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1 Abstract

Human experience and behaviour is subject to multiple different mental processes,
which can be separated into cognitive and socio-affective processes. Many studies
investigate how experience and behaviour is linked to brain structure and function,
and also how much influence can be attributed to our genetic makeup. However, little
is known about how behavioural domains are subject to different influencing factors
of inter-individual differences of the brain. In particular, how overlapping genetic
influences exhibit in brain structure and which influence different functional task
states drive in predictability of individual behaviour. Therefore, in my dissertation I
investigated the phenotypic and genetic correlations of cognitive and affective traits
and brain structure (cortical thickness, surface area and subcortical volumes; study
1). I further examined to what extent the correspondence of functional network priors
and task states with behavioural target domains influenced the predictability of
individual performance in cognitive, social, and affective tasks (study 2).

Using phenotypic correlation and heritability-analysis the first study investigated
heritability and genes as influencing factors on inter-individual differences of the
brain. Cognition revealed several associations with brain morphology, while trait
affect revealed only few significant correlations with subcortical volumes and local
cortical thickness, where it overlaps in left superior frontal cortex with cognition.
Decomposing the phenotypic association into genetic and environmental
components, revealed that the associations were accounted for by shared genetic
effects between the traits. Using functional correlation and predictability of task states
and network priors the second study investigated state- and network-specificity as
influencing factors on brain-behaviour relationships, by predicting individual
performance in cognitive, social, and affective tasks. Predictions from whole-brain FC
were slightly better than those from FC in task-specific networks, and a slight benefit
of predictions based on FC from task versus resting state was observed for
performance in the cognitive domain.

With my dissertation [ provide an integrative model of how cognition and affect relate
to the human brain. By combining insights from structural anatomy, heritability
modelling, and functional connectivity-based prediction, my results reveal that these
traditionally distinct domains share common neural substrates. The superior frontal
cortex has been identified as a heritable anatomical hub for both cognitive and
affective traits. However, multivariate FC patterns during both task and resting states
carried only moderate predictability of individual performance levels of cognition and
socio-affective processes, manifesting nevertheless the influence of brain state and
network dynamics in shaping individual behaviour. In sum, with these studies I
replicated previous findings, but also extended insights into the interplay of cognitive
and socio-affective processes with brain-behaviour relationships, and how different
factors influence inter-individual differences in the brain.






2 Zusammenfassung

Menschliches Erleben und Verhalten unterliegt vielen verschiedenen mentalen
Prozessen, die in kognitive und sozio-affektive Prozesse unterteilt werden konnen. In
vielen Studien wird untersucht, wie Erleben und Verhalten mit der Struktur und
Funktion des Gehirns zusammenhdngen und welchen Einfluss genetischen
Veranlagung spielen. Es ist jedoch nur wenig dartiber bekannt, wie unterschiedliches
Verhalten den verschiedenen Einflussfaktoren interindividueller Unterschiede des
Gehirns unterliegt. Insbesondere, wie sich tiberlappende genetische Einfliisse in der
Gehirnstruktur zeigen und welchen Einfluss verschiedene funktionelle Aufgaben auf
die Vorhersagbarkeit des individuellen Verhaltens haben. In meiner Dissertation
untersuchte ich daher die phdnotypischen und genetischen Korrelationen von
kognitiven und affektiven Merkmalen und der Hirnstruktur (kortikale Dicke, Flache
und subkortikale Volumina; Studie 1). Dartiber hinaus habe ich untersucht, inwieweit
die Ubereinstimmung von funktionellen Netzwerken und Aufgabenzustinden die
Vorhersagbarkeit der individuellen Leistung bei kognitiven, sozialen und affektiven
Aufgaben beeinflusst (Studie 2).

Mit Hilfe phanotypischer Korrelationen und Heritabilitatsanalysen untersuchte die
erste Studie die Heritabilitit und Gene als Einflussfaktoren auf interindividuelle
Unterschiede des Gehirns. Kognitive Prozesse zeigten mehrere Assoziationen mit
Hirnstruktur, wahrend Affekt nur wenige signifikante Korrelationen mit den
subkortikalen Volumina und der lokalen kortikalen Dicke aufwies, wobei es im linken
superioren frontalen Kortex Ubereinstimmungen mit Kognition gab. Die Analyse der
phanotypischen Assoziation in genetische und umweltbedingte Komponenten ergab,
dass die Assoziationen durch gemeinsame genetische Effekte zwischen den Doménen
erklairt werden konnten. Mit Hilfe der funktionellen Korrelation (functional
connectivity; FC) und der Pradiktion von Aufgabenzustinden und Netzwerken
untersuchte die zweite Studie die Zustands- und Netzwerkspezifitit als
Einflussfaktoren auf die Beziehungen zwischen Gehirn und Verhalten, indem sie die
individuelle Leistung bei kognitiven, sozialen und affektiven Aufgaben vorhersagte.
Die Vorhersagen aus der FC des gesamten Gehirns waren etwas besser als die aus der
FC in aufgabenspezifischen Netzwerken. Filir die Leistung im kognitiven Bereich
wurde ein leichter Vorteil der Vorhersagen auf der Grundlage der FC aus dem
Aufgaben- gegeniiber dem Ruhezustand festgestellt.

In meiner Dissertation stelle ich ein integratives Modell vor, wie Kognition und Affekt
mit dem menschlichen Gehirn zusammenhdngen. Durch die Kombination von
Erkenntnissen aus der strukturellen Anatomie, der Modellierung der Vererbbarkeit
und der auf FC basierenden Vorhersage zeigen meine Ergebnisse, dass diese
traditionell unterschiedlichen Bereiche gemeinsame neuronale Substrate aufweisen.
Der superiore frontale Kortex wurde als vererbbarer anatomischer Knotenpunkt
sowohl fiir kognitive als auch fiir affektive Merkmale identifiziert. Die multivariaten



FC-Muster sowohl im Aufgaben- als auch im Ruhezustand zeigten jedoch nur eine
mafdige Vorhersagbarkeit des individuellen Leistungsniveaus bei kognitiven und
sozio-affektiven Prozessen, was den Einfluss des Hirnzustands und der
Netzwerkdynamik auf die Gestaltung des individuellen Verhaltens deutlich macht.

Zusammenfassend ldsst sich sagen, dass ich mit diesen Studien nicht nur friihere
Ergebnisse replizieren konnte, sondern um Erkenntnisse iliber das Zusammenspiel
von Kkognitiven und sozio-affektiven Prozessen mit Gehirn-Verhaltens-Beziehungen
erweitern konnte und dariber, wie verschiedene Faktoren interindividuelle
Unterschiede im Gehirn beeinflussen.
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3 General Introduction

Everyone is unique in experience, thought and behaviour, affect and cognition, but also
brain structure and function. Understanding the link between the human brain,
individual behaviour, thoughts and feelings, remains one of the greatest questions in
neuroscience. Researching the link between brain and behaviour is a scientific pursuit
that offers great potential for mental health and personalized medicine, by offering
pathways to more precise diagnostic and therapeutic approaches. Therefore,
investigating the human brain helps us to elucidate human inter-individual variability.
Both within healthy individuals, and with regards to mental health and the treatment
of brain disorders.

Human experience and behaviour is subject to multiple different mental processes.
Roughly, these processes can be separated into cognitive and socio-affective
processes. Many studies investigate how experience and behaviour is linked to brain
structure and function, and how much influence can be attributed to our genetic
makeup. However, little is known about how behavioural domains are subject to
different influencing factors of inter-individual differences of the brain. In particular,
how overlapping genetic influences exhibit in brain structure and which influence
different functional task states drive predictability of individual behaviour.

There are various neuroscientific approaches in the quest to study human brain-
behaviour relationships and to investigate how experience and behaviour is linked to
brain structure and function: Some studies use electrophysiological methods, such as
electroencephalography. Some use neuroimaging methods, such as structural
magnetic resonance imaging (MRI), or functional imaging methods, such as functional
MRI (fMRI). Some use genetic tools, such as genome-wide association studies or twin
studies. Some use specific analytic tools, such as machine learning (ML) or predictive
modelling, connectomics or network analysis, or functional decoding and meta-
analytic annotation. But irrespective which are the chosen measures, in order to study
behaviour, there need to be behavioural and psychometric measures. These can be
conducted in tasks or in self-report questionnaires.

My dissertation focuses on the influencing factors of inter-individual differences of the
brain, specifically, how genetic influences exhibit in brain structure, and how task
states drive predictability of individual behaviour. For this, [ will first elaborate on the
specific behaviours investigated here - cognition and affect - and their relationship to
the brain. Then, I will elaborate on heritability and functional task states, as
influencing factors of inter-individual differences of the brain.
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3.1 Individual differences in behaviour

Human behaviour is driven by different complex mental processes, that can be
roughly separated into cognitive and socio-affective processes. Therefore, [ decided to
investigate cognition and affect as representations of human complex and rich
behavioural variability. Despite covering only a fraction, they provide insight into how
individuals perceive, interpret, and respond to their environment (Gross, 2015;
Langner et al., 2018; Pessoa, 2008). As such, they serve as robust, multidimensional
phenotypes for linking behaviour to underlying neural and genetic mechanisms.

3.1.1 Cognition

Cognition refers to mental processes involved in acquiring, processing, storing, and
applying information. These processes include perception, attention, memory,
language, reasoning, and executive control, including working memory, enabling
individuals to interpret and respond to their environment. Intelligence is described as
the capacity to carry out cognitive tasks effectively. It reflects how efficiently and
flexibly cognitive processes are deployed, usually in novel or complex situations.

