001043156 001__ 1043156
001043156 005__ 20250804115150.0
001043156 0247_ $$2doi$$a10.1029/2025GL115683
001043156 0247_ $$2ISSN$$a0094-8276
001043156 0247_ $$2ISSN$$a1944-8007
001043156 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02772
001043156 0247_ $$2WOS$$aWOS:001504302600001
001043156 037__ $$aFZJ-2025-02772
001043156 041__ $$aEnglish
001043156 082__ $$a550
001043156 1001_ $$00000-0002-1476-3362$$aOkui, Haruka$$b0$$eCorresponding author
001043156 245__ $$aA Convolutional Neural Network for the Detection of Gravity Waves in Satellite Observations and Numerical Simulations
001043156 260__ $$aHoboken, NJ$$bWiley$$c2025
001043156 3367_ $$2DRIVER$$aarticle
001043156 3367_ $$2DataCite$$aOutput Types/Journal article
001043156 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1753191030_27768
001043156 3367_ $$2BibTeX$$aARTICLE
001043156 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001043156 3367_ $$00$$2EndNote$$aJournal Article
001043156 520__ $$aComparisons between observed and model-resolved gravity waves (GWs) are crucial for evaluating general circulation model (GCM) simulation accuracy and understanding wave characteristics. However, observational noise often obscures waves, complicating such comparisons. To address this, we have developed a GW detection method using a convolutional neural network (CNN). The CNN is trained on Atmospheric Infrared Sounder (AIRS) temperatures with labels indicating wave presence based on Berthelemy et al. (2025, https://doi.org/10.5194/egusphere-2025-455). Their method detects noise-induced pixel-to-pixel variations in horizontal wavelengths; in contrast, the CNN robustly identify waves even when applied to smoothly varying model data. Using this method, we compare stratospheric GWs in boreal winters between AIRS observations and a high-top GW-permitting GCM, Japanese Atmospheric GCM for Upper Atmosphere Research (JAGUAR). The results agree well and exhibit similar interannual variability, with discrepancies also identified, including a more zonally elongated distribution of tropical GWs in JAGUAR. This method is broadly applicable to the future use of satellites for guiding wave-resolving atmospheric model development.
001043156 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001043156 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001043156 7001_ $$00000-0003-2496-953X$$aWright, Corwin J.$$b1
001043156 7001_ $$0P:(DE-HGF)0$$aBerthelemy, Peter G.$$b2
001043156 7001_ $$00000-0003-4377-2038$$aHindley, Neil P.$$b3
001043156 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b4
001043156 7001_ $$00000-0002-1709-5304$$aBarnes, Andrew P.$$b5
001043156 773__ $$0PERI:(DE-600)2021599-X$$a10.1029/2025GL115683$$gVol. 52, no. 11, p. e2025GL115683$$n11$$pe2025GL115683$$tGeophysical research letters$$v52$$x0094-8276$$y2025
001043156 8564_ $$uhttps://juser.fz-juelich.de/record/1043156/files/Geophysical%20Research%20Letters%20-%202025%20-%20Okui%20-%20A%20Convolutional%20Neural%20Network%20for%20the%20Detection%20of%20Gravity%20Waves%20in%20Satellite.pdf$$yOpenAccess
001043156 909CO $$ooai:juser.fz-juelich.de:1043156$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001043156 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b4$$kFZJ
001043156 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001043156 9141_ $$y2025
001043156 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
001043156 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-01
001043156 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001043156 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-01
001043156 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2025-01-01$$wger
001043156 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGEOPHYS RES LETT : 2022$$d2025-01-01
001043156 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-05-13T09:49:22Z
001043156 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-05-13T09:49:22Z
001043156 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-01
001043156 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-01
001043156 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
001043156 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001043156 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-01
001043156 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-01
001043156 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-01
001043156 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOPHYS RES LETT : 2022$$d2025-01-01
001043156 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
001043156 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
001043156 920__ $$lyes
001043156 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001043156 980__ $$ajournal
001043156 980__ $$aVDB
001043156 980__ $$aUNRESTRICTED
001043156 980__ $$aI:(DE-Juel1)JSC-20090406
001043156 9801_ $$aFullTexts