001     1043160
005     20250912110141.0
024 7 _ |a 10.1016/j.chemphyslip.2025.105496
|2 doi
024 7 _ |a 0009-3084
|2 ISSN
024 7 _ |a 1873-2941
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02776
|2 datacite_doi
024 7 _ |a 40451379
|2 pmid
024 7 _ |a WOS:001508527500001
|2 WOS
037 _ _ |a FZJ-2025-02776
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a McKenzie, Iain
|0 0000-0002-0588-3952
|b 0
|e Corresponding author
245 _ _ |a Nanoscale dynamics in model phospholipid biomembranes probed by muon spin resonance spectroscopy: The effects of membrane composition and temperature on acyl chain and cholesterol motion
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1755078305_13688
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The physical properties of lipid bilayers are known to depend on their composition, but there has recently been controversy about whether cholesterol (chol) does or does not stiffen biomembranes containing unsaturated phospholipids. Herein, avoided level crossing muon spin resonance (ALC-𝜇SR) spectroscopy has been used to probe the local dynamics in model biomembranes composed of the saturated phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), the unsaturated phospholipids 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and the sterol chol. The presence of chol significantly stiffens the acyl chains in lipid mixtures as evident from the reduction of the amplitude of restricted reorientational motion in the acyl chain at the C9-C10 position and the increase of the torsional barrier for rotation about the bonds in the acyl chain. Swapping POPC for DOPC slightly increases the amplitude of restricted reorientational motion and decreases the torsional barrier of the acyl chains, but the magnitude of the effect is much smaller than the inclusion of chol.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Soft Condensed Matter
|0 V:(DE-MLZ)SciArea-210
|2 V:(DE-HGF)
|x 0
650 1 7 |a Health and Life
|0 V:(DE-MLZ)GC-130-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a DiPasquale, Mitchell
|0 0000-0001-7834-5832
|b 1
700 1 _ |a Dziura, Maksymilian
|0 0000-0002-0608-188X
|b 2
700 1 _ |a Gutberlet, Thomas
|0 P:(DE-Juel1)168124
|b 3
700 1 _ |a Hartwig, Nathan A.
|0 0009-0006-0872-4937
|b 4
700 1 _ |a Karner, Victoria L.
|0 0000-0002-2915-2652
|b 5
700 1 _ |a Scheuermann, Robert
|0 0000-0002-1212-7450
|b 6
700 1 _ |a Marquardt, Drew
|0 0000-0001-6848-2497
|b 7
773 _ _ |a 10.1016/j.chemphyslip.2025.105496
|g Vol. 270, p. 105496 -
|0 PERI:(DE-600)1496839-3
|p 105496 -
|t Chemistry and physics of lipids
|v 270
|y 2025
|x 0009-3084
856 4 _ |u https://juser.fz-juelich.de/record/1043160/files/Biomembranes_20250115.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1043160
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)168124
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-07
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM PHYS LIPIDS : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-07
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-07
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-HBS-20180709
|k JCNS-HBS
|l High Brilliance Source
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)JCNS-HBS-20180709
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21