance for HPC-enabled 
simulations, where highly specialized hardware and software solutions and the distribution of code among mul-
tiple processors may affect the exact simulation outcome or performance measures. Given the limited lifetime of 
HPC systems, long-term repeatability is practically impaired. Second, users often customize aspects of their sys-
tem without properly documenting their changes, for example modifying the behavior of off-the-shelf software. 
Therefore, despite the digital nature of simulation research, it remains difficult to acquire and organize metadata 
describing the details of hardware systems, software stacks, model descriptions and simulation workflows that 
are necessary to replicate, reproduce, understand, and share the results of numerical experiments1,7–9. These 
metadata arise at all stages of the simulation workflow, including defining and implementing a model; preparing 
software; generating and executing a job; post-processing, analyzing, and visualizing data; and organizing and 
storing data.

Throughout this paper, we use the terms ‘reproducibility’ and ‘replicability’ as defined by the Association for 
Computing Machinery (ACM) (https://www.acm.org/publications/policies/artifact-review-and-badging-current, 
last access: 12 February 2025). According to these guidelines, results from a computational experiment are repro-
duced if an independent team obtains the same results using the same experimental setup, whereas results are 
replicated if an independent team obtains the same results using a different experimental setup. Here, ‘experi-
mental setup’ refers to the artifacts used to generate results, which “can be software systems, scripts used to run 
experiments, input datasets, raw data collected in the experiment, or scripts used to analyze results”. For simula-
tion experiments, we consider such artifacts to be simulation engines, model and workflow implementations, and 
their respective configurations. However, it is important to consider not only the software, but also the hardware 
system used to obtain results. For instance, performance metrics such as time to solution or energy consumption 
cannot be interpreted without knowledge of the hardware on which the experiment is run. These considerations 
may blur the conceptual line between reproduction and replication. It is, for example, not always clear whether 
a small change in the configuration or the hardware leads to a different experimental setup. Ultimately, it is the 
research question underlying a simulation experiment that determines which aspects of the experimental setup 
are important to consider when reproducing or replicating results.

Successfully capturing comprehensive metadata and provenance information describing the experiment and 
its setup is a prerequisite for reproducibility and replicability7–12, allows assessment of simulation outcomes1,13, 
and helps scientists explore, share, and reuse data14. Recently, several powerful tools have been developed to 
organize, execute, and track complex workflows, including their resulting data and metadata, such as Sumatra10, 
AiiDA15, Snakemake16, and DataLad17. Although these tools are useful for new projects, using them in existing 
projects with different, possibly custom, workflow management systems requires deciding whether to rebuild the 
workflow from scratch using the desired tools or look for alternative solutions.. As a consequence, scientists often 
write custom code for metadata handling to compromise between adding functionality and keeping an estab-
lished workflow. The resulting inconsistency in metadata management makes it difficult to transfer knowledge  
between researchers.

Other community efforts have focused on defining vocabularies or schemas such as RO-Crate18, CodeMeta 
(https://codemeta.github.io, last access: 23 January 2025), or Bioschemas19. Such standards enable interoperabil-
ity of data and metadata produced by computational workflows, and provide practical ways for developers and 
users to describe and document their experiments. Nonetheless, detailed information on individual workflow 
executions can only be collected during runtime and often requires additional transformations to comply with 
vocabularies or schemas. Examples of such information are: the software environment at runtime, computing 
capabilities of the hardware system in use, or performance and resource consumption of computationally heavy 
workflow steps. Furthermore, identifying where such information can be found and the methods to transform 
it depend on the workflow implementation and system used. This dependency makes found solutions harder to 
transfer to other workflows or systems, and consequently researchers avoid collecting and handling such infor-
mation unless required by their scientific objectives.

Here, we propose a set of practices for flexible metadata management which can readily be integrated into 
existing simulation workflows without substantial refactoring. The practices apply to commonly used workflows 
across diverse research fields. They advise researchers about which metadata to collect at each stage of a simula-
tion workflow, how to collect it, and how to process the metadata so that they enrich data. We further describe 
our Python tool Archivist which helps process metadata files using user-defined functions and combine the 
outputs into a unified file. Finally, we apply our proposed practices and the Archivist to a minimal illustrating 
example, and to two real-world use cases from neuroscience and hydrology.

Results
Metadata management practices.  To better understand the metadata collection and handling processes, 
we consider a generic knowledge production workflow divided into three sub-workflows (Fig. 1): an abstract sim-
ulation experiment containing processes generating data and metadata, metadata post-processing where hetero-
geneous metadata is processed into meaningful formats and structures, and usage of enriched data. Although the 
implementation of these processes can and will vary across different use cases, this generic knowledge production 
workflow encompasses archetypes of the components occurring in many implemented workflows.

An abstract simulation experiment comprises a sequence of steps (Fig. 1, Simulation section). We define 
these steps by summarizing the processes performed in two domain-specific workflows from neuroscience and 
hydrology14,20. We consider the necessary steps to be configuration of the software environment, simulation 
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engine, and model; execution of the simulation; and storage of the generated data and metadata; depending 
on the complexity of the preparation required before or after the execution of the simulation, there might be 
additional steps. Note that we do not claim that this abstract simulation experiment exhaustively represents all 
workflows or use cases.

After a simulation experiment, users can analyze the resulting data and metadata to gain knowledge of the 
simulated model or simulation technology. The methods through which data is analyzed are tightly related to 
the objectives and intentions of the user. Furthermore, in some disciplines, these methods may require a com-
plex workflow and perhaps even the use of HPC resources. Since we cannot exhaustively define the different 
existing strategies for processing data, we provide an abstract description of how the generated data can be 
exploited (Fig. 1, Data usage section). For instance, data can be analyzed in order to measure metrics related 
to model predictions or accuracy, or simulation performance. Graphical visualizations are generated for easier 
human interpretation. Additionally, differences between multiple versions of simulators, models or parameters 
can be obtained by comparing with previous results. Then, newly obtained insights can be shared with peers to 
disseminate knowledge.

Because processing the data may inadvertently remove or add specific features that alter the original infor-
mation, storing the original data together with a data model allows independent users to exploit individual data-
sets with different methods, or to process multiple datasets at once, which increases re-usability of the simulation 
results. Over time, the data and metadata generated by different simulation experiments can be compiled and 
stored in a continuously growing collection. Establishing a data model is necessary to maintain the organization 
and integrity of this collection. A data model is an abstract representation of data objects and their relation-
ships that organizes relevant attributes of data and standardizes how they relate to each other21. This serves as a 
blueprint for structuring data elements and their relationships, providing a clear understanding of how data is 
organized, stored, and utilized within a collection. Without the data model, users may not be able to establish an 
overview of the actual contents and may fail to efficiently explore the collection. For clarity we separate data and 
metadata storage in Fig. 1, however this is an implementation choice left to the discretion of the user and for the 
remainder of this paper we refer to both storages together as one collection for simplicity.

To implement and perform the diversity of data usage tasks, metadata is required to properly describe the 
simulation experiment. When exploring multiple sets of generated data, metadata categorizing each dataset 
allows researchers to efficiently differentiate them. Moreover, when sharing the results, metadata enhances 
the knowledge transfer between data users by detailing what, how, and where the experiment was performed. 
Metadata can exist at any step of the simulation (Fig. 1, blue Data generation boxes), and can often be accessed 
only when performing the experiment. The collection of metadata and their interpretation often varies and 
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Fig. 1  Metadata management in a generic knowledge production workflow. We conceptually divide the 
workflow into three consecutive sub-workflows: simulation, metadata post-processing, and data usage. 
Simulation collects raw metadata (yellow) at each step (blue), then stores it according to a data model 
describing the structures of data and raw metadata. Metadata post-processing (red) selects raw metadata, then 
parses and structures it; annotation links this processed metadata to the data. During post-processing, user-
defined configuration specifies which raw metadata to select and how to process it, ensuring the final annotated 
data is suitable for its application. Some of these steps (light red) can be performed by the post-processing 
framework presented in “Metadata post-processing framework - the Archivist”. Data usage (green) analyzes data 
to draw conclusions through presentation and comparison; data may also be shared with others. Ultimately, the 
results of data usage inform subsequent simulations (green arrow). Each sub-workflow consists of autonomous 
steps (rectangles), user-configured steps (rounded rectangles), data storage (cylinders), and data transfer 
(arrows). This diagram aims to abstract simulation-based research; specific workflows may omit some elements 
(asterisks) or have additional steps.
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evolves with the systems and software used (Fig. 1, yellow Raw metadata collection boxes). We describe below 
some general practices for successfully collecting and handling the variety of metadata that arises during simu-
lation (Fig. 1, Metadata post-processing section).