The human interest and contemplation about cognition and intelligence have a long
history. A scientific approach on cognition dates back to the early nineteen hundreds,
where Spearman framed the “general ability factor g” (Spearman, 1904). This was
further investigated and developed by Cattel into two sub-constructs: crystallised and
fluid intelligence (Cattell, 1943, 1963).

Crystallized intelligence refers to the ability to recognise and apply solutions through
previously acquired knowledge and past experiences. It involves knowledge and skills
accumulated over time, such as cultural and general knowledge. It can therefore
improve with age, peaking in adult life, with only a slow decline until the age of 70
(Cattell, 1963; Hunt, 2001; Jones & Conrad, 1933; Salthouse, 2019).

In contrast, fluid intelligence refers to the ability to solve novel problems without
relying on prior knowledge. Therefore, fluid intelligence is usually involved in tasks of
non-verbal nature, such as solving mathematical or spatial problems. This involves
quick, abstract, and flexible reasoning, as well as the ability to comprehend and
manage multiple information simultaneously and manage the amount of information
needed to solve the problem (Cattell, 1963). A core component of fluid intelligence is
therefore working memory, the ability to maintain and update or manipulating
relevant information (Baddeley, 2012; Hofmann et al., 2012; Little et al., 2014). On
average, fluid intelligence reaches the maximum in ability in early adulthood and
declines with age (Baltes et al., 1999; Jones & Conrad, 1933; Salthouse, 2019).

Crystallised and fluid intelligence are distinct but interconnected cognitive systems
(Cattell, 1963; Tucker-Drob, 2009). The ability of fluid intelligence to solve novel
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problems, reason abstractly, and adapt to new situations is required for acquiring and
integrating new knowledge - which over time consolidates and contributes to
crystallized intelligence. Furthermore, crystallized intelligence can support fluid
intelligence by providing context and meaning. This bidirectional supportis especially
interesting, given that crystallised and fluid intelligence have different decline rates
throughout life (Baddeley, 2012; Tucker-Drob, 2009).

Moreover, while working memory (WM) represents only one aspect of fluid
intelligence, it has been shown to be a good proxy and representation for fluid
intelligence (Colom et al., 2015). Furthermore, it has been investigated, that working
memory capacity predict variation not only in fluid intelligence, but also crystallised
intelligence (Alloway & Alloway, 2009; Martinez, 2019).

3.1.2 Affect: Emotion, Social Cognition

As a clear distinction between “emotion” and “affect” remains unresolved, the terms
are often used interchangeably in the literature (Bradley & Lang, 2002; Pessoa, 2008;
Salsman et al., 2013). Broadly, affect is a complex and multifaceted construct used to
refer to emotional experience (Lindquist et al., 2012). Its elusive definition and
inherently subjective, bodily nature makes it difficult to be measured in a standardized
fashion (Nummenmaa et al., 2014). Therefore, measurement methods include self-
reports, physiological indicators (such as heart rate or skin conductance), or the
behavioural response to stimuli (Bradley & Lang, 2002). Nevertheless, in the
assessment a distinction can be made between emotional processes and trait affect.
On the one hand, affective traits can be assessed with self-reports, which are then
divided into positive and negative traits. On the other hand, emotional processes, that
pertain to identification and responding, can be assessed using tasks.

Trait affect is commonly measured through self-reports and divided into a positive
and negative dimension, which are considered independent, instead of opposites.
Hence, allowing both to be experienced at the same time (Diener & Emmons, 1984;
Salsman et al., 2013). Positive affect includes emotions such as happiness, enthusiasm,
and contentment, contributing to psychological well-being, including life satisfaction
and a sense of purpose (Salsman et al.,, 2014). Conversely, negative affect includes
emotions like anger, fear, and sadness, which can also manifest in varying intensities
and are linked to negative self-evaluation or life dissatisfaction (Pilkonis et al., 2013;
Salsman et al., 2013).

Emotion processing starts with a trigger and ends with a mental and behavioural
response. Importantly, an emotional response can only be elicited with a relevant
stimulus. Emotion processing refers to identifying, interpreting, and responding to
emotional cues in oneself and others (Gross, 2015; Langner et al., 2018). It is closely
linked to social cognition, which includes the understanding of others’ thoughts and
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feelings. It is crucial in engaging in effective social interactions, since it includes
understanding both oneself and others as social beings.

Social cognition spans across both the cognitive and affective domain. Social cognition
is linked to theory of mind, which is described as the ability to infer others’ mental
states, beliefs, intentions, and emotions. Theory of mind allows individuals to make
sense of others’ behaviour, predict and interpret social interactions and communicate
effectively and appropriately in social settings (Bzdok et al., 2012; Salazar Kampf et
al., 2023; Wheatley et al., 2007).

Cognition and affect are essential behavioural domains, each representing distinct but
interacting processes. Further, they each offer important insights into human
individual behavioural variability. In sum, cognition includes attention, memory,
reasoning and problem-solving. It is linked to information processing and goal-
directed responses. Affect includes emotional states, responses and regulation, and is
driven by reflexive, spontaneous responses. However, despite these distinctions,
cognition and affect interact dynamically. Emotional states can bias decision-making,
while cognitive appraisal can influence and regulate emotion processing.
Furthermore, they are both influenced by internal and external stimuli (Langner et al.,
2018; Pessoa, 2008). In my dissertation I aim to investigate these concepts both
separately as well as their overlap.

3.2 Brain-Behaviour Relationships

To investigate the human brain and to link structure and function to behaviour, a lot
of different neuroimaging modalities have evolved. The prerogatives of being non-
invasive and in-vivo have been crucial for behavioural neuroscience. In my research I
primarily focused on structural and functional MRI, while further using multivariate
analyses comprised of heritability analyses and machine learning prediction.

3.2.1 Structural MRI - grey matter structure

Structural MRI captures the anatomy in a static, high-resolution image of the brain,
while fMRI measures brain activity over time. Structural MRI takes advantage of the
different densities of water content in the brain tissues. This is translated into images,
where the different tissues and structures of the brain, such as grey and white matter,
and cerebrospinal fluid can be distinguished. In my research I focused on grey matter
structure. Grey matter can be found in the central nervous system, hence the spinal
cord and the brain. It consists of neuronal cell bodies, dendrites, unmyelinated axons,
astrocytes, oligodendrocytes, microglia and blood vessels. It plays a central role in
sensory perception, motor control, and higher-order cognitive functions.
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3.2.1.1 Cortical thickness and subcortical volume

Cortical thickness refers to the distance in millimetres between the white matter and
the pial surface. The distance typically ranges between 1 and 4.5 millimetres (Fischl
& Dale, 2000; Palomero-Gallagher & Zilles, 2019). Even though measuring the grey
matter cortical thickness sounds simple, it is no small feat, since the pial surface is
difficult to detect in standard MRI. Hence, (Fischl & Dale, 2000) developed with
FreeSurfer an algorithm to estimate the grey and white matter boundary. This
boundary representation is then deformed, with specific constrains, outward until the
pial surface. From there, the distance to the white matter border at any point results
in the cortical thickness (Fischl & Dale, 2000). This procedure requires both T1 and T»
weighted images to accurately map the grey matter as well as distinguish the pial
surface from dura and blood vessels (Glasser et al., 2013).

Further, subcortical structures are neural formations in the basal brain, that have been
shown integral in motor function, memory, and emotional and cognitive processing.
They include deep grey matter structures and nuclei such as the thalamus, caudate,
putamen, pallidum, hippocampus, amygdala, accumbens area, and ventral
diencephalon. Similarly to cortical thickness, estimating the difference in tissue
densities between subcortical structures and surrounding white matter, boundaries
can be drawn and the subcortical volume can be calculated. Since the subcortical
structures are integral in several behavioural processes, it is important to include
them analogously to cortical thickness in brain-behaviour analyses.

3.2.1.2 Surface area

Surface area, understandably, refers to the surface of the cerebral cortex. It is
intrinsically related to the cortical folding (gyrification). Therefore, most of the
surface is hidden in the sulci (Chauhan et al., 2021), making it challenging to map out.
Similar to cortical thickness and subcortical volume, the computation of surface area
requires sophisticated processes. To automate and improve the delineation of the
cortical surface, (Glasser et al., 2013) further enhanced the widely-used FreeSurfer
pipeline for the Human Connectome Project (HCP) dataset (Fischl, 2012) used here.
Both Ti- and T2-weighted images are used to clearly define the white matter and pial
surfaces and thereby the cortical ribbon. Following this ribbon, triangles are formed
and summed to create a grid or mesh. This mesh transforms the cerebral cortex into
a 2D sheet. This sheet can then be aligned to different spaces, such as the MNI surface
space, to further allow for comparison between subjects.

Importantly, surface area is a morphological feature distinct from cortical thickness.
It has been suggested that cortical thickness and surface area evolutionary developed
independently (Geschwind & Rakic, 2013), are influenced by different genetic and
environmental factors (Panizzon et al, 2009), and develop differently and
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independently across the lifespan (Fjell et al., 2015; Hogstrom et al., 2013). Cortical
thickness reflects neuronal density and dendritic arborization within a cortical
column, while cortical surface area reflects the horizontal expansion of the cortical
sheet and number of cortical columns. Therefore, it is important to look at them
separately (instead of using cortical volume), as well as looking at them both, in order
to understand the individual neural influences.

