001043178 001__ 1043178
001043178 005__ 20250820202246.0
001043178 0247_ $$2doi$$a10.1002/smtd.202401670
001043178 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02786
001043178 0247_ $$2pmid$$a40434187
001043178 0247_ $$2WOS$$aWOS:001497383200001
001043178 037__ $$aFZJ-2025-02786
001043178 082__ $$a620
001043178 1001_ $$0P:(DE-Juel1)188198$$aFricke, Sebastian$$b0
001043178 245__ $$aIntroducing an Experimental Route to Identify and Unify Lab‐Scale Redox‐Flow Battery Cell Performances via Molar Fluxes and Cell Constants
001043178 260__ $$aWeinheim$$bWILEY-VCH Verlag GmbH & Co. KGaA$$c2025
001043178 3367_ $$2DRIVER$$aarticle
001043178 3367_ $$2DataCite$$aOutput Types/Journal article
001043178 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1749717389_7812
001043178 3367_ $$2BibTeX$$aARTICLE
001043178 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001043178 3367_ $$00$$2EndNote$$aJournal Article
001043178 500__ $$aThis research was funded by the German Federal Ministry of Education and Research and by the Ministry of Arts and Science of the state of North Rhine-Westphalia in the framework of the core funding for Jülich Research Centre.
001043178 520__ $$aRedox flow batteries (RFBs) are a promising technology for grid energy storage based on their high potential for scalability, design flexibility, high efficiency, and long durability, hence great effort has been invested in this area of research. However, due to the large differences in lab-scale RFB cell design and construction as well their operational performance, fundamental studies on innovative RFB components (e.g., active materials, separators, additives) compare poorly due to the lack of standard setups, settings, and procedures. This work introduces an experimental calibration route for aqueous as well as nonaqueous RFBs based on a simple mass transport model using molar fluxes, enabling one to compare dissimilar lab-scale RFB cell setups by introducing several RFB parameters: First, K1, which summarizes the operating parameters of an RFB to identify the critical ratio (K1critical) needed for efficient charge–discharge cycling using a simple overvoltage and charge efficiency evaluation; second, the RFB cell constant ζ, quantifying the influence of a lab-scale RFB setup on its performance; and finally, K2, ultimately enabling full comparison of (idealized) K1critical operating parameters across RFB cell setups.
001043178 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001043178 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001043178 7001_ $$aKortekaas, Luuk$$b1
001043178 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b2
001043178 7001_ $$0P:(DE-Juel1)166392$$aGrünebaum, Mariano$$b3$$eCorresponding author
001043178 773__ $$0PERI:(DE-600)2884448-8$$a10.1002/smtd.202401670$$gp. 2401670$$p2401670$$tSmall Methods$$v2401670$$x2366-9608$$y2025
001043178 8564_ $$uhttps://juser.fz-juelich.de/record/1043178/files/Small%20Methods%20-%202025%20-%20Fricke%20-%20Introducing%20an%20Experimental%20Route%20to%20Identify%20and%20Unify%20Lab%E2%80%90Scale%20Redox%E2%80%90Flow%20Battery%20Cell-1.pdf$$yOpenAccess
001043178 8767_ $$d2025-08-20$$eHybrid-OA$$jDEAL
001043178 909CO $$ooai:juser.fz-juelich.de:1043178$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
001043178 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188198$$aForschungszentrum Jülich$$b0$$kFZJ
001043178 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b2$$kFZJ
001043178 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166392$$aForschungszentrum Jülich$$b3$$kFZJ
001043178 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001043178 9141_ $$y2025
001043178 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001043178 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
001043178 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001043178 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
001043178 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSMALL METHODS : 2022$$d2024-12-18
001043178 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-18$$wger
001043178 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
001043178 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bSMALL METHODS : 2022$$d2024-12-18
001043178 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001043178 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001043178 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
001043178 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
001043178 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001043178 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001043178 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001043178 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001043178 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001043178 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001043178 9201_ $$0I:(DE-Juel1)IMD-4-20141217$$kIMD-4$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001043178 9801_ $$aFullTexts
001043178 980__ $$ajournal
001043178 980__ $$aVDB
001043178 980__ $$aUNRESTRICTED
001043178 980__ $$aI:(DE-Juel1)IMD-4-20141217
001043178 980__ $$aAPC