Collect as much information as possible.  Metadata are data that describe data. Here, we focus on information 
that can be directly collected in the environment where an experiment takes place (sometimes termed “hard" 
metadata22). However, the definition of what precise pieces of information should be represented as metadata 
is difficult to generalize. Each experiment generates an arbitrary amount of information – separating this infor-
mation into metadata and data depends on the nature and goal of the workflow itself. For instance, if the goal 
of a simulation workflow is to collect and analyze the data generated by the underlying model, then the per-
formance of the simulation (time to solution, memory consumption, etc.) would be part of the metadata. On 
the contrary, if the goal of the workflow is to benchmark the simulator then the data generated by the model is 
of secondary importance, as the recorded performance data would be the desired primary result. Limiting the 
amount of information collected during a simulation experiment restricts how its output can be used in the 
future. Therefore, to maximize the potential for reuse of shared experiment results, it is important to collect as 
much information as possible10. Yet, the full extent of this collection needs to be determined on a case by case 
basis. Sometimes, collecting the full breadth of information available can be redundant. For example, when 
simulation models grow complex, the number of available parameters grows in volume too. Well-documented 
parameter sets often use default values suitable for their corresponding model; during experiments, only a sub-
set of these may actually be modified. In this case, collecting only the modified parameters may be sufficient. 
Conversely, there may be instances where keeping detailed track of the differences between experiment is nec-
essary. Sometimes, differences in software versions lead to discrepancies in experiment results1. In the case of 
rapidly evolving software such as the model, simulator, or their library dependencies, it is beneficial to keep track 
of the different versions used for each experiment. As a compromise between efficiency and completeness, we 
propose collecting information as sustainably as possible to an extent where all currently known user needs are 
satisfied.

Identify metadata sources.  Given the rapidly evolving software and hardware platforms available for simulation 
alongside user-specific set-ups, it is impossible to exhaustively list all collectible metadata. Instead, we categorize 
the different sources of metadata according to each step of the simulation experiment (Fig. 1, blue Data gener-
ation boxes): 

•	 Configuration: Most steps during the workflow need some kind of configuration or parametrization, which 
the user often saves and edits in files beforehand. These files are a type of metadata describing each step of the 
simulation. This metadata includes, in particular, the configuration and parameters used by the model and 
simulator.

•	 Software preparation: In this step all the required software (libraries, tools, and programs) are fetched, com-
piled if needed, and loaded into the environment. Information to collect here includes the source of the 
software, the parameters related to compilation, and the environment variables defined when loading the 
software.

•	 Job generation : In HPC scenarios, job schedulers are generally used to efficiently allocate and share resources 
of compute clusters. Collectable metadata here include job parameters like machine name and partition used, 
amount and type of resources used, resource configuration such as process binding or thread pinning, and 
job time limit.

•	 Pre-processing: Some simulation experiments require input data to calibrate or parametrize the model imple-
mentation. Using this input data may involve additional calculations or transformations within the workflow. 
If pre-processing is necessary, documenting the input data and procedures performed on it must be recorded 
to accurately determine the starting point of the simulation.

•	 Job execution: The execution is the main part of the simulation, and involves instantiating the simulation 
model and running the simulation. It is at this step that recording the status of the execution environment is 
the most informative and least redundant. In contrast to Software preparation, the metadata collected in this 
step should focus on the environment variables, libraries, and processes present during execution. Addition-
ally, performance information, resource consumption (memory, storage, network, etc.), and system load can 
only be recorded at this step.

•	 Post-processing : Depending on the goal and implementation of the workflow, the data that is generated must 
be post-processed for further use, which may involve steps such as checking, cleaning, compressing, or trans-
forming the data. If post-processing is necessary, documenting the procedures performed on data is essential 
to have an overview of how the final result was obtained. Thus information about expected output and the 
different methods used during this step must be recorded.

•	 Data persistence: In this step, information on the storing process can be recorded. For example: who generated 
the data and metadata to be stored? When was it generated and when is it being stored? Where was it gener-
ated and where is it being stored e.g. a file server, a local or remote database? In the case of a file server, the 
address of the server and the absolute path of the stored files should be recorded. When using a database, new 
entries are indexed with a unique identifier; storing this identifier allows linking with future related entries 
and should be recorded correspondingly.
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Depending on the system and software used, the metadata present in the above mentioned categories can 
often be found as parameter or configuration files. In particular, most system information can be obtained 
through commands provided by the operating system or package management solutions.

Users might be able to recognize the metadata required for a specific data analysis and collect it alongside 
other metadata they are aware of. However, situations could arise where reusing the generated data for unfore-
seen purposes is impossible due to missing context. Even after collecting all known metadata, it may be that 
there are still unknown pieces of metadata that need to be recorded. With rapidly evolving systems and software, 
this is not an uncommon scenario, and if such a situation arises then users must identify what information is 
lacking, and add it to the list of metadata to be recorded for future experiments.

Metadata collection does not need to be complicated.  There are two possible ways of collecting metadata: 
retrieval by a dedicated parallel process “pulling” the relevant pieces of information from each simulation step, 
or autonomous “pushing” by each component to a metadata storage. The pull-based approach relies on an over-
arching metadata-monitoring module that is adapted to the specific simulation. The push-based approach, in 
contrast, does not require such infrastructure at run time. At each step, the governing process simply dumps 
its metadata in some arbitrary, more or less raw format, independent of other simulation steps. The push-based 
approach is therefore much more flexible and can readily be applied to existing simulations. With each compo-
nent presenting its own metadata it is likely that the final collection of metadata contains different structures 
and formats. Although it is possible to standardize the presentation of metadata across all components, this 
process would require transformations that are dependent on the objective for which the data is being gener-
ated, and can vary from user to user, or the interoperability standard that the researcher must adhere to. In some 
situations, transformations of metadata may even depend on other metadata, making it difficult to perform an 
ad-hoc transformation process. We therefore propose extracting and structuring the raw metadata in a separate 
step after the simulation. This presents a clear advantage by decoupling metadata collection processes from user 
goals and processing software. Collecting as much metadata as possible is essential as it is impossible to get the 
corresponding metadata after a simulation is performed. Thus, gathering the metadata regardless of format and 
storing it during simulation for later processing is an efficient way to keep track of the information describing 
the experiment. We call the collection of these unprocessed metadata files the “raw" metadata (Fig. 1, yellow Raw 
metadata collection boxes).

Post-process recorded metadata according to your goals.  Transforming the heterogeneous raw metadata into 
a unified comprehensive format is essential in order to be able to exploit it alongside the data. Given that each 
workflow is run with a specific objective in mind, the collection of raw metadata often contains much more 
than needed. Although this is desirable to maximize possible reusability of simulation data, for a given objec-
tive the raw metadata should be filtered. For this, a dedicated read operation that extracts the relevant entries 
from a collection of metadata is performed according to the given objective. The extracted metadata is parsed 
and might be immediately usable depending on the output format of the parsing operations, however a specific 
structure might be needed to increase interoperability between the processed metadata and other data exploita-
tion software. Therefore, structuring the metadata according to a standard is often a beneficial step to easily and 
unambiguously leverage the metadata information. With this, the previously heterogeneous metadata collection 
is now unified, possibly structured according to a standard, and ready to be exploited.