3.2.2 Functional MRI - functional connectivity

While structural MRI captures static images of the brain's anatomy by acquiring each
brain slice once, functional MRI (fMRI) measures brain activity over time by
repeatedly scanning the whole brain. fMRI is based on the effect, that active brain
regions have increased metabolic demand, consuming more oxygen, resulting in an
increased blood flow into the specific region. This vascular response results in a shift
in the ratio of oxygenated to deoxygenated haemoglobin, producing the so-called
Blood Oxygen Level Dependent (BOLD) contrast, which can be detected by the MRI
scanner as changes in signal intensity. This alteration in regional blood oxygenation,
the hemodynamic response, is observed over several seconds, with peaks at 3-5
seconds after a stimulus (Hillman, 2014).

To reliably capture these dynamics and acquire high-quality fMRI images, it is
important to scan the brain with a repetition time shorter than the width of the
hemodynamic response function. Additionally, shorter repetition time also improves
artefact removal through e.g. physiological noise or head movement. Therefore, in the
HCP high-resolution data with a repetition time of 0.72 seconds was acquired (Glasser
et al, 2016). Further, spatial resolution is critical for accurately localizing BOLD
signals and distinguishing between anatomical compartments such as grey matter,
white matter, and CSF. Therefore, by acquiring functional data at 2 mm isotropic
resolution, this further enables a precise location of the BOLD signal onto the cortex
(Glasser et al, 2013, 2016). Despite significant technical differences between
structural and functional imaging, acquired fMRI data can only be processed and
analysed precisely by projecting the functional signals onto the structural surface
reconstruction, providing an anatomically informed framework for analyses.

3.2.2.1 Resting-state and task-based FC

While the BOLD contrast is considered a proxy for neuronal activation, functional
connectivity (FC) identifies correlations of activity between multiple regions of the
brain. FC refers to the temporal (statistic) correlation of signal fluctuations between
spatially distant regions, revealing distinct brain regions functioning in accordance,
reflecting the functional integration of brain regions.
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Since the brain is constantly active, the interactions between brain regions can be
measured in the absence of tasks, hence during rest (resting-state FC), or during the
performance of specific tasks (task-based FC). Resting-state FC captures BOLD signal
fluctuations that occur in the absence of explicit tasks. It captures the intrinsic
network structure of the brain, which have been shown to be stable and reproducible
over time (Biswal et al,, 1995). Commonly observed networks include the default
mode network, frontoparietal network, dorsal attention network, and salience
network (Biswal et al., 1995; Yeo et al., 2011). Resting-state FC is suggested to reveal
baseline or “trait-like” properties of brain organization (Finn et al., 2015).

Task-based FC assesses connectivity patterns of functional coupling between brain
regions in response to specific cognitive, emotional, or sensory tasks performed in the
scanner. Task-based FC reflects context- or state-dependent networks, by task-evoked
modulation of functional connectivity through increased coupling. While resting-state
and task-based FC share common network architectures, task-based FC shows altered
functional coupling in response to task demands (Cole et al., 2014; Shine et al., 2016).

Particularly resting-state fMRI (rs-fMRI) has gained popularity in recent years, due to
its convenient application. It can be assessed quickly and easily for all parties involved.
The low level of compliance simplifies measurement, making it especially popular in
clinical populations, while additionally reducing costs. This lead to a high focus of
research on resting state fMRI. As mentioned above, while there seems to be an
overlap between resting-state and task-based activation, and even structural
morphology, some resting-state fMRI research reveals rather low brain-behaviour
relationships. However, both resting-state and task-based FC patterns are unique and
can therefore be used to research inter-individual differences. Therefore, in my
dissertation I compare and investigate different “states” (resting-state and different
task-states) and their effect on predictability of individual behaviour.

FC can be assessed with seed-based correlation analysis or data-driven methods, such
as independent component analysis (ICA) or graph-theoretical approaches. While
each of these methods have their specific uses and advantages, data-driven methods
pose the difficulty of interpretability, while also often being data-set specific. Thus, in
my dissertation, I used seed-based correlation analysis. By using a priori regions of
interest (ROIs), or seeds, it can be assumed, that the selected regions activate during
certain tasks. A priori ROIs can be defined in a multitude of ways. Here, I defined
specialised networks based on activation likelihood estimation (ALE) meta-analyses,
and further used a data-driven approach, by delineating networks using general linear
modelling (GLM) reflecting brain activation in the large HCP data sample during the
tasks of interest. However, the question is whether it has to be exactly the task
network that is related to a specific behaviour or whether interactions within other
networks are also associated with behaviour.
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3.2.3 Neural correlates of cognition and affect

While cognition is multifaceted, a consistent set of brain regions have been identified
quite early due to lesion studies: the prefrontal and parietal cortices (Damasio et al.,
1996; Rosenbaum et al., 2005; Scoville & Milner, 1957; Stuss et al., 2001). Damage to
these regions lead to impaired executive functions. Then, Haier and colleagues
showed a correlation between intelligence and gray matter volume in frontal,
temporal, parietal, and occipital regions using voxel based morphometry (Haier et al.,
2004), which has been supported in functional studies as well. In a large meta-analysis
Basten et al. found supporting evidence of brain activation in the lateral prefrontal
cortex, the medial frontal cortex, as well as the parietal and temporal cortex in
intelligence. More specifically, they found the inferior frontal sulcus and gyrus, middle
frontal and temporal gyrus, superior parietal lobule, and the pre-supplementary
motor area to be consistently activated during tasks associated with cognition (Basten
et al.,, 2015). Other meta-analyses focussing on working memory found, in addition to
some of the aforementioned regions, the thalamus and basal ganglia to be involved
(Rottschy et al., 2012).

A similar trajectory can be seen in how we came to understand which brain regions
are critical for trait affect. Early lesion studies highlighted the importance of the
amygdala, ventromedial prefrontal cortex (vmPFC), and insula in emotion processing
and regulation, emotional experience, and decision-making involving affective valence
(Adolphs et al,, 1995, 1996; Bechara et al., 1999; Calder et al., 2000; Damasio et al.,
1994). However, also frontal, temporal and parietal brain regions, as well as the
anterior cingulate cortex, have been shown to be involved (Barbey et al., 2014; Hornak
etal., 2003). The lesion-based evidence is also supported by structural und functional
studies (Lindquist et al., 2012; Schmaal et al., 2017), which further found the
prefrontal cortex, the thalamus and the periaqueducal gray to be involved (Kober et
al., 2008; Lindquist et al., 2012). In particular relevant for emotion processing (or
emotional face processing) are the already mentioned amygdala and insula. However,
further active regions found in the limbic areas include the parahippocampal gyrus
and the posterior cingulate cortex, and in the temporoparietal areas the parietal
lobule and the middle temporal gyrus. Further involved are visual areas, such as the
fusiform and lingual gyrus, the medial frontal gyrus, the putamen and the cerebellum
(Fusar-Poli et al., 2009; Miiller et al., 2018).

In sum, key brain regions in cognition are covered mainly by the multiple-demand and
the cognitive control network. The multiple demand network includes the (posterior-
medial) frontal cortex, insula, intraparietal sulcus, and inferior frontal sulcus. The
cognitive control network includes the anterior cingulate cortex/pre-supplementary
motor area, dorsolateral prefrontal cortex, inferior frontal junction, and posterior
parietal cortex. In affect, the limbic system, including in particular the amygdala, with
extensions to the prefrontal cortex, cingulate gyrus, thalamus, and hippocampus, have
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been associated. These regions have been mainly based on lesion studies and group
effect between task conditions. They therefore show, that these regions are
consistently involved in these processes. However, to what extent they are associated
with individual behavior is incompletely understood.

3.3 Influencing Factors on Brain-Behaviour Relationships

One of the main goals in behavioural neuroscience is to understand how the human
brain works and how individual variability is driven. Several approaches can applied
to try to elucidate this quest: heritability analyses can help explain how much of
individual variability in brain structure or function is influenced by genes. Prediction
can help us move beyond group averages. Finally, multivariate and multimodal
analyses tie all modalities together and try to approach the brain as it is: an
interconnected system.

3.3.1 Heritability

Heritability is a statistical estimate explaining what proportion of the variation in a
given trait in a population is due to genetic variation. The variance (V) of a phenotype
(P) within a population is composed of genotypic (G) and environmental (E) variance.
Narrow-sense heritability (h?), calculable with twin studies, refers to the proportion
of phenotypic variance that is attributable to additive genetic variance V(A), and is
estimated as h? = V(A) / V(P) (Bruell, 1970; Nes & Roysamb, 2015). Research of
genetic influences provides insights into the biological basis and possible influences
in both healthy and diseased people. It helps us further understand the biological
(genetic) constrains, while empowering us with the knowledge about potential
environmental influence. This pertains to both the brain, as well as behavioural traits.

