| Home > Publications database > A Convolutional Neural Network for the Detection of Gravity Waves in Satellite Observations and Numerical Simulations > print |
| 001 | 1043156 | ||
| 005 | 20250804115150.0 | ||
| 024 | 7 | _ | |a 10.1029/2025GL115683 |2 doi |
| 024 | 7 | _ | |a 0094-8276 |2 ISSN |
| 024 | 7 | _ | |a 1944-8007 |2 ISSN |
| 024 | 7 | _ | |a 10.34734/FZJ-2025-02772 |2 datacite_doi |
| 024 | 7 | _ | |a WOS:001504302600001 |2 WOS |
| 037 | _ | _ | |a FZJ-2025-02772 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 550 |
| 100 | 1 | _ | |a Okui, Haruka |0 0000-0002-1476-3362 |b 0 |e Corresponding author |
| 245 | _ | _ | |a A Convolutional Neural Network for the Detection of Gravity Waves in Satellite Observations and Numerical Simulations |
| 260 | _ | _ | |a Hoboken, NJ |c 2025 |b Wiley |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1753191030_27768 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Comparisons between observed and model-resolved gravity waves (GWs) are crucial for evaluating general circulation model (GCM) simulation accuracy and understanding wave characteristics. However, observational noise often obscures waves, complicating such comparisons. To address this, we have developed a GW detection method using a convolutional neural network (CNN). The CNN is trained on Atmospheric Infrared Sounder (AIRS) temperatures with labels indicating wave presence based on Berthelemy et al. (2025, https://doi.org/10.5194/egusphere-2025-455). Their method detects noise-induced pixel-to-pixel variations in horizontal wavelengths; in contrast, the CNN robustly identify waves even when applied to smoothly varying model data. Using this method, we compare stratospheric GWs in boreal winters between AIRS observations and a high-top GW-permitting GCM, Japanese Atmospheric GCM for Upper Atmosphere Research (JAGUAR). The results agree well and exhibit similar interannual variability, with discrepancies also identified, including a more zonally elongated distribution of tropical GWs in JAGUAR. This method is broadly applicable to the future use of satellites for guiding wave-resolving atmospheric model development. |
| 536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Wright, Corwin J. |0 0000-0003-2496-953X |b 1 |
| 700 | 1 | _ | |a Berthelemy, Peter G. |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Hindley, Neil P. |0 0000-0003-4377-2038 |b 3 |
| 700 | 1 | _ | |a Hoffmann, Lars |0 P:(DE-Juel1)129125 |b 4 |
| 700 | 1 | _ | |a Barnes, Andrew P. |0 0000-0002-1709-5304 |b 5 |
| 773 | _ | _ | |a 10.1029/2025GL115683 |g Vol. 52, no. 11, p. e2025GL115683 |0 PERI:(DE-600)2021599-X |n 11 |p e2025GL115683 |t Geophysical research letters |v 52 |y 2025 |x 0094-8276 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1043156/files/Geophysical%20Research%20Letters%20-%202025%20-%20Okui%20-%20A%20Convolutional%20Neural%20Network%20for%20the%20Detection%20of%20Gravity%20Waves%20in%20Satellite.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1043156 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)129125 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-01 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-01 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2025-01-01 |
| 915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2025-01-01 |w ger |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b GEOPHYS RES LETT : 2022 |d 2025-01-01 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-05-13T09:49:22Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-05-13T09:49:22Z |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-01 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2025-01-01 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-01 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2025-01-01 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2025-01-01 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-01 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b GEOPHYS RES LETT : 2022 |d 2025-01-01 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-01 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-01 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|