Combine your data with metadata.  Before being able to use processed metadata with data, these need to be 
combined. Here, we refer to combining as a referencing procedure in which any data entity that makes up a 
complete data record is cross-referenced with any metadata (item or collection) that assists in using and inter-
preting the data entity. Although it is possible to exploit metadata and data independently for specific purposes, 
combining them quickly becomes necessary when the volume and dimension of a dataset start to grow. When 
amassing data from multiple simulations, each with varying degrees of different configuration and/or models, it 
becomes apparent that simulation results need to be described at a higher level. For this, “tagging” or annotating 
the data with the processed metadata creates an enriched dataset. When appropriately stored, users can exploit 
indexing engines to navigate through enriched datasets and generate complex data projections. Again, the level 
of granularity with which data entities are identified and matched to metadata will need to be decided based on 
the objective of the workflow.

Following the above practices will help in collecting and handling large heterogeneous volumes of metadata; 
additionally, combining datasets with processed metadata increases their explorability and exploitability. The 
actual methods through which these practices can be followed or implemented depend on the technology used 
to manage the simulation experiment and data processing pipeline. In particular some existing technologies 
offer support for these practices and are addressed in the “Discussion”.

Metadata post-processing framework – the Archivist.  Users who follow the metadata collection prac-
tices outlined in the previous section might end up with large volumes of heterogeneous metadata. For exam-
ple, users could potentially collect: code; documentation; system information; human readable and non-human 
readable data; binary, encoded, and compressed files; etc... Immediately exploiting the information found in this 
collection might be practically unfeasible due to the variety of file structure and formats. In particular, database 
systems and analysis tools often require specific input structures or formats without much flexibility. To be able to 
use their collected metadata, users need to individually transform the information in each file and then combine 
it into a specific output, or look for available software to aid in this process.

Although there exist tools capable of doing these kinds of operations, e.g. AiiDA15 parsers (https://readthe-
docs.io/projects/-core/en/latest/reference/apidoc/parsers.html, last access: 23 February 2024), and DataLad17 

https://doi.org/10.1038/s41597-025-05126-1
https://readthedocs.io/projects/-core/en/latest/reference/apidoc/parsers.html
https://readthedocs.io/projects/-core/en/latest/reference/apidoc/parsers.html


6Scientific Data |          (2025) 12:942  | https://doi.org/10.1038/s41597-025-05126-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

metadata extractors (https://docs.datalad.org/projects/metalad/en/latest/extractors.html, last access: 23 
February 2024), they may constrain how metadata is processed, and/or may be an inseparable component of a 
larger framework without the ability to be used independently.

Here, we propose the Archivist as a framework for performing parsing and structuring operations. Our goal 
is to facilitate the implementation of our metadata handling practices by providing the Archivist as an intermedi-
ary tool to extract information from a heterogeneous metadata file collection and unify it into a single file. Some 
users will want to structure the unified metadata file according to a vocabulary or schema such as RO-Crate18, 
CodeMeta, or Bioschemas19. Whereas our proposed metadata practices aim to collect information describing 
the conditions under which an individual result was obtained, vocabularies and schemas provide a higher level 
of description for entities, context, and goals surrounding the experiment itself. Nonetheless, some of the col-
lected metadata can help to generate documents according to these defined standards. To do this, users can 
define data templates to structure the extracted information from the collection of metadata files into a compre-
hensive output compliant with their desired standard. Still, users will likely need to provide additional input to 
fully exploit the expressivity of the vocabularies. An example output compliant with the Bioschemas vocabulary 
for computational workflows is shown in “Methods”.

The Archivist doesn’t currently support data annotation, i.e., linking metadata records to relevant parts of the 
data in the post-processing pipeline (Fig. 1, red Annotation box), because the heavy customizations required to 
fit the underlying structure of the data are difficult to formalize. For example, while data structured according 
to HDF5-based23 formats like the NIX24 standard can make use of built-in mechanisms for linking collections 
of metadata entries to data, such mechanisms cannot necessarily be generalized to other file formats and data 
models.

To illustrate the Archivist framework, we show a representative example implementation of a workflow to 
parse and structure metadata in Fig. 2. The framework, coded in Python (http://www.python.org, last access: 23 
February 2024), is primarily composed of four processing classes and one interface class. The processing classes 
perform different aspects of the metadata parsing and structuring (exploration of metadata files, parsing of 
metadata sources, formatting and structuring of collected metadata, and exporting to a selected format), while 
the central interface class orchestrates the other classes.

Below, we introduce the functionalities of each of these classes. Source code, example implementations, and 
additional details can be found at https://doi.org/10.5281/zenodo.13442425 (last access: 30 August 2024).

Archivist class.  The Archivist class is a convenience interface class which instantiates and orchestrates the pro-
cessing classes. As input, the class accepts a collection of raw metadata, the parsing operations to apply, and 
optionally a data template. This interface is necessary because each processing class uses specifically structured 
inputs and outputs, which can be cumbersome and error-prone for users to generate themselves. We designed 
the interface to be configurable, giving it enough flexibility to customize the behavior of the processing classes 
while providing simple inputs and outputs.

Explorer class.  The Explorer class processes inputs given to the Archivist. These can be raw metadata archives 
or directories containing raw metadata files. To enhance flexibility, no assumption is made about the structure 
and contents of the archives or directories. As such, the user must define rules identifying which files to parse 
– we refer to this as a file target rule. To do this, the user can provide precise file names or regular expressions 
describing these names. We refer to these as file description rules. Using these rules, the Explorer searches the 
input (archive or directory) for corresponding files and provides a list of files to parse.

Parser abstract class.  The Parser is an abstract class designed to be extended by users to extract metadata from 
files. When instantiating a Parser, the user must associate one of the file target rules provided to the Explorer. 
Depending on the rule, the Archivist instance dispatches each file to the respective Parser.

Additionally each user must provide their own parsing methods. Two examples of such instances are shown 
in Fig. 2: the config_parser which employs the PyYAML (https://github.com/yaml/pyyaml, last access: 26 
January 2025) package to read YAML files, and the time_parser which uses a custom ASCII file reader. The 
ASCII reader consists of a simple line-by-line parsing loop over the input file, using a regular expression to select 
only lines starting with a word followed by a space then a time marker composed of minutes and seconds. If 
the word matches the string “real", then the time marker is stored and its time value converted to seconds. The 
final output is a dictionary containing the value in seconds of the real time and a unit description. Additional 
examples of parsing classes are provided with our source code and we hope to build a user base around shared 
methods to foster reusability and replicability.

Formatter class.  The Formatter combines the output of the Parser instances into a unified metadata file. 
Although parsing the desired metadata files and listing the results in a single file might be sufficient for some 
workflows, in other cases it may be necessary to transform the collection of parsing results into a cohesive and 
comprehensive structure. For this, the user must provide a data template to match a parsing result to the desired 
structure. These data templates are defined with an extended implementation of the JSON Schema25 which the 
Formatter can interpret to link data structures with extracted information. As a simplified example in Fig. 2, 
given the parsed information from the configuration file and time file, the user can combine the simulation time 
with the real time in a single field as the real_time_factor.

Exporter class.  The Exporter saves the internal data representation of the structured metadata to a file with 
specific output format. Like the Parser, though not an abstract class itself, this class was designed to be extensible 
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to enable serialization to arbitrary formats. In particular, users define the output format that enhances compat-
ibility with their annotation method of choice. In Fig. 2, the Archivist employs the JSON format to export the 
structured metadata.

Using this class hierarchy, users only need to define the parsing functionalities they are interested in along 
with the file target rules, and provide a metadata collection to process. The Archivist class takes care of coordi-
nating the other classes and generating the output. For more complex operations, users can provide a data tem-
plate for the Formatter class, and extend the Exporter class to change the output format. With this flexibility, the 
Archivist framework provides a re-usable parsing and structuring pipeline that can operate on existing metadata 
or be attached to a workflow for automated post-processing. A Jupyter tutorial explaining how to implement the 
metadata processing pipeline shown in Fig. 2 is available at https://github.com/INM-6/metadata-archivist/blob/
main/examples/schema_example4/schema_tutorial.ipynb (last access: 26 January 2025).