Thanks to heritability analyses based on twin studies, it has been analysed, that the
majority of the human brain morphology is highly heritable (Jansen et al., 2015), but
also, individually both cortical thickness and surface area revealed to be highly
heritable in humans (Panizzon et al., 2009). Further, behavioural traits are heritable.
Ranking at the top is cognition, which has been shown to be highly heritable (Krapohl
et al., 2014; Plomin & Deary, 2015). In contrast, since affective traits are much more
elusive and a clear delineation still of debate (Desmet, 2018; Gross, 2015), the
research of heritability in these traits is much less consistent. Nevertheless, affective
traits have been identified as heritable to some extent (Bouchard & Loehlin, 2001;
Lykken & Tellegen, 1996), while some diseases associated with affective disorders
show high heritability (Fernandez-Pujals et al., 2015; Kendall et al., 2021). Further,
cognitive empathy or social cognition has also been shown to be heritable (Warrier et
al,, 2018).
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Therefore, in the first study, I not only investigate the phenotypic association between
cognition, affect and local brain anatomy, but also investigate the shared brain basis
between cognition and trait affect and their genetic correlation. This enables me to
investigate heritability as an influencing factor on brain-behaviour relationships in
cognition and affect.

3.3.2 Prediction

For the most time, and laid out in the previous section, neuroscience relied on very
specified lesion patients or large samples to establish brain—-behaviour relationships.
Through new insights this locationist approach is being challenged by the
constructionist approach, which suggests an interaction between brain functional
networks, instead of one specific location to be responsible for a specified function
(Lindquist et al.,, 2012). In addition, we now have more (brain) data available,
including large densely sampled datasets, such as the Human Connectome Project.
Prediction with machine learning allows us to go beyond conventional statistics and
make use of the large, complex and high-dimensional datasets. While conventional
statistical approaches help us understand relationships between variables, they often
rely on simplifying assumptions—such as independence, linearity, and low
dimensionality—that may not reflect the true complexity of brain-behaviour
relationships.

In contrast, predictive modelling and machine learning are able to handle high-
dimensional, complex, and often nonlinear data, enabling the analysis and
identification of distributed patterns across the brain that are informative at the level
of individual behaviour. Therefore, the application of prediction in neuroscience offers
the potential to further knowledge and the development of brain-based biomarkers
for personalized medicine to inform diagnosis, prognosis, and intervention strategies
on an individual level.

However, statistics allow an interpretable hypothesis driven approach to brain-
behaviour relationships, while machine learning functions largely within a “black
box”. While the ability to handle complex data and potentially discover patterns with
machine learning is a major strength, the models often lack interpretability, making it
difficult to infer the underlying biological mechanisms driving the observed patterns.

Therefore, in my dissertation, I applied statistical models to achieve an interpretable
and reduced feature space of brain data before applying different machine learning
algorithms. Instead of relying on whole-brain data—and therefore omit biological
interpretability—I yielded functional networks through different approaches: 1)
Meta-analyses of networks activated through specific tasks, and 2) Definition of
networks from high-powered and diversified task-fMRI studies. I then computed the
functional connectivity within these network based on different task states and
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analysed their predictability with regards to corresponding behaviour. By comparing
FC derived from resting-state and task-based fMRI, and applying predictive modelling
techniques, I can assess whether FC from behaviourally related states (e.g. FC from
WM predicting WM) offer better predictive power than unrelated states (e.g. FC from
WM predicting EMO).

This integrated approach allows not only to identify associations between brain
regions and behaviour (statistical analysis), but also to determine whether these
associations are genetically influenced (heritability analysis) and whether they are
informative for predicting individual differences in behaviour (predictive modelling).

3.4 Aim of the studies

One main goal of neuroscience is to understand and gain deeper insights into brain
function and organisation and to link it to behaviour. Many studies investigated how
experience and behaviour is linked to brain structure and function, and also how
much influence can be attributed to our genetic makeup. While there are many
converging studies investigating cognition, there are inconclusive findings for affect,
as well as their interplay. Further, little is known about how behavioural domains are
subject to different influencing factors of inter-individual differences of the brain. In
particular, how overlapping genetic influences exhibit in brain structure and which
influence different functional task states drive predictability of individual behaviour.

Therefore, the first study focused on identifying a shared behavioural basis across
cognition and affect and examined whether this convergence is mirrored in local brain
structure. Here, I focused on structural morphometry such as cortical thickness,
surface area, and subcortical volume. Finally, by analysing the heritability, I investigate
if cognition and affect have shared genetic effects within behaviour and in brain
morphology.

In the second study I move from structural anatomy to functional brain networks.
Here, I investigate if individual differences in cognition (represented by working
memory), emotion, and social cognition can be predicted from potential patters of FC.
By comparing the predictability of FC derived from resting-state and task-based fMRI
in different a priori networks, I can assess the influencing factor of task state and
network specificity on brain-behaviour relationships. Further, by using a priori
defined networks based on meta-analyses and large samples, I aim to improve
interpretability of machine learning models.

With this dissertation [ aim to investigate how inter-individual differences in cognitive
and socio-affective processes are related to structural brain anatomy and functional
connectivity. Further, I assess phenotypic and morphological heritability, as well as
the predictability of task states and network specificity as influencing factors of brain
variability.
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ARTICLE INFO ABSTRACT

Keywords: Cognitive abilities and affective experience are key human traits that are interrelated in behavior and brain.
Affect Individual variation of cognitive and affective traits, as well as brain structure, has been shown to partly under-
Cognition lie genetic effects. However, to what extent affect and cognition have a shared genetic relationship with local
Heritability brain structure is incompletely understood. Here we studied phenotypic and genetic correlations of cognitive and
Frontal cortex . s . . . . . .

affective traits in behavior and brain structure (cortical thickness, surface area and subcortical volumes) in the
pedigree-based Human Connectome Project sample (N = 1091). Both cognitive and affective trait scores were
highly heritable and showed significant phenotypic correlation on the behavioral level. Cortical thickness in the
left superior frontal cortex showed a phenotypic association with both affect and cognition. Decomposing the phe-
notypic correlations into genetic and environmental components showed that the associations were accounted for
by shared genetic effects between the traits. Quantitative functional decoding of the left superior frontal cortex
further indicated that this region is associated with cognitive and emotional functioning. This study provides a
multi-level approach to study the association between affect and cognition and suggests a convergence of both
in superior frontal cortical thickness.

Cortical structure
Genetic correlation

1. Introduction

The human cerebral cortex is implicated in multiple aspects of psy-
chological functions, including cognitive abilities and affective experi-
ences. Psychological traits and neuropsychiatric disorders have been re-
liably associated with interindividual variation in cortical macrostruc-
ture (Thompson et al., 2020). Moreover, variation in macroscale grey
matter structure, such as in cortical thickness and surface area, is
strongly driven by heritable and polygenetic influences (Grasby et al.,
2020; Panizzon et al., 2009; Winkler et al., 2010). Affective and cogni-
tive traits have also been shown to underlie genetic effects (Davies et al.,
2011; Okbay et al., 2016; Zheng et al., 2016). However, to which de-
gree trait affect, cognition, and brain structure share a genetic basis is
incompletely understood.

Behavioral genetic studies have previously been conducted to as-
sess heritability of habitual (i.e. trait) cognitive and affective processes.
Using pedigree-based designs allows the assessment of genetic effects
on a given phenotype by comparing monozygotic twins with other
sibships and unrelated individuals (Almasy et al., 1997; Almasy and
Blangero, 1998). Twin-based studies showed that cognitive abilities are
largely influenced by genetic effects (Bartels et al., 2002; Davies et al.,
2011; Kan et al., 2013; van Soelen et al., 2011; Wainwright et al.,
2005). Affective traits have been investigated in genetic studies by
using measures of positive and negative affect, as well as subjective
well-being (Diener and Emmons, 1984; Lykken and Tellegen, 1996;
Russell and Carroll, 1999; Salsman et al., 2013; Watson and Telle-
gen, 1985). These studies repeatedly found trait negative affect to be
heritable, while trait positive affect was not related to genetic effects
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(Baker et al., 1992; Zheng et al., 2016). Conversely, Lykken and Telle-
gen (1996) showed that individual differences in subjective well-being
were partly explained by genetic variation in several thousand middle-
aged twins. Along this line, Genome-Wide Association Studies (GWAS)
reported various loci associated with subjective well-being (Okbay et al.,
2016). These results emphasize a genetic basis of the variation in both
cognition and some affective experiences.

Human brain structure also underlies genetic influences, as brain vol-
ume, cortical surface area and thickness have been found to be strongly
heritable and to show a polygenetic architecture (Brouwer et al., 2014;
Grasby et al., 2020; Panizzon et al., 2009; Winkler et al., 2010). Neu-
roimaging genetics studies demonstrated that associations between cog-
nition and cortical thickness can be explained by shared genetic ef-
fects (Brans et al., 2010; Desriviéres et al., 2015; Joshi et al., 2011;
Shaw et al., 2006). Gene enrichment studies have further associated sub-
jective well-being with differential gene expression in the hippocampal
subiculum and with GABAergic interneurons, suggesting a genetic link
between brain structure and affective traits (Baselmans et al., 2019).
Moreover, shared genetic effects have been found to drive the associa-
tion between neuroticism - a personality trait closely linked to negative
affect — and surface area in the right medial frontal cortex (Valk et al.,
2020).

Classically considered to be distinct entities, most neuroimaging
studies to date investigated neural correlates of cognition and affect
as separate constructs yielding inconclusive results. There is a multi-
tude of evidence which suggests that general cognitive abilities are pos-
itively correlated with greater brain volume across the human lifes-
pan (Oschwald et al., 2019). Using surface-based measures, individ-
ual differences in cognition have been related to prefrontal and pari-
etal cortical thickness, though often with contradictory outcomes: Both
positive correlations between cortical thickness and cognitive abilities
(Karama et al., 2009; Narr et al., 2006; Shaw et al., 2006, Bajaj et al.,
2018, Hanford et al., 2019), as well as negative correlations (Goh et al.,
2011; Salat et al., 2002; Sowell et al., 2001; Van Petten et al., 2004)
have been reported.

