001     1043156
005     20260203123819.0
024 7 _ |2 doi
|a 10.1029/2025GL115683
024 7 _ |2 ISSN
|a 0094-8276
024 7 _ |2 ISSN
|a 1944-8007
024 7 _ |2 datacite_doi
|a 10.34734/FZJ-2025-02772
024 7 _ |2 WOS
|a WOS:001504302600001
037 _ _ |a FZJ-2025-02772
041 _ _ |a English
082 _ _ |a 550
100 1 _ |0 0000-0002-1476-3362
|a Okui, Haruka
|b 0
|e Corresponding author
245 _ _ |a A Convolutional Neural Network for the Detection of Gravity Waves in Satellite Observations and Numerical Simulations
260 _ _ |a Hoboken, NJ
|b Wiley
|c 2025
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1753191030_27768
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Comparisons between observed and model-resolved gravity waves (GWs) are crucial for evaluating general circulation model (GCM) simulation accuracy and understanding wave characteristics. However, observational noise often obscures waves, complicating such comparisons. To address this, we have developed a GW detection method using a convolutional neural network (CNN). The CNN is trained on Atmospheric Infrared Sounder (AIRS) temperatures with labels indicating wave presence based on Berthelemy et al. (2025, https://doi.org/10.5194/egusphere-2025-455). Their method detects noise-induced pixel-to-pixel variations in horizontal wavelengths; in contrast, the CNN robustly identify waves even when applied to smoothly varying model data. Using this method, we compare stratospheric GWs in boreal winters between AIRS observations and a high-top GW-permitting GCM, Japanese Atmospheric GCM for Upper Atmosphere Research (JAGUAR). The results agree well and exhibit similar interannual variability, with discrepancies also identified, including a more zonally elongated distribution of tropical GWs in JAGUAR. This method is broadly applicable to the future use of satellites for guiding wave-resolving atmospheric model development.
536 _ _ |0 G:(DE-HGF)POF4-5111
|a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|c POF4-511
|f POF IV
|x 0
536 _ _ |0 G:(DE-Juel-1)SDLCS
|a Simulation and Data Lab Climate Science
|c SDLCS
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |0 0000-0003-2496-953X
|a Wright, Corwin J.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Berthelemy, Peter G.
|b 2
700 1 _ |0 0000-0003-4377-2038
|a Hindley, Neil P.
|b 3
700 1 _ |0 P:(DE-Juel1)129125
|a Hoffmann, Lars
|b 4
700 1 _ |0 0000-0002-1709-5304
|a Barnes, Andrew P.
|b 5
773 _ _ |0 PERI:(DE-600)2021599-X
|a 10.1029/2025GL115683
|g Vol. 52, no. 11, p. e2025GL115683
|n 11
|p e2025GL115683
|t Geophysical research letters
|v 52
|x 0094-8276
|y 2025
856 4 _ |u https://juser.fz-juelich.de/record/1043156/files/Geophysical%20Research%20Letters%20-%202025%20-%20Okui%20-%20A%20Convolutional%20Neural%20Network%20for%20the%20Detection%20of%20Gravity%20Waves%20in%20Satellite.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1043156
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129125
|a Forschungszentrum Jülich
|b 4
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-511
|1 G:(DE-HGF)POF4-510
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5111
|a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|v Enabling Computational- & Data-Intensive Science and Engineering
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-01
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2025-01-01
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-05-13T09:49:22Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-05-13T09:49:22Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-01
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-01
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-11-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-05-13T09:49:22Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-11-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEOPHYS RES LETT : 2022
|d 2025-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-11-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-11-11
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b GEOPHYS RES LETT : 2022
|d 2025-11-11
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21