Examples.  To illustrate how the proposed metadata practices (“Metadata management practices”) and 
the Archivist framework (“Metadata post-processing framework - the Archivist”) can be implemented into spe-
cific simulation workflows, we provide here one minimal and two real-world examples. The first example 
(“Minimal example”) constitutes a toy workflow applicable to simulations where the user conducts a param-
eter scanning experiment and leverages recorded metadata to identify suitable configurations. The second 
example (“Neuroscience use case”) describes a workflow for the benchmarking and the verification of a specific 

User-written files

Processed metadata flowRaw metadata flow

metadata_archive.tgz data_template.jsonparsers.py structured_metadata.json

Archivist

StructuringParsingMetadata entry selection

Time parser

Configuration parserconfig.yaml

Explorer

time.txt

Parameter flow Archivist output

Internal data representationPython classesProcessing step Raw metadata

config

time

Formatter

structured_metadata
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Fig. 2  Implementation of an Archivist metadata processing pipeline with two example parsers. From the 
user perspective, the Archivist class is provided with all inputs associated with the pipeline (bottom yellow 
and grey boxes). Internally, the Explorer class extracts the individual files to process from a collection of raw 
metadata files, and dispatches them to corresponding Parser classes, here the Configuration parser and the Time 
parser classes. Then, each Parser class employs a user-defined function to extract specific information from 
its respective files. After this, the Formatter class collects the parsing results. If a data template is provided, the 
composite result can also be restructured. The final processed metadata is output in a format of choice by the 
Exporter class. A Jupyter tutorial explaining how to implement the metadata processing pipeline shown here is 
available at https://github.com/INM-6/metadata-archivist/blob/main/examples/schema_example4/schema_
tutorial.ipynb (last access: 26 January 2025).
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neuroscience simulation architecture. The third example (“Hydrology use case”) showcases a routine procedure 
for the calibration of a hydrological model.

Minimal example.  The first example addresses a typical question in computational science (Fig. 3): how 
can we choose the parameters of a given model such that the accuracy of its predictions is high while the 
time-to-solution is small? In many applications, a typical parameter which improves the model prediction but 
slows down the simulation is the model size, here referred to as the scale. Examples are the number of ele-
ments in a finite element simulation, or the number of neurons in an artificial neuronal network. The minimal 
example described here illustrates how the enrichment of simulation results with processed metadata helps find 
an answer to the above question. For simplicity, we assume that the example runs in a local simulation environ-
ment where the required software stack is already installed, no job manager is used, and the data is stored locally. 
In accordance with Fig. 1, we subdivide the entire workflow into the three components: Simulation, Metadata 
post-processing, and Data usage. Below, we describe each of these components in detail.
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Fig. 3  Minimal example. Illustration of the Archivist’s functionality in a simple example use case. In a parameter 
scanning experiment, several instances of a model with different configurations (parameters) are simulated 
(“Simulation 1”, …, “Simulation N”; blue boxes on the left). During each simulation, configuration and 
performance information are recorded and stored in a (raw) metadata archive (yellow). After each simulation, 
the stored metadata is post-processed (“Metadata post-processing 1”, …, “Metadata post-processing N”; red): 
first, the relevant information is extracted by user-defined Parser classes (gray box parsers.py). Non-
relevant information is discarded (see light gray text in the raw metadata files). The extracted metadata are then 
structured according to a provided data template (gray box data_template.json). Finally, the simulation 
results are annotated with the structured metadata and stored in a database (red cylinder). After all simulation 
and metadata post-processing instances are finished and their corresponding results are stored in the database, 
the annotated data can be queried and presented (green).
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The Simulation section consists of the configuration of the model and the simulation architecture, the sim-
ulation execution, and the collection of the generated data and metadata (Fig. 3, blue box). Here, we do not 
further specify the actual structure and dynamics of the underlying hypothetical model. We merely assume that 
it contains a parameter scale representing the model size. During the simulation, the model dynamics are 
propagated forward in time with some time resolution (step_size), up to a total model time (sim_time). 
We further assume that the simulation architecture is equipped with a parallelization infrastructure, which is 
parameterized by the total number of processes (procs) and the number of computing threads used by each 
process (threads). Model and architecture parameters are stored in a configuration file (config.yaml). 
During each simulation, some primary simulation data (which we do not further specify here) is generated and 
stored in a data file (results.dat). In addition, the simulation scripts monitor the duration of each simula-
tion run with the help of the Linux time command (https://www.man7.org/linux/man-pages/man1/time.1.html, 
last access: 25 August 2024). It returns three different types of durations: the real time represents the actual 
wall-clock time, i.e., the total time taken by the simulation process from invocation to termination, while the 
user and the sys times measure the cumulative CPU (thread) time spent in the user and in the kernel mode, 
respectively. All three times (real, user, sys) are stored in a text file (time.txt). The simulation is re-run 
for a range of scale’s, procs, and threads. At the end of each simulation run, the configuration and the 
time files are collected in the form of a raw metadata archive (metadata_archive.tgz).

Within the Metadata post-processing section, relevant configuration information and simulation times are 
parsed from the raw metadata archive and combined into a structured metadata file (Fig. 3, red box). For the 
question at hand, not all metadata collected during the simulation needs to be extracted. Let’s, for example, 
assume that the time resolution (step_size) was kept constant for all simulations. Moreover, we are only 
interested in the real but not in the user and in the sys times. During the parsing of the raw metadata, only 
a subset of metadata is therefore extracted (black items in config.yaml and time.txt in Fig. 3). In addition, 
physical units are added to the time quantities. The metadata extraction is performed by the Archivist with the 
help of user-defined parsing classes (parsers.py). The Archivist further structures the extracted metadata 
according to a user-defined template (data_template.json). In this example, the template introduces the 
total number of virtual processes (virtual_processes) calculated by multiplying the number of processes 
by the number of threads per process, as well as the real time factor (real_time_factor) calculated by 
taking the ratio between the measured wall-clock (real) time and the model time (sim_time). Finally, the 
primary simulation data are annotated by the structured metadata. In this example, annotation is performed 
by uploading the primary simulation data and the corresponding structured metadata as a single entry to a 
local database. An implementation of the metadata post-processing performed for this example can be found at 
https://doi.org/10.5281/zenodo.13442425 (last access: 30 August 2024).

In the Data usage section, the local database containing the accumulated annotated simulation results is 
queried to ultimately find model sizes where the model accuracy is sufficiently high while the time-to-solution 
is low (Fig. 3, green box). To this end, the parameter search is restricted to a subset of simulations where a given 
amount of computational ressources have been used. In this example, only those entries are extracted from the 
database where the total number of virtual processes equals 16. Based on the selected primary simulation data, 
the user assesses the model accuracy, for example, by comparing the model predictions with some observed or 
experimental data (for a real-world example, see “Hydrology use case”). At the same time, the user extracts the 
real time factor from the corresponding structured metadata. A subsequent analysis of the dependence of the 
model accuracy and the real time factor on the model size (scale), and an account of additional constraints 
such as the maximum acceptable real time factor or the minimal acceptable model accuracy, permits an identi-
fication of appropriate model sizes.

Neuroscience use case.  Understanding how the brain “computes”, what principles it employs to solve complex 
tasks with minimal energy consumption, how it evolves and changes during the lifetime of an organism, what 
the origins and effects of neurodegenerative diseases are, and what possibilities of treatment exist has huge 
social, economical, and ecological impact. The human brain consists of about 1011 nerve cells (neurons)26, which 
form a complex network. Each neuron receives inputs from thousands of other neurons, both from its local 
neighborhood and from distant brain areas. The connectivity structure is highly heterogeneous and depends on 
the involved neuron types and brain areas. Furthermore, the connections between neurons (synapses) are not 
static but change depending on sensory inputs and other factors. The mathematical description of the brain’s 
dynamics at cellular resolution therefore involves large sets of coupled differential equations. Even for a single 
cubic millimeter of brain tissue, this number is on the order of at least 104. Neuroscience is thus dealing with 
complicated mesoscopic dynamical systems, which are neither small nor in the thermodynamic limit. They can 
not be fully understood by means of analytical mathematical methods from dynamical systems theory or statis-
tical physics. State-of-the-art neuroscience hence relies on simulation.