With respect to affective traits, neuroimaging studies have repeat-
edly shown that state and trait emotional processes correlate with ac-
tivity, connectivity and anatomy of the brain (Atkinson et al., 2007;
Brierley et al., 2004; LaBar et al., 1995; Lindquist et al., 2012; Rohr et al.,
2015; Tsuchiya et al., 2009).

Recent theories emphasize the interplay and shared mechanisms
of emotions and cognition in the human brain (Barrett, 2016;
Pessoa, 2008): Emotions can both facilitate and impede cognitive func-
tion, depending on the context (Dolcos and Denkova, 2014; Okon-
Singer et al., 2015). At the same time, cognitive processes are inherent
in most aspects of emotional experience and regulation (Ochsner and
Gross, 2005; Pessoa, 2008). This behavioral association is mirrored by
overlapping brain networks associated with emotions (Barrett, 2016;
Khalsa et al.,, 2018) and cognitive control (Langner et al., 2018;
Pessoa, 2008). Thus, affective experience and cognitive abilities are in-
herently coupled in the human brain (Barrett, 2016; Pessoa, 2008). Yet,
it remains unclear if this coupling reflects in neuroanatomical correlates
and if cognition and affect share a genetic basis.

In sum, (1) cognitive abilities and their relation with brain structure
are highly heritable; (2) affective experience is associated with brain
function and structure and may also be driven by genetic factors, de-
pending on the affect measurement; (3) there is a complex interrelation
between affect and cognition in behavior and brain. However, whether
cognition and trait affect have a shared genetic relation to brain struc-
ture is not known to date. We studied the relationship of cognition and
affect in behavior and local brain structure and evaluated whether cog-
nitive abilities and trait affective self-reports can be accounted for by
shared genetic effects between behavior and brain. First, we evaluated
the relation of cognition and trait affect on the behavioral level by con-
ducting phenotypic correlation, as well as heritability analyses and ge-
netic correlation in a large sample of healthy twins. Next, we assessed
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cognition and affective traits in relation to cortical thickness, subcorti-
cal volumes and cortical surface area, to evaluate whether cognition and
affect yield phenotypic and genetic correlations with local brain struc-
ture. We expected to observe that phenotypic associations of cognition
and affect with brain structure can be explained by genetic correlations.

2. Materials and methods
2.1. Participants

The Human Connectome Project (HCP) is a publicly available data
base. In this study, the Young Adult Pool was used, which comprised
1206 healthy individuals (656 women, mean age = 28.8 years, stan-
dard deviation (SD) = 3.7, range = 22-37 years). In total, there were
292 monozygotic (MZ) twins, 323 dizygotic (DZ) twins, and 586 single-
tons (additionally 5 missing values in zygosity information). After exclu-
sion of individuals without brain structural (N = 93) or behavioral data
(N = 20) relevant to this study, and participants with corrupted brain
data (N = 4), our final sample comprised 1091 individuals, of which 592
were women. This sample included 274 MZ twins, 288 DZ twins, and
525 singletons (additionally 4 missing values in zygosity information).
Its mean age, standard deviation and range remained the same as for
the total HCP sample.

2.2. Ethics statement

Analysis of the HCP data has been approved through the local ethics
committee of the University of Diisseldorf, Germany.

2.3. Data/code availability statement

To ensure reproducibility of this study wusing unrestricted
and restricted data of the publicly available HCP dataset
(www.humanconnectome.org), the code that has been used in our anal-
yses can be found here: https://github.com/CNG-LAB/affect_cognition.
As specified in the HCP Restricted Data Use Terms, investigator-
assigned IDs of included participants will be shared upon publication
of the study.

2.4. Behavioral measures

The cognitive and affective measures used in this study were selected
in the data base of the HCP and derived from the National Institute of
Health (NIH) toolbox for Assessment of Neurological and Behavioral
Function® (neuroscienceblueprint.nih.gov). Composite scores from the
cognition and emotion categories were used, while one category com-
prised several sub-domains (Table 1).

2.4.1. Cognition

The cognitive function composite score (total cognition) was as-
sessed by averaging the fluid cognition composite score (fluid cognition)
and the crystallized cognition composite score (crystallized cognition).
As illustrated in Table 1, the fluid cognition score was obtained by av-
eraging the scores of the Dimensional Change Card Sort Test, Flanker,
Picture Sequence Memory, List Sorting, and Pattern Comparison mea-
sures. That is, fluid cognition is the combination of scores of executive
function, inhibition and attention, episodic memory, working memory,
and processing speed (Akshoomoff et al., 2013). The crystallized cogni-
tion score was obtained by averaging the scores of Picture Vocabulary
and Oral Reading Recognition measures. That is, crystallized cognition
consists of language in the sense of translation of thought into symbols
and deriving meaning from text, as a reflection of past learning experi-
ences (Akshoomoff et al., 2013; Gershon et al., 2013).

As cognition can be both conceived as a general factor (G), but at
the same time crystallized and fluid cognition are differentiable, we in-
vestigated the general cognitive score (total cognition), as well as fluid
and crystallized cognition.
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Table 1
Behavioral scores. Overview of composition of behavioral variables.
Category Domain Sub-domain Test
Cognition Fluid cognition Executive function - cognitive flexibility Dimensional Change Card Sorting (DCCS)
Executive function — Inhibition and attention Flanker
Episodic memory Picture Sequence Memory
Processing speed Pattern Comparison
Working memory List Sorting
Crystallized cognition Language Picture Vocabulary
Reading Recognition
Affect Positive affect/psychological well-being Life satisfaction Self-report
Meaning and purpose
Positive affect
Negative affect Anger-affect Self-report
Anger-hostility
Fear-affect
Perceived stress
Sadness
Table 2 identical geometry (TR = 3,200 ms, TE = 565 ms, variable flip angle,

Behavioral variables. Mean, standard deviation, as well as minimum and maxi-
mum of each variable included in our analyses.

Variables Mean SD Min Max
Total Cognition 121.8 14.6 84.6 153.4
Fluid Cognition 115.0 11.6 84.5 145.2
Crystallized Cognition 117.7 9.9 90.4 154.0
Positive Affect 52.1 7.2 27.1 72.6
Negative Affect 48.7 6.8 30.9 78.8
Mean Affect 1.7 6.2 -19.6 20.8
2.4.2. Affect

To examine trait affect in this study, a composite measure of general
affect was used, consisting of both positive and negative affect. Trait af-
fect can be sub-divided into positive and negative traits, which are sep-
arable constructs that may be represented as one bipolar scale or two
unipolar scales (Diener and Emmons, 1984; Russell and Carroll, 1999;
Salsman et al., 2013; Watson and Tellegen, 1985). Positive affect, also
known as psychological well-being, is characterized by the experience
of pleasant feelings, such as happiness, serenity and cognitive engage-
ment (Diener and Emmons, 1984; Salsman et al., 2014, 2013). We com-
posed the construct of positive affect by averaging the scores from the
sub-domains of life satisfaction, meaning and purpose, and positive af-
fect (Tables 1 and 2). Negative affect comprises three principal negative
emotions: anger, fear, and sadness (Pilkonis et al., 2013; Salsman et al.,
2013). It was composed by the average of anger (anger-affect, hostility),
sadness, fear-affect, and perceived stress (Table 1 and 2). All affective
domains were obtained using the NIH toolbox with a written self-report
(Pilkonis et al., 2013; Salsman et al., 2014, 2013).

As the positive and negative affect scores used in this study showed
high intercorrelations (R = -0.6, see Fig. 1C and Supplementary Fig. 1),
we created a composite score of mean affect by reversing the negative
affect score and averaging it with the positive affect score. This enabled
us to investigate positive and negative affect as separate entities, on the
one hand, as well as a general estimate of mean affect that integrates
both negative and positive emotions, on the other hand.

2.5. Structural imaging processing

MRI protocols of HCP were previously described in detail
(Glasser et al., 2013; Van Essen et al., 2013). In short, MRI data used
in the study was acquired on the HCP’s custom 3T Siemens Skyra scan-
ner equipped with a 32-channel head coil. Two T1-weighted (T1w) im-
ages with identical parameters were acquired using a 3D-MPRAGE se-
quence (0.7 mm isotropic voxels, matrix = 320 x 320, 256 sagittal slices,
TR = 2,400 ms, TE = 2.14 ms, TI = 1,000 ms, flip angle = 8°, iPAT = 2).
Two T2w images were acquired using a 3D T2-SPACE sequence with

iPAT = 2). Tlw and T2w scans were acquired on the same day. The
pipeline used to obtain the FreeSurfer segmentation is described in de-
tail in a previous article (Glasser et al., 2013) and is recommended for
the HCP-data. The pre-processing steps included co-registration of T1w
and T2w scans, B1 (bias field) correction, and segmentation and sur-
face reconstruction using FreeSurfer version 5.3-HCP to estimate brain
volumes, cortical thickness and surface area. We also derived eight
bilateral subcortical volumes (thalamus, caudate, putamen, pallidum,
hippocampus, amygdala, accumbens area, ventral diencephalon) from
FreeSurfer’s automatic subcortical segmentation (Fischl et al., 2002) to
evaluate their phenotypic and genetic correlation with behavioral traits.

