001043177 001__ 1043177
001043177 005__ 20250804115249.0
001043177 0247_ $$2doi$$a10.1016/j.chroma.2025.466070
001043177 0247_ $$2ISSN$$a0021-9673
001043177 0247_ $$2ISSN$$a0376-737x
001043177 0247_ $$2ISSN$$a0378-4355
001043177 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02785
001043177 0247_ $$2pmid$$a40460522
001043177 0247_ $$2WOS$$aWOS:001504436000002
001043177 037__ $$aFZJ-2025-02785
001043177 082__ $$a540
001043177 1001_ $$0P:(DE-HGF)0$$avan Wickeren, Stefan$$b0
001043177 245__ $$aImplementation of ion exclusion chromatography for characterization of lithium ion battery materials
001043177 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2025
001043177 3367_ $$2DRIVER$$aarticle
001043177 3367_ $$2DataCite$$aOutput Types/Journal article
001043177 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1750763892_6728
001043177 3367_ $$2BibTeX$$aARTICLE
001043177 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001043177 3367_ $$00$$2EndNote$$aJournal Article
001043177 500__ $$aThe authors thank the German Federal Ministry of Education and Research (BMBF) for funding the project Cell-Fill (Grant number 03XP0237C).
001043177 520__ $$aInorganic compounds such as lithium fluoride (LiF) and lithium carbonate (Li2CO3) as well as weakly acidic lithium salts like lithium acetate (LiCH3CO2) or lithium formate (LiHCO2) are reported decomposition products in lithium ion batteries (LIBs). The simultaneous analysis of these compounds is challenging due to the complex system consisting of conductive salt, organic carbonates, additives and their decomposition variety. Ion exclusion chromatography with conductivity detection (IEC-CD) seems to be predestinated for this analytical task due to its ability to separate and determine weakly acidic anions, which are the relevant species arising from lithium salts and electrolyte decomposition processes. One important chromatographic method to analyze ionic decomposition products is ion exchange chromatography (IC), which is currently a state-of-the-art (SOTA) technique for fluoride (F-) quantification in LIBs. However, the calibration curve of F- by IC hyphenated to a conductivity detection (CD) provides a small linear range for low concentrations and an analyte dependent retention shift occurs. IEC-CD represents a substantial upgrade in this respect and generated benefits for electrolyte analysis by an improved linear range for F- (up to several 100 ppm). Furthermore, especially in complex samples, the IEC-CD method provides a more reliable chromatographic separation. In this study, IEC-CD is implemented to investigate decomposition pathways of fluor-releasing electrolyte additives such as fluoroethylene carbonate (FEC). The quantification of formate (HCO2-), acetate (CH3CO2-) and carbonate (CO32-) was also possible to gain deeper understanding of electrolyte additive decomposition in LIBs.
001043177 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001043177 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001043177 7001_ $$00009-0006-4983-5107$$aIhlbrock, Lukas$$b1
001043177 7001_ $$0P:(DE-HGF)0$$aPeschel, Christoph$$b2
001043177 7001_ $$0P:(DE-HGF)0$$aWiemers-Meyer, Simon$$b3
001043177 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4$$ufzj
001043177 7001_ $$00000-0003-1508-6073$$aNowak, Sascha$$b5$$eCorresponding author
001043177 773__ $$0PERI:(DE-600)218139-3$$a10.1016/j.chroma.2025.466070$$gVol. 1756, p. 466070 -$$p466070 -$$tJournal of chromatography$$v1756$$x0021-9673$$y2025
001043177 8564_ $$uhttps://juser.fz-juelich.de/record/1043177/files/1-s2.0-S0021967325004170-main.pdf$$yOpenAccess
001043177 909CO $$ooai:juser.fz-juelich.de:1043177$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001043177 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ
001043177 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001043177 9141_ $$y2025
001043177 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
001043177 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
001043177 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001043177 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
001043177 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHROMATOGR A : 2015
001043177 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
001043177 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
001043177 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
001043177 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
001043177 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001043177 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
001043177 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
001043177 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
001043177 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
001043177 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
001043177 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
001043177 9201_ $$0I:(DE-Juel1)IMD-4-20141217$$kIMD-4$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001043177 980__ $$ajournal
001043177 980__ $$aVDB
001043177 980__ $$aUNRESTRICTED
001043177 980__ $$aI:(DE-Juel1)IMD-4-20141217
001043177 9801_ $$aFullTexts