Simulating brain-scale neuronal networks at cellular resolution, i.e., instantiating the corresponding models 
and simulating them in a reasonable time, is challenging. In particular, investigating slow biological processes, 
such as learning or brain development, requires accelerated simulations where the wall-clock times Twall are 
substantially smaller than the duration Tmodel of the simulated time interval. Due to the large number of neurons 
and connections, brain-scale neuronal-network simulation requires substantial amounts of memory to store 
all involved state variables27. At each instance of time, large numbers of differential equations have to be solved 
simultaneously. Brain simulation thus typically employs parallel, distributed computing. One of the key chal-
lenges in distributed brain simulation, however, is the communication between neurons, which are typically 
located on different compute nodes. Developing efficient algorithms and simulation software that can exploit the 
possibilities of continuously evolving high-performance computing architectures and incorporate new insights 
from experimental and theoretical neuroscience is hence a fundamental activity in this field28–36. It depends on 
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large teams of software developers, who coordinate their work over years of development with many and fast 
update cycles. Continuously monitoring the quality (correctness, usability, reproducibility) and the performance 
(speed, memory demands, energy costs) of the simulation code is mandatory3,37. Without regularly testing the 
simulation code, the integration of new features or new optimizations may unknowingly lead to wrong results or 
performance breakdowns14. Detecting and understanding such unwanted behavior, comparing different hard-
ware configurations or testing procedures, and sharing test results with other developers relies on an efficient 
tracking and organization of the corresponding benchmarking data and metadata.

The use case presented here demonstrates how the proposed metadata management practices and the 
Archivist can help in fulfilling this task. It illustrates a verification and performance benchmarking workflow 
for the neuronal-network simulation code NEST GPU38,39 executed on a range of different hardware platforms 
(Fig. 4). It shows that the simulation code generates identical results on all tested platforms (Fig. 4B), and high-
lights differences in the simulation speed (Fig. 4C). For illustration, we restrict this example to 

•	 a specific test case: a model40 of a small piece of the mammalian cortex comprising about 80, 000 neurons and 
300 million synapses (Fig. 4A),

•	 a specific set of hardware platforms: four different GPU architectures (see axis labels in Fig. 4B,C),
•	 a specific verification metric: the average firing rates of neurons in different subpopulations of the network 

model (Fig. 4B), and
•	 a specific performance metric: the real time factor, i.e., the ratio between the wall-clock time and the simu-

lated biological time Fig. 4C).

 Details on each of these aspects are given in“Methods”. In a real performance-benchmarking setting, the 
same workflow would be (and has been14,31,39,41–45) executed for a broader range of test cases, hardware configu-
rations, verification metrics, and performance metrics.

The entire pipeline underlying this use case is implemented using Snakemake16 – a lightweight yet pow-
erful and flexible workflow manager. Individual workflow components, such as the software deployment and 
compilation, the simulation execution, the storage of simulation data and raw metadata, the data and meta-
data post-processing, as well as the data exploration and presentation, correspond to specific Snakemake rules  

Fig. 4  Neuroscience use case. (A) Left: Sketch of a model40 describing the activity dynamics generated by a 
local neuronal circuit of the mammalian neocortex (adapted from42). The network model is composed of four 
excitatory (E; blue triangles) and four inhibitory neuronal populations (I; red circles); distributed across four 
cortical layers 2/3, 4, 5 and 6; and driven by background inputs. Neurons in the network are interconnected in 
a cell-type and layer specific manner (blue and red arrows). Right: The model generates neuronal activity data 
(“spikes” and firing rates) as the primary neuroscientific data (blue cylinder). For each simulation instance, 
information about the model parameterization, random number generator (RNG) seeds, the hard- and 
software configuration, as well as the wall-clock times are stored in various files and formats as raw metadata 
(yellow cylinder). In a subsequent post-processing step (red gear), the metadata is parsed and structured by the 
Archivist. The simulation data is annotated with this structured metadata and stored in a database for further 
usage (red cylinder). The database can flexibly be queried according to user interests (curved red arrows).  
(B, C) Verification (B) and performance benchmarking (C) as two exemplary types of data usage. (B) Average 
activity level (firing rate) in each of the 8 neuronal populations 2/3E, …, 6I depicted in panel A, obtained from 
simulations of the model on four different GPU platforms (see labels at horizontal axis in panel (C). (C) Real 
time factor (ratio between wall-clock time Twall and simulated biological time Tmodel = 10 s) for four different 
GPU computing platforms. Error bars (red) in (B) and (C) depict standard deviations across ten different model 
realizations (random-number generator [RNG] seeds) and simulation runs for each platform (error bars are 
partly too small to be visible).
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(for details, see “Methods”). During each execution of the simulation workflow, the (probabilistic) network 
model is simulated with 10 different random realizations of the initial state and the network connectivity (differ-
ent random-number-generator [RNG] seeds). Each simulation instance generates single-neuron activity traces 
(spike trains) as well as population and time averaged firing rates as the primary neuroscientific data (blue cylin-
der in Fig. 4A). In addition, information about the model parameterization, RNG seeds, the hard- and software 
configuration, as well as the wall-clock times and real time factors are stored in various files and formats as raw 
metadata (yellow cylinder in Fig. 4A). After the simulation, the data and raw metadata are compressed, labe-
led with a unique identifier (uid), and uploaded to an instance of a Mongo database (MongoDB, https://www.
mongodb.com, last access: 23 February 2024). During the metadata post-processing (red gear in Fig. 4A), the 
Archivist uses specific parsers to extract the type of the computing platform, the RNG seed, and the real time 
factor from the raw metadata archives. Subsequently, the extracted information is structured according to a 
user-specific template. The link between the data and the metadata (data annotation) is established by attaching 
the data uid to the structured metadata. At the end of the metadata post-processing, the structured metadata 
are uploaded to the database containing the data and raw metadata (red cylinder in Fig. 4A). The workflow is 
executed on four different GPU platforms, each sweep individually enriching the same database with its raw and 
structured metadata and annotated data. The database containing the accumulated data and metadata from vari-
ous instantiations of the simulation and metadata post-processing workflow can be efficiently queried according 
to user interest (curved red arrows in Fig. 4A). For the verification and the performance assessment of the NEST 
GPU code, we extract the average firing rates and the real time factors, respectively, for each network realization 
(RNG seed) and computing platform, and plot the corresponding across-trial averages and standard deviations 
(Fig. 4B,C).

The source code underlying the workflow of this example can be found at https://doi.org/10.5281/
zenodo.13585723 (last access: 30 August 2024).

Hydrology use case.  The simulation of the hydrologic cycle is fundamental in environmental modeling. The 
movement and storage of water in the terrestrial system includes diverse processes. Key processes are the infil-
tration of precipitation into the subsurface, the storage of water in soils, and the removal of water from the soil 
via plant transpiration and subsurface runoff. A reliable estimation of water fluxes and storages is relevant for a 
wide range of sectors, like drinking water supply, agriculture, forestry, energy production, and transportation. 
Hydrologic models simulate hydrologic state variables and fluxes and their interaction. These models are created 
for different purposes according to the needs of specific sectors outlined above. These range from infrastructure 
planning for drinking water supply to drought quantification for agriculture and to climate projections for future 
water management. Hydrologic models represent fundamental processes like snow accumulation and melting, 
soil infiltration, evaporation and plant transpiration, surface and subsurface runoff, and river routing. Typical 
output variables are river discharge, evapotranspiration and soil moisture among others. Input variables are 
precipitation and air temperature. There are a wide range of computational workflows given the diverse pur-
poses that hydrologic models are used for. Some of the most complex workflows are related to climate change 
projections where input variables are taken from different sources like climate model ensembles46. Currently, 
metadata tracking in such workflows is often very limited and does not contain the comprehensive settings that 
are necessary to execute these workflows.