2.6. Cortical morphological measures

For analyses including local cortical structure, we summarized
surface-based morphological measures (i.e. cortical thickness and sur-
face area) as parcels covering the entire cortical mantle to study
their compressed features on a local topological scale (Betzel and Bas-
sett, 2017). We applied a parcellation scheme on the cortical surface
mesh, which is based on the combination of local gradient and global
similarity approaches using a gradient-weighted Markov Random Field
model (Schaefer et al., 2018). Using compressed features of structural
MRI has been suggested to both improve signal-to-noise of brain mea-
sures (cf. Eickhoff et al., 2018; Genon et al., 2018) and optimize analy-
sis scalability. The Schaefer parcellation has been extensively evaluated
with regards to stability and convergence with histological mapping and
alternative parcellations (Schaefer et al., 2018). In the context of the
current study, we focused on the granularity of 200 parcels from the 7-
network solution. In order to improve signal-to-noise ratio and analysis
speed, we opted to average unsmoothed structural data within each par-
cel. Thus, cortical thickness of each parcel was estimated as the trimmed
mean (10 % trim) of vertex-wise cortical thickness and parcel-wise sur-
face area was computed as the sum of vertex-wise area per parcel. The
parcel-wise measures were used in all subsequent cortical analyses.

2.7. Phenotypic correlation analyses

Phenotypic correlations between cognitive and affective traits were
assessed by cross-correlating the normalized behavioral measures, con-
trolling for effects of age, sex and their interaction, using multiple linear
regression models.

Phenotypic analyses between behavioral traits and local brain struc-
ture were carried out per parcel of cortical thickness and surface area,
as well as per volume of subcortical structures. Each brain modality
was predicted by cognition and affect, respectively, using multiple lin-
ear regression models while controlling for age, sex, age X sex inter-
action, age?, age? x sex interaction, as well as global thickness (mean
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Fig. 1. Phenotypic and genetic relation of cognition and affect. (A) Distribution of cognitive and affective variables; (B) Their heritability (h?); (C) bottom triangle:
phenotypic correlation (standardized beta values, FDRq<0.05) and upper triangle: genetic correlation (rho values, FDRq<0.05) of the cognitive and affective scores;
(D) Scatter plot showing the phenotypic correlation between mean affect and total cognition.

cortical thickness) effects when investigating cortical thickness and in-
tracranial volume (ICV) when assessing surface area and subcortical vol-
umes. As in previous work (Bernhardt et al., 2014; Valk et al., 2016a,
2016b), we used SurfStat for Matlab [R2020a, The Mathworks, Natick,
MA] (Worsley et al., 2009) to conduct the statistical comparisons.

Results of all phenotypic correlations were corrected for mul-
tiple comparisons using Benjamini-Hochberg false discovery rate
(FDRg<0.05) (Benjamini and Hochberg, 1995). We displayed signifi-
cant brain associations on the cortical surface.

2.8. Heritability and genetic correlation analyses

Using the pedigree-based design of HCP, we conducted analyses to
estimate heritability and genetic correlation of cognitive and affective
trait scores and brain structure. All genetic analyses were performed us-
ing the software package Sequential Oligogenic Linkage Analysis Rou-
tines (SOLAR, http://www.solar-eclipse-genetics.org), which employs
a maximum likelihood variance-decomposition approach optimized to
perform genetic analyses in pedigrees of arbitrary size and complexity
(Almasy and Blangero, 1998; Kochunov et al., 2019). SOLAR models
genetic proximity by covariance between family members (Almasy and
Blangero, 1998; Kochunov et al., 2019).

Heritability (i.e. narrow-sense heritability h?) is defined as the pro-
portion of the phenotypic variance (ag) in a trait that is attributable to
the additive effects of genes (6;), ie. h? = aé /aﬁ. SOLAR estimates her-
itability by comparing the observed phenotypic covariance matrix with
the covariance matrix predicted by kinship (Almasy and Blangero, 1998;
Kochunov et al., 2019). Significance of the heritability estimate was

tested using a likelihood ratio test where the likelihood of a restricted
model (with 62 constrained to zero) is compared with the likelihood of
the estimated model. Twice the difference between the log likelihoods
of these models yields a test statistic, which is asymptotically distributed
as a 50:50 mixture of a X2 variable with 1 degree-of-freedom and a point
mass at zero (Almasy and Blangero, 1998; Kochunov et al., 2019).

To determine if variations in cognition or affect and brain struc-
ture were influenced by the same genetic factors, genetic correla-
tion analyses were conducted. Genetic correlations indicate the pro-
portion of variance that determines the extent to which genetic in-
fluences on one trait are shared with genetic influences on another
trait (e.g. pleiotropy). In SOLAR, the phenotypic correlation (p,) was
decomposed through bivariate polygenic analyses to estimate genetic
(ry) and environmental (p,) correlations using the following formula:
Py =pg \/Eh%h%) + o/ [(1 = h2)(1 - h3)], where h?; and h?, are the her-
itability estimates of the behavioral trait and the respective brain struc-
tural measure (Almasy et al., 1997; Glahn et al., 2010). To test for the
significance of shared genetic effects, likelihood ratio tests were con-
ducted (similar to heritability analyses) comparing models in which
pg was estimated with models in which p, was constrained to zero
(no shared genetic effect) and constrained to 1 (complete pleiotropy)
(Almasy et al., 1997).

Significance of both the heritability and genetic correlation esti-
mates was corrected for multiple comparisons by Benjamini-Hochberg
FDRq<0.05 (Benjamini and Hochberg, 1995).

Heritability and genetic correlation analyses were conducted with
simultaneous estimation for the effects of potential covariates. We thus
included the same covariates as in our phenotypic analyses including


http://www.solar-eclipse-genetics.org

N. Kraljevié, H.L. Schaare, S.B. Eickhoff et al.

age, sex, age X sex interaction, age?, age® x sex interaction, as well as
global thickness when investigating cortical thickness and ICV when as-
sessing surface area and subcortical volumes. To ensure that our traits
conform to the assumptions of normality, an inverse normal transforma-
tion was applied to all behavioral as well as brain structural traits prior
to genetic analyses (Glahn et al., 2010).

2.9. Functional decoding

Parcels that were significantly correlated with both cognition and
affect and shared genetic variance, were functionally characterized
using the Behavioral Domain meta-data from the BrainMap meta-
analysis database (http://www.brainmap.org, Laird et al., 2011, 2009).
The BrainMap database enables the decoding of functions associated
with specific brain regions. To investigate potential functional pro-
cesses associated with parcels linked to both affect and cognition,
we used the volumetric counterparts of the surface-based parcels as
defined by Schaefer et al and available online (Schaefer et al., 2018,
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/
brain_parcellation/Schaefer2018_LocalGlobal/Parcellations). Thus,
although our empirical analysis focused on surface-based cortical data,
functional decoding could be performed in volume space. In particular,
we identified those meta-data labels (describing the computed contrast
[behavioral domain as well as paradigm]) that were significantly more
likely than chance to result in activation of a given parcel (Fox et al.,
2014; Genon et al., 2018; Nostro et al., 2017). That is, functions were
attributed to the parcels by quantitatively determining which types of
experiments were associated with activation in the respective parcel
region. Of note, we assessed associations of the parcels of interest with
functional activations and included only tasks involving healthy adults.
Significance was established using a binomial test (q<0.05, corrected
for multiple comparisons using FDR) and we report results of both
forward and reverse inference analyses.

3. Results

3.1. Heritability, phenotypic and genetic correlation of cognition and affect
(Fig. 1)

First, we evaluated the phenotypic associations between cognitive
test scores and affective self-report scores (Fig. 1, Supplementary Fig. 1).
Both composite scores (total cognition and mean affect), as well as their
sub-domains (fluid cognition, crystallized cognition, positive affect, and
negative affect), were normally distributed (Fig. 1A). We observed high
phenotypic interrelationships between the respective sub-tests of both
cognitive and affective domains (Supplementary Fig. 1), supporting the
use of the composite scores total cognition and mean affect as prox-
ies for the constructs of cognition and affect, respectively. As expected,
cognitive scores were all positively associated among each other, while
positive affect correlated positively, and negative affect correlated neg-
atively to mean affect. We observed that mean affect had a positive
phenotypic relationship with total cognition (f = 0.09, FDRq < 0.05).
Similarly, positive affect was positively associated with total (f = 0.08)
and fluid (f = 0.10) cognitive abilities, whereas negative affect was neg-
atively associated with total (# = -0.08) and fluid (f = -0.10) cognitive
abilities (all FDRq < 0.05; Fig. 1C, lower triangle).

The heritability analysis revealed that all observed construct scores
were heritable: total cognition (h®= 0.75, p < 0.001), which is a com-
bination of fluid (h®= 0.58, p < 0.001) and crystallized (h?*= 0.83, p <
0.001) cognition, as well as mean affect (h*= 0.31, p < 0.001), which is
the signed average of positive (h®= 0.27, p < 0.001) and negative (h?>=
0.36, p < 0.001) affect (Fig. 1B).

Next, we evaluated the genetic correlation between cognitive and
affective scores. A strong positive genetic correlation between fluid
and crystallized cognition (p; = 0.47, FDRq<0.05) and a negative ge-
netic correlation between positive and negative affect (p, = -0.62,
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FDRg<0.05) was found (Fig. 1C, upper triangle), suggesting that both
sub-domain-sets reflect partly overlapping genetic mechanisms. We did
not observe a significant genetic correlation between total cognition and
mean affect (FDRq > 0.05). At trend level, we observed genetic correla-
tions between fluid cognition and mean affect (pg = 0.23, p<0.03), and
between fluid cognition and positive affect (p, = 0.28, p<0.02). In the
following, we focus on reporting the results for the composite scores of
total cognition and mean affect which sufficiently capture phenotypic
and genetic variance of the constructs of cognition and affect. To addi-
tionally allow for more detailed assessment, we report associations with
the sub-domain measures in the supplementary materials.

3.2. Phenotypic association between cognition and local brain anatomy
(Fig. 2)

To evaluate the phenotypic association of cognition and affect with
brain anatomy, we first evaluated the correlation between cognition and
local cortical thickness, while controlling for global thickness. We ob-
served positive associations between thickness and total cognition in bi-
lateral insula, bilateral cuneus, bilateral sensorimotor regions, left mid-
dle temporal gyrus, and right middle cingulate; whereas bilateral frontal
regions and left parietal showed a negative relation with total cognitive
score (Fig. 2A). Conversely, surface area showed only positive, but not
negative, associations with cognitive scores. Total cognition was associ-
ated with local surface area in bilateral occipital areas, temporal poles,
sensorimotor cortices, and lateral and orbital frontal cortices, as well as
left anterior cingulate and right posterior-mid cingulate cortex (Fig. 2B).
With regards to subcortical volumes, we observed a significant positive
effect between total cognition and left hippocampal volume (Fig. 2C).
Fluid and crystallized cognition sub-scores showed similar associations
with local brain structure and volume (Supplementary Tables 1-3, 7—
12).

3.3. Phenotypic association between affect and local brain anatomy
(Fig. 2)

Next, we evaluated the association between affect and local brain
structure. We found that affect measures showed significant associations
with local cortical thickness and subcortical volumes, but not with local
surface area. Mean affect was associated with cortical thickness nega-
tively in left superior frontal cortex and positively in left occipital cortex,
as well as right parietal cortex (Fig. 2A, Supplementary Table 4). In ad-
dition, bilateral caudate volume was significantly associated with mean
affect (Fig. 2C, Supplementary Table 13).

3.4. Genetic correlation of cognition and affect with local brain structure
(Fig. 3)

To assess if the phenotypic correlation between cognitive and af-
fective traits on the one hand and local brain structure on the other is
accounted for by shared genetic effects, we performed genetic corre-
lation analyses through bivariate polygenic analyses. Both local thick-
ness and surface area were heritable in our sample (cortical thickness
h%2=meanzsd: 0.35+0.11 and surface area: h2=0.42+0.13), as were sub-
cortical volumes (h?=0.68+0.10, Supplementary Figure 4, Supplemen-
tary Tables 21-23).

There was a strong overlap between phenotypic correlations and ge-
netic correlations. 34 out of 37 phenotypic correlations between total
cognition and local cortical thickness could be attributed to shared ge-
netic effects (FDRq<0.05, Fig. 3A, Supplementary Table 16) and genetic
correlation patterns largely mirrored phenotypic associations between
cognitive scores and local cortical thickness (see also Supplementary
Fig. 5 and Supplementary Table 18). Similarly, the phenotypic associ-
ations between cognitive scores and subcortical volumes were mainly
attributable to genetic correlations (Supplementary Table 20). Further-
more, the associations between local surface area and cognitive scores
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Fig. 2. Associations between cognition, affect and local brain structure. (A) Correlation between total cognition and local cortical thickness; Second row: Correlation
between mean affect and local cortical thickness. (B) Correlation between total cognition and local surface area. Associations between surface area and affect were
not significant. (C) Correlations between cognition / affect and sub-cortical regions volumes. Red indicates a positive association, and blue a negative association
between cognition / affect and local brain structure. Only FDRg<0.05 corrected findings are depicted (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.).

were largely associated with shared genetic factors. Here, 29 out of 42
phenotypic associations between total cognition and local surface area
were accounted for by shared genetic factors (Fig. 3B, Supplementary
Table 17; Supplementary Figure 6 and Supplementary Table 19 for sub-
score results). Among the associations with mean affect, thickness of
left superior frontal cortex (pg = -0.480, p=0.000, Fig. 3A, Supplemen-
tary Table 16) and bilateral caudate volumes (left: pg = -0.28, p=0.001,

right: p, = -0.28, p=0.001, Supplementary Table 20) were also related
to shared genetic effects.

3.5. Shared brain basis between cognitive and affective tendencies (Fig. 4)

Last, we evaluated whether cognitive and affective traits also showed
an overlapping relationship to local brain structure. Both cognition and
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correlation is depicted in red, negative in blue. Only FDRq<0.05 corrected findings are depicted (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.).

affect scores had an association (FDRq < 0.05) with thickness in the left
superior frontal cortex. In both measures, these effects were accounted
for by genetic correlations (Supplementary Tables 16 and 17). We per-
formed functional decoding to further quantify the functional processes
associated with this region and found this region to be involved in cog-
nitive and socio-cognitive processes, as well as emotional processes (va-
lence and negative emotions) and action inhibition (Fig. 4, for uncor-
rected results see Supplementary Figure 7). These behavioral domains
were mirrored by activation related to Theory of Mind, Emotional In-
duction, Semantic monitor, and Go/No-go tasks (reverse inference only,
Fig. 4).

4, Discussion

We evaluated shared behavioral, heritable and brain structural fac-
tors of cognitive and affective traits. We found that both cognitive and
affective traits were heritable and observed significant genetic correla-
tion between fluid cognition (but not total cognition) and trait affect.
Following, we assessed the phenotypic correlation between cognitive
and affective traits on the one hand, and macroscale brain anatomy on
the other. Whereas cognition had widespread associations with local
cortical thickness and surface area, trait affect showed only sparse as-
sociations. We found that most phenotypic behavior-brain associations
were attributable to shared genetic effects, as indicated by significant
genetic correlations. Finally, we evaluated whether total cognition and
mean affect were embedded in a common brain structural correlate and
found that both measures showed a shared phenotypic and genetic as-
sociation with cortical thickness of left superior frontal cortex. Quanti-
tative functional decoding further indicated that this region is involved
in both cognitive and emotional functioning.

4.1. Heritability and genetic correlations of cognition, affect and brain
structure

Complementing previous studies on affect, cognition, and
macroscale brain anatomy, we interrogated the shared genetic basis of
cognition and affect using pedigree-based approaches. We observed a
moderate to strong heritability of cognitive scores (h? = 0.6-0.8), which
is in line with previous work: In childhood and adolescence-depending
on measurement and cohort - 70 to 80 % of the variance in cognitive
ability is estimated to be accounted for by genetic factors (Bartels et al.,
2002; van Soelen et al., 2011; Wainwright et al., 2005). Using GWAS of
adult samples, Davies et al. (2011) observed that 40% of the variation
in crystallized-type intelligence and 51% of the variation in fluid-type
intelligence between individuals is accounted for by genetic variants.
Notably, crystallized cognition was observed to be more heritable
than fluid cognition in the current sample. These findings are in line
with a large meta-analysis assessing the heritability of cognitive traits
based on their cultural load, where traits with higher cultural load
were shown to be more heritable (Kan et al., 2013). Traits that we
summarized as crystallized cognition were attributed a higher cultural
load in Kan et al.’s study. This indicates that the known cultural and
educational homogeneity of the HCP sample may have led to a high
estimated heritability of crystallized cognition.

However, our findings on the heritability of affective self-reports
were less strong. Previous work in a twin sample by Baker et al.
revealed a strong heritability for negative affect, but none for posi-
tive affect (Baker et al., 1992), which was conceptually replicated by
Zheng et al. (2016). In addition, angry temperament has been associated
with genetic processes involved in memory and learning (Mick et al.,
2014). Another twin study by Lykken and Tellegen (1996) found the
heritability for subjective well-being to be 44-52%, which appears to
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Fig. 4. Quantitative functional decoding of region showing association with
both cognition and affect. Both forward inference and reverse inference of
activation-domain and paradigm-domain contrasts are reported for the left su-
perior frontal cortex which showed evidence of shared phenotypic and genetic
association for cognition and affect.

be higher than the heritability scores we observed for affect measures.
However, few studies to date have assessed the heritability of both cog-
nitive and affective traits in the same cohort. Our observations suggest
that inter-individual variance in cognition is more robustly explained by
heritable factors, than in affect. This could be related to the challenge
to quantify individual difference of affective traits in self-reports, which
show weaker convergent validity, as opposed to tests for cognitive as-
sessments (Heaton et al., 2014; Salsman et al., 2013).

Moreover, we replicated previous results that showed heritability of
surface area and cortical thickness, which further indicated that phe-

Neurolmage 243 (2021) 118561

notypic variance in cortical thickness and surface area is partly driven
by additive genetic effects (Brouwer et al., 2014; Grasby et al., 2020;
Panizzon et al., 2009; Winkler et al., 2010).

Extending previous work, we also observed strong genetic correla-
tions between total cognition and local cortical structure which indi-
cates that the majority of phenotypic associations between total cogni-
tion and cortical thickness and surface area, respectively, could be asso-
ciated with shared genetic factors (Brouwer et al., 2014; Grasby et al.,
2020; Toga and Thompson, 2005).