Fig. 5  Hydrology use case. (A) A hydrologic model, here represented by the logo of the mesoscale Hydrologic 
Model (mHM https://mhm-ufz.org, last access: 25 June 2024), creates output (i.e., hydrological variables shown 
by the blue cylinder) and additional metadata information (yellow cylinder). A hydrologic model simulates the 
water cycle at the land surface. A typical output variable is river discharge (m3s−1). Hydrological data is 
annotated by metadata post-processed by the Archivist. (B) Distribution of prediction performances of the 
hydrologic model across measurement stations for two parameter sets P1 and 2P . Prediction performance is 
estimated by comparing simulated and observed river discharge for each measurement station. (C) Time series 
of observed (black) and predicted river discharge (red; parameter set P1).
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Here, we show how the proposed metadata management practices and the Archivist can be applied to a 
workflow using a hydrologic model and which results can be derived from these (Fig. 5). A hydrologic model 
is visually represented by the logo of the mesoscale Hydrologic Model (mHM20,47,48) on the left in Fig. 5A. Both 
output variables and metadata information, represented by the blue and yellow cylinder, respectively, are stored. 
In the hydrology use case, it is worth noting that the model output is orders of magnitude larger in terms of size 
than the associated metadata. The output variables are user-specified and contain a minimal set of metadata like 
unit and creation date. The practices presented here also allow us to create a set of additional metadata that pro-
vide comprehensive information about the workflow at hand (yellow cylinder in Fig. 5). For example, the entire 
configuration of the hydrologic model and its parameters can be recorded as well as the execution environment, 
version information, and all inputs and outputs. The Archivist is then able to process the metadata information 
in a user-specific way. Two potential applications of the Archivist are shown in Fig. 5B,C.

In Fig. 5B, a performance analysis of the hydrologic model is shown. A routine exercise in hydrologic mode-
ling is parameter calibration. This stems from the fact that hydrologic modeling follows the paradigm that model 
parameters govern model behavior. For example, water infiltration into the soil is controlled by a shape param-
eter that dictates how fast soil infiltration is decreasing when the soil is drying. This flexibility is fundamental to 
account for highly conductive soils (i.e., sandy soils) and low conductive soils (i.e., clay soil). Here, we are able to 
analyze how model performance depends on the particular choice of a parameter (Fig. 5B). This can be done in 
principle over all the simulations that have ever been done using the hydrologic model, which is not possible 
without this comprehensive set of metadata. Performance is measured by comparing the model output, typically 
river discharge, with observations and calculating a performance measure from the simulated and observed time 
series. These performance measures are created in a way that the optimal value is at one and decreases to −∞ for 
simulated and observed time series that are unrelated49. Hydrologic models are run over a set of model parame-
ters and given the performance of these, a cumulative distribution function can be calculated (Fig. 5B)20,50. 
Figure 5B shows that model configuration 1P is outperforming model configuration P2. Parameter set P1 leads to 
a larger frequency of performance around 0.5 and higher, while parameter set P2 has larger relative frequency for 
lower performance values of zero and less. Such an analysis can be done with all available parameter configura-
tions, moreover subsets of parameters of interest can be created so that their performances are investigated. This 
allows users to obtain a deeper understanding of how combinations of model parameters are affecting model 
performance at a level of detail that is currently not possible.

A critical task in the evaluation of hydrologic models is the visual inspection of the simulated and observed 
time series of a variable of interest. Figure 5C depicts two time series of river discharge. The time series are 
based on simulations (red line in Fig. 5C) and the black line is based on observations. The visual inspection then 
allows an understanding of the impact of the parameter calibration. More precisely, it allows an understanding 
of which part of the hydrograph is simulated well (e.g., high river discharge values, low river discharge values, 
or the transition phase between high and low values). Having an annotated database at hand, as shown in Fig. 5, 
allows users to freely select parameter configurations from already created simulations, not necessarily related 
to parameter optimization. Ongoing discussions on modern hydrologic sciences raise the need for reusability 
of hydrologic models results to better understand how process parametrizations are affecting model perfor-
mance and behavior51. Such efforts largely benefit from enriching model results with metadata describing the 
simulation experiment. For example, discrepancies in model performance can be found to not only be due to 
differences in model parameters, but also model configuration.

Discussion
Motivated by the expectation that rigorous metadata management is a prerequisite of reproducibility and inter-
pretability of scientific results, this work proposes and applies practices for handling metadata in simulation 
research. We derived a generic knowledge production workflow to illustrate that different types of metadata 
can be collected at different steps of a simulation, then be post-processed, and finally exploited alongside data. 
To facilitate post-processing, we developed the Archivist framework, a Python-based tool for parsing raw meta-
data files and combining the extracted information into a structured file. The primary purpose of the tool is to 
attach it to existing workflows that require routine execution and do not incorporate other means of metadata 
tracking functionality yet. As example implementations, we presented a conceptual example and two use cases 
with varying degrees of complexity. Our first use case was a hypothetical minimal example consisting of simple 
time-driven simulations where the collected metadata was used to track the performance of the simulation 
measured by the real time factor and the accuracy of the model obtained by analyzing the generated results. 
Even if processing a single metadata entry is simple in nature, processing large volumes of metadata stemming 
from these simulations can prove challenging. As the goal of the experiment was to find a compromise between 
performance and accuracy by exploring the parameter space, a consequently large amount of data and meta-
data was generated. By automating metadata processing and structuring with the Archivist, the experiment 
pipeline, from data generation to data usage, was streamlined. Our second use case was a proof of concept of 
a benchmarking and verification workflow. By running several simulations of the same model40 with NEST 
GPU38, the simulation performance was compared and simulation results were statistically verified across multi-
ple hardware platforms. Although the software setup was similar on all platforms, the format of the information 
retrieved directly from the hardware varied. By leveraging the modularity of the Archivist, parsing functions 
specific to each platform were implemented and could be exchanged without needing to modify the experiment 
workflow. Because we uniformly structured the parsing output, the processed metadata describing different 
hardware platforms was homogenized and could be accessed the same way. Our last use case was a routine 
parameter calibration procedure where multiple parameters for the mesoscale Hydrologic Model (mHM20,47,48) 
were evaluated across several simulation configurations. Due to its routine nature, data and metadata for each 
procedure had accumulated over time. Furthermore, the collection of raw metadata is large even within a single 
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calibration procedure, because information from each parameter set is collected. The Archivist helped combine 
and structure the metadata entries, allowing them to be stored in a database which could be queried for specific 
parameter sets to efficiently explore the results.

The current version of the Archivist helps access and structure heterogeneous metadata collected from 
simulation workflows, yet it has limitations and room for improvement. With the Archivist’s modular design, 
described in “Metadata post-processing framework - the Archivist”, users only need to define parsing functions to 
extract information from metadata entries, and use a data template to combine the results into desirable struc-
tures and formats. Both parsing functions and data templates can be shared among groups to foster reusability of 
implemented workflows. However, we note the need to properly document the defined functions and structures. 
The same information can be interpreted differently by multiple users; one might mistakenly extract information 
with a different interpretation than expected. A simple example would be reading a number with a large amount 
of decimal digits. Functions can be implemented to use the exact number with all decimals, truncate after an 
arbitrary significance of decimal digits, or round to the nearest integer. All of these implementations are valid 
interpretations and their use depends on how the information will be exploited later. Appropriate documenta-
tion solves this problem by disambiguating implementations and increasing interpretability of the processed 
metadata. Much like the source code and version of used models and simulators help describe a simulation 
experiment, the implementation and version of parsing functions describe the post-processing operations. This 
is of particular importance considering that metadata processing for a given dataset is not a single final process, 
but can be refined for different needs. By keeping a copy and sharing the raw metadata set, data can be subse-
quently annotated by the same or other users even if certain metadata entries were filtered out after an initial 
processing and annotation step. Data is then further enriched by extending the available annotated information 
and can later be used for new studies. Future contributions to the Archivist could automatically interpret infor-
mation in a data model to deduce the locations of files in a dataset and generate file target rules without the need 
for user definition Given a sufficiently detailed description of dataset contents, parsing functions could also 
potentially be generated.