Affect was phenotypically correlated with superior frontal thickness
and genetic correlation analyses yielded that this association was at-
tributable to shared genetic effects. These results are in line with recent
work implicating various genetic loci with well-being which showed
significant enrichment for GABAergic interneurons sampled from hip-
pocampus and prefrontal cortex (Baselmans et al., 2019; Okbay et al.,
2016). However, we did not observe genetic associations between af-
fect and hippocampal volumes in this sample. Moreover, affect was ge-
netically correlated with bilateral caudate volume, a region which has
been shown to share a genetic basis with neuropsychiatric health traits
(Satizabal et al., 2019; Zhao et al., 2019).

4.2. Shared basis of cognition and affect in behavior, genetics and superior
frontal cortex thickness

We combined behavioral and brain imaging approaches to study the
association between cognition and trait affect. Scores for mean total
cognition and affect showed a positive association at the behavioral
level, highlighting the synergy of cognitive and affective traits. Previ-
ous work has suggested positive affect might have a motivating role in
enhancing cognitive flexibility (Ashby et al., 1999; Fredrickson, 2001;
Liu and Wang, 2014). In turn, cognitive control is a core feature of suc-
cessful emotion regulation (Engen and Anderson, 2018; Ochsner and
Gross, 2005) and contributes to psychological well-being over the lifes-
pan (Mather and Carstensen, 2005).

Recent work indicated a shared genetic basis between local brain
structure and complex behavioral traits (Grasby et al., 2020; Zhao et al.,
2019). In line with this work, our study demonstrated that cogni-
tion and trait affect have a shared phenotypic and genetic relation-
ship with cortical thickness in left superior frontal cortex. The supe-
rior frontal gyrus — which includes the dorsolateral prefrontal cor-
tex — has been classically considered a core region for higher cogni-
tive functions, including attention, working memory and cognitive con-
trol (Boisgueheneuc et al., 2006; Corbetta and Shulman, 2002). Yet,
a growing body of research has highlighted its involvement in socio-
emotional processes, such as motivated behavior and emotion regula-
tion (Engen and Anderson, 2018; Frank et al., 2014; Okon-Singer et al.,
2015). Left superior frontal gyrus has also been implicated in self-
awareness and introspection (Goldberg et al., 2006), as well as in psy-
chiatric disorders of self-awareness, such as schizophrenia (Lee et al.,
2016). Indeed, left superior frontal thickness has been shown to be
modulated by schizophrenia-associated genetic variants, suggesting a
shared genetic basis of schizophrenia-associated brain regions and the
neurocognitive symptoms characterizing the disease (Lee et al., 2016).
On a network level, the superior frontal cortex is situated at the inter-
section of the default mode network, the dorsal attention network and
the frontoparietal control network (Li et al., 2013; Schaefer et al., 2018;
Yeo et al., 2011). This particular network embedding suggests an inte-
grating role of superior frontal cortex connectivity to broader associa-
tive, self-reflective processes, as well as controlling operations across the
cortex (Andrews-Hanna et al., 2014; Li et al., 2013; Spreng et al., 2013).
Our observation of an inter-relationship of cognition and affect in supe-
rior frontal cortex is further in line with a meta-analysis showing that in-
teractions between emotion and cognition were associated with this re-
gion, next to medial prefrontal cortex and basal ganglia (Cromheeke and
Mueller, 2014). In addition, the results we obtained from our functional
decoding analysis are in line with the variety of cognitive and emotional



N. Kraljevié, H.L. Schaare, S.B. Eickhoff et al.

functions that previous studies have allocated to this region, such as ac-
tivation related to social cognition, emotional valence and action inhi-
bition (Bzdok et al., 2012; Cromheeke and Mueller, 2014; Hung et al.,
2018). Interestingly, functional decoding only included a selection of
cognitive and emotional labels. Labels involving positive emotion, im-
plicit and working memory, attention, language processes, and spatial
cognition, amongst others, did not load to this region. This may indicate
that the overlap observed between the association of cognition and af-
fect with cortical thickness of superior frontal cortex could be related to
a rather specific set of functional processes relevant for both trait affect
and cognition, possibly associated with emotional and cognitive control
(Li et al., 2013; Song et al., 2017). Our results thus extend previous evi-
dence of cognitive and affective behavior integration in superior frontal
cortex by showing a macrostructural overlap of cognition and affect in
superior frontal cortex that is based on shared genetic effects.

4.3. Dissociations of affect and cognition in brain structure

Both individual differences in cognitive and affective traits could be
linked to local brain structure. Total cognition was associated with lower
thickness in frontal regions which is in line with some studies (Goh et al.,
2011; Salat et al., 2002; Sowell et al., 2001; Van Petten et al., 2004), but
contradicting others (Fjell et al., 2006; Karama et al., 2009; Narr et al.,
2006). At the same time, there is some congruency with previous stud-
ies involving the location of regions critical for cognition, including
mostly frontal and parietal regions (Jung and Haier, 2007), but also
anterior and posterior temporal, and occipital regions (Goh et al., 2011;
Menary et al., 2013). Notably, we also observed associations between
cognition and various regions within the insular cortices, functionally
implicated in both cognitive, but also emotional processes (Kelly et al.,
2012; Lindquist et al., 2012). In addition, we found wide-spread asso-
ciations in temporal, frontal and occipital lobes between local surface
area and cognitive ability, but not with affective traits. Mean affect was,
however, phenotypically correlated with cortical thickness in left su-
perior frontal cortex, left lateral occipital cortex and bilateral caudate
volume. It is noteworthy that affective traits showed less strong and
wide-spread associations to local thickness relative to cognitive scores.
This observation is in line with reports suggesting inter-regional in-
teractions, rather than local anatomy, may encode emotional experi-
ence (Kragel and LaBar, 2016; Langner et al., 2018; Pessoa, 2008). In
fact, meta-analyses of functional neuroimaging studies did not find evi-
dence for independent brain systems that specifically relate to positive
and negative valence (Lindquist et al., 2016, 2012). This suggests that
the neural representation of affect is characterized by dynamic interac-
tions between brain regions and networks rather than functional spe-
cializations of distinct locations in the brain (Kragel and LaBar, 2016;
Langner et al., 2018; Pessoa, 2008). Moreover, dissociable patterns of
cortical thickness and surface area in relation to behavior might also un-
derlie genetic influences. As such, individual variation in surface area
has been associated with genes expressed pre-birth, whereas cortical
thickness has been related to adult-specific gene expression and emerg-
ing genetic associations with cognitive abilities throughout development
(Brouwer et al., 2014; Grasby et al., 2020; Panizzon et al., 2009).

5. Limitations and conclusions

We observed converging evidence for a heritable basis of inter-
individual differences in cognition and affect combining multi-level
analysis within the HCP dataset and ad-hoc meta-analytical functional
decoding. At the same time, we observed that correlations within each
domain were generally stronger than between cognition and affect. Fur-
ther research might benefit from studying task-based, as well as physio-
logical measures of cognitive and affective inter-individual variation to
further evaluate the dynamic relation between cognitive aptitude and
habitual and transient affective experience. The singular nature of the
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twin-based HCP sample warrants the acquisition of comparable high-
resolution neuroimaging datasets including deeply phenotyped twins
and families to test replication of results. Greater insight into the associ-
ation between affect and cognition may be garnered by inspecting differ-
ent samples, integrating more fine-grained genetic approaches with var-
ious indices of cortical anatomy. However, associations observed here
were weak, and it is of note that the combination of behavioral assess-
ments and its association with brain structure has been recently chal-
lenged: For example, Kharabian Masouleh et al. showed in an exten-
sive study that the association of psychological traits and brain struc-
ture is rarely statistically significant or even reproducible in indepen-
dent samples (Kharabian Masouleh et al., 2019). Additionally, Hedge
and colleagues pointed out, that commonly used measurements of be-
havior may not be optimal to determine underlying neural correlates,
due to low between-participant variability within established paradigms
(Hedge et al., 2018). Here we utilized different levels of analysis to cap-
ture the association between affect and cognition. Follow-up work on
the biological basis of complex behaviors may take a similar approach
and integrate behavioral assessments with neuroimaging, behavioral
and molecular genetics, and functional decoding. To conclude, the cur-
rent work provides evidence at three levels of enquiry that cognitive
abilities and affective traits are linked to partially overlapping neurobi-
ological processes. We anticipate that the increased availability of open
datasets with rich pheno- and genotyping will enable to outline more
specific biological mechanisms that help describe the relationship be-
tween thoughts and feelings.
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SUPPLEMENTARY RESULTS

Phenotypic association of sub-scores of cognition and affect with local brain anatomy

We evaluated the phenotypic correlation between cognition and local cortical thickness, while
controlling for global thickness. We observed that cognitive sub-scores for fluid and
crystallized cognition showed similar patterns of positive and negative relations to total
cognition with cortical thickness (Supplementary Figure 2, Supplementary Tables 2-3). Fluid
cognition was negatively associated with primarily frontal regions and positively associated
with medial occipital cortex. Crystallized cognition was related to wide-spread effects in
cortical thickness of frontal and parietal regions (negative associations), as well as temporal,
sensorimotor and insular thickness (positive associations).

Fluid cognition was positively related to surface area primarily in bilateral occipital and
temporal pole regions (Supplementary Figure 3) and crystallized cognition was positively
related to surface area in bilateral inferior temporal areas, lateral frontal and parietal areas, as
well as left anterior cingulate cortex (Supplementary Figure 3). See further Supplementary
Tables 8-9.

With regards to subcortical volumes, we found that crystallized cognition was positively
associated with bilateral hippocampal and right amygdalar volume and fluid cognition was
negatively associated with left pallidum volume