As mentioned in the Section titled “Metadata post-processing framework - the Archivist”, there exist alterna-
tive tools for metadata post-processing, such as the AiiDA15 parsers or DataLad17 metadata extractors. AiiDA 
is a workflow manager that can use parsing plugins to extract information from files generated during the sim-
ulation workflow. The parsed information can then be used as an output of a workflow step or attached as 
additional metadata for data provenance tracking. DataLad is a distributed data management system where 
users can define extractors to parse files present in the database and extract metadata to annotate their respec-
tive datasets based on the data versioning system git-annex (https://git-annex.branchable.com, last access: 01 
March 2024). Conceptually, both these tools perform similar operations to the Archivist: users define functions 
to extract information from files, these functions are used to parse the contents of the generated or stored data 
and extract metadata according to specific needs, and users can share these functions for further reusability. The 
difference lies in how parsing is orchestrated and how the extracted metadata is handled. In both AiiDA and 
DataLad, parsing is triggered on a file-by-file basis. Although the metadata can be integrated into a knowledge 
base (i.e., the provenance graph for AiiDA or as annotated information for DataLad), each piece of parsed 
information is treated independently and further processing is required to combine it into a comprehensive 
output. In contrast, the parsers employed by the Archivist operate on an arbitrary number of files automatically 
determined by user-defined rules. Furthermore, the Archivist empowers users with the possibility to define 
a custom data template based on JSON Schema to structure and combine the parsed metadata. The ability 
to use a custom data template helps ensure that previous and future post-processing results are consistently 
structured. Because our practices promote storing unprocessed workflow results as well as processed results, 
previous results can be reprocessed with a newer data template if a different structure is needed for a new pur-
pose, thereby fostering reusability. Additionally, users can base their template on vocabularies or schemas such 
as RO-Crate18, CodeMeta, or Bioschemas19 for further interoperability of their post-processing results. We note 
that our intention is not to create a replacement for features in AiiDA or DataLad, but to implement a standalone 
tool that can transparently suit specific user needs. Dedicated workflow manager tools such as Snakemake16 or 
AiiDA are particularly useful for implementing a completely new workflow - in addition to increased reusability 
and interoperability of workflows, these tools offer software environment handling, HPC cluster job handling, 
and data provenance tracking among other features52. Data provenance in particular is useful for describing 
the contents of data generated during simulations. Rather than being incompatible with our framework, these 
alternative tools could actually be combined with it by using the Archivist as a parsing and structuring backend. 
This combined implementation would feature automated experiment description, flexible data characterization, 
and efficient data annotation and exploration. To this end, future work could be done on a combined implemen-
tation of the Archivist with existing tools for automated provenance tracking and enhanced storage platforms.

We note that, although our abstract simulation workflow Fig. 1 (blue) can represent a wide range of real-world 
workflows, it is certainly not an absolute representation. This implies that our metadata management practices 
defined through this abstract workflow are not fully applicable to all workflows. Very intricate workflows, for exam-
ple, may deal with challenges that do not allow for a one-off intervention of incorporating the Archivist, but call for 
further customized solutions instead. Particular examples are highly evolving workflows containing steps that are 
frequently swapped, added, or removed which require keeping track of which metadata to collect and updating 
the corresponding post-processing methods. Even updating only the simulation workflow is time-consuming, 
so updating the metadata post-processing workflow too will require even more effort. Furthermore, simulation 
workflows that require complex dynamical inputs prepared in a separate preceding workflow, or that incorporate 
separate subsequent post-processing workflows – if metadata on these inputs or subsequent workflows is not 
collected during execution, they would be irretrievably lost. A final example where our practices may not be fully 
applicable are simulations where the size of produced data and/or metadata is too large to store both in “raw” and 
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processed format. These workflows require that data and metadata are processed, possibly filtered, and annotated 
during runtime before being able to be stored. Decoupling the post-processing of metadata describing data gener-
ated during the simulation experiment is not beneficial in these cases and would most likely lead to inconsistency 
issues. Nonetheless, even if not fully applicable, our practices can serve as a stepping stone for these complex work-
flows as metadata describing scientific experiments remain essential for long-term storage and sharing results.

Our proposed practices for handling metadata in simulation workflows are applicable to a wide range of 
scientific disciplines with domain-specific workflows and metadata conventions. New workflows can benefit 
from these practices to ensure that metadata is handled accordingly. The practices can also be implemented in 
existing workflows without major restructuring of established code. In this case, our proof of concept tool, the 
Archivist, provides a flexible solution for parsing and structuring heterogeneous metadata files. Through the use 
cases presented in this work we illustrate how our practices and tool support sustainable numerical workflows, 
fostering reproducibility and data reuse in simulation-based research.

Methods
Details on the neuroscience use case.  The “Neuroscience use case” focuses on a workflow for benchmark-
ing and verification of a spiking neural network simulator across multiple hardware platforms. The workflow 
implementation can be found at https://doi.org/10.5281/zenodo.13585723 (last access: 30 August 2024).

NEST GPU.  The simulator used is NEST GPU38,39, an open library for simulation of large-scale networks of 
spiking neurons, written in the C++ and CUDA-C++ programming languages (source code: https://github.
com/nest/nest-gpu, last access: 23 February 2024; documentation: https://nest-gpu.readthedocs.io, last access: 
23 February 2024).

Hardware platforms.  The goal of this experiment is to determine whether the simulator would produce the 
same results across different hardware platforms. As the models simulated rely on floating point calculations, 
artifacts during numerical computations may arise during simulation and could potentially accumulate to 
observable differences in produced results. In particular, GPU architectures can vary highly between genera-
tions, which increases the chances of such divergence. For this reason we test the simulator with different GPUs 
models, both consumer and data center level, with varying architectures Table 1): one laptop with the consumer 
GPU RTX 3070 Ti Mobile with CUDA version 12.2; two compute clusters, JUSUF53 and JURECA-DC54, both 
using CUDA version 11.3 and equipped with the data center GPUs V100 and A100, respectively; and a worksta-
tion with the consumer GPU RTX 4090 with CUDA version 11.4.

Network model.  The model used to evaluate the simulator is the cortical microcircuit of Potjans and 
Diesmann40 which represents a 1 mm2 patch of early sensory cortex at the biological plausible density of neurons 
and synapses (depicted in Fig. 4A). The model was simulated previously on different simulation platforms38,42,55, 
and in a recent study dynamics and performance were evaluated using NEST GPU39. The availability of both 
dynamics and performance data make this model ideal for verification tests. Furthermore, the inherent com-
plexity and scale of the network are good candidates to confirm whether numerical artifacts would be generated 
even on data center level GPUs.

Verification metrics.  To verify the simulated dynamics, we collect spiking activity of all neuron populations 
of the model, and compute their average firing rate. Simulations are performed using a time step of 0.1 ms and 
500 ms of network dynamics are simulated before recording spiking activity to avoid transients. Then, we record 
spiking activity of the subsequent 10 s of network dynamics. As shown in previous studies56, the average firing 
rate of a population is computed as the number of recorded spikes emitted by all neurons in the population, 
averaged by the number of neurons in the population, and normalized by the duration of the recording.

Performance metrics.  To measure the performance of the simulation in each hardware platform we use the 
real time factor as defined in “Minimal example”. Here we use internal timers included in the model definition to 
compare the time needed for state propagation of model dynamics and the simulated biological time.

Data generation.  As a proof of concept, we devised a minimal workflow where we follow our previously defined 
practices on metadata collection, post-processing, and annotation to populate a database. Here, we describe 
the steps for software preparation, simulation execution, and metadata collection (see Fig. 1). For simplicity, we 
assume that all software dependencies for the simulator and for the data processing pipeline are already present in 
the target platform. We also assume that no job schedulers are needed for execution. The workflow, implemented 
using Snakemake, consists of nine rules underlying the production and storage of raw simulation data and meta-
data, two rules for metadata post-processing, and one rule for data exploration and usage. This implementation 
was designed so each rule can be dynamically configured through a dedicated file to increase flexibility and 
reusability for different simulation scenarios (such as different simulators and models). The workflow starts by 
cloning two separate repositories, one for the simulator and another for the model. Following this, the simulator 
is compiled using its CMake (https://cmake.org, last access: 23 February 2024) installation infrastructure. Then 
the model is consecutively run in a sequence of independent simulations each with a different random number 
generation seed. The spiking activity predicted by the model is recorded and constitutes the primary data output 
of each simulation. Special care is also taken to monitor the simulated biological time and the wall-clock time for 
performance data. Information on the system environment before and after job execution is recorded through 
a dedicated metadata collection script. This allows us to compare the state of the system before and after setting 
up the simulation environment. Additional metadata produced before execution, such as configuration files, 
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execution scripts, compilation output, shell output logs, and the internal metadata tracked by Snakemake itself, 
are stored as raw metadata. After each simulation run and metadata collection, a post-processing step com-
putes the population-averaged firing rates from the recorded spike data (Fig. 4B), as well as the real time factor 
(Fig. 4C). Finally, the produced data and metadata are compressed into archives. As storage platform, we use an 
instance of a MongoDB. By employing its file storage system GridFS (https://www.mongodb.com/docs/manual/
core/gridfs, last access 23 February 2024), we can upload the compressed archives and get a unique identifier for 
each.

Vocabulary usage example.  In Listing 1 we show a partial example output of a metadata post-processing pipe-
line. In this example, input and output file names were extracted from the workflow configuration file and 
formatted according to the Bioschemas vocabulary (https://bioschemas.org/types/ComputationalWorkflow/1.0- 
RELEASE, last access: 23 January 2025). If specific file names are changed in the configuration this update would 
be reflected in the output of a subsequent metadata post-processing pipeline. These were then used to complete 
a simple Bioschemas document bioschemas.jsonld included with the workflow source code. Although 
valid, the document content is minimal and only shown as a proof of feasibility. Users would naturally employ 
the full capabilities of Bioschemas to describe their own workflows.

Listing 1 Partial output of an Archivist post-processing pipeline. Extracted information from workflow configu-
ration file was formatted according to the Bioschemas vocabulary.

Details on the hydrology use case.  The ‘‘Hydrology use case” presents how the metadata Archivist can be 
applied in the hydrological modeling sciences.

mHM.  An essential tool of this use case is the employed mesoscale hydrologic model mHM20,47,48 (https://
mhm-ufz.org, last access: 21 March 2025). mHM is a grid-based, spatially distributed hydrological model driven by 
daily precipitation, temperature, and potential evapotranspiration. It accounts for major hydrological processes such 
as snow accumulation and melt, canopy interception, soil infiltration, evapotranspiration, deep percolation, baseflow 
generation, and river routing. The open-source model code repository is available and is under active development 

System CPU GPU

Laptop Intel Core i7-12800H vPro, 14 cores (6 P-cores + 8 
E-cores), P-core 4.8GHz / E-core 3.7GHz

NVIDIA RTX 3070 Ti Mobile2, 1410 MHz, 8 GB GDDR6, 
5888 CUDA cores

JUSUF cluster 2 × AMD EPYC 7742, 2 × 64 cores, 2.25 GHz NVIDIA V1001, 1530 MHz, 16 GB HBM2e, 5120 CUDA 
cores

JURECA-DC cluster 2 × AMD EPYC 7742, 2 × 64 cores, 2.25 GHz NVIDIA A1002, 1410 MHz, 40 GB HBM2e, 6912 CUDA 
cores

Workstation Intel Core i9-10940X, 14 cores, 3.30 GHz NVIDIA RTX 40903, 2520 MHz, 24 GB GDDR6X, 16384 
CUDA cores

Table 1.  Hardware configuration of the different platforms used. Cluster information is given on a per node basis. 
1Volta architecture: https://developer.nvidia.com/blog/inside-volta, last access: 25 June 2024. 
2Ampere architecture: https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth, last access: 
 25 June 2024.  
3Ada Lovelace architecture: https://www.nvidia.com/en-us/technologies/ada-architecture/, last access:  
25 June 2024.
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and maintenance (https://git.ufz.de/mhm/mhm, last access: 21 March 2025). A general overview on the model pro-
cesses and parameterization can be obtained from47 and48. The model is an integral part of the German Drought 
Monitor (https://www.ufz.de/duerremonitor, last access: 21 March 2025). mHM was also applied and evaluated in 
multiple climatological regions, including Europe57,58, West Africa59, India60, and the conterminous United States50,61.

Hardware platforms.  mHM simulations were carried out on the Computing Cluster EVE, a joint effort of both 
the Helmholtz Centre for Environmental Research - UFZ (http://www.ufz.de/, last access: 21 March 2025) and 
the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig (https://www.idiv.de/, last 
access: 25 June 2024). The main compute hardware of EVE comprises a) 42 compute nodes with dual socket 
Intel Xeon 6348 CPUs with 512 Gigabytes of DDR4 main memory, two of these also include NVIDIA Tesla A100 
GPGPUs, and b) 27 compute nodes with dual socket Intel Xeon Gold 6148 CPUs with up to 1536 Gigabytes of 
DDR4 main memory, two of which include NVIDIA Tesla V100 GPGPUs. The central network component of 
the cluster is an Intel Omni-Path 100 Series high performance interconnect, providing all compute nodes with 
non-blocking EDR bandwidth (100 Gigabit per second). All compute nodes share a 4.5 Petabyte IBM Spectrum 
Scale file system. The system performed with over 164 teraFLOPS under a High-Performance LINPACK (HPL) 
benchmark. For the simulations of this project, we have used CPU cores exclusively.

Model setup.  The mHM model is executed within the test basin provided along with the model source code, 
the so called “test basin". The test basin coming with the mHM source code is for the Moselle River basin 
upstream of Perl, a place, where the Moselle River leaves France and enters Luxembourg and Germany (Moselle 
Basin). The catchment area is approximately 11, 500km2, altitude ranges between 150 and 1300 m. a.m.s.l. The 
Moselle River originates from the Vosges Mountains and is a tributary of the Rhine River. The origin of data used 
in the test example is provided on https://mhm-ufz.org/docs/ (last access: July 18th, 2024).

Performance metrics.  The hydrology use cases makes use of performance metrics that are commonly used in 
hydrologic modeling. Explicitly, it is the Kling-Gupta efficiency (KGE49), that can be used to compare two time 
series. The metric combines the long-term mean, long-term variance, and Pearson correlation coefficient.

Data generation.  The mHM simulations have been facilitated using the ecFlow workflow manager62 developed 
at the European Centre for Medium-Range Weather Forecasts (ECMWF). ecFlow is a client/server workflow 
package that allows users to execute any number of simulations. It is tailored to work on HPCs and allows to 
easily restart workflows if hardware and software failures occur. We have created a simple suite with three tasks. 
The first task is the compilation of mHM using CMake (https://cmake.org, last access: 23 February 2024). The 
second tasks executes the hydrologic model. The third task is a post-processing step that creates plots like the 
ones shown in Fig. 5B,C. We have now also added the Archivist to these workflows to manage the metadata.

Data availability
No external dataset or input data were used for this study.

Code availability
Source code, example implementations, and additional details of the Archivist framework can be found at https://
doi.org/10.5281/zenodo.13442425 (last access: 30 August 2024). An implementation of the metadata post-
processing performed for the “Minimal example” can be found at https://doi.org/10.5281/zenodo.13442425 (last 
access: 30 August 2024). The workflow implementation for the“Neuroscience use case” as well as the data and 
script required to create Fig. 4 can be found at https://doi.org/10.5281/zenodo.13585723 (last access: 30 August 
2024). The model implementation of the “Hydrology use case” used to generate the data required to create Fig. 5 is 
available at https://doi.org/10.5281/zenodo.1069202 (last access: 26 January 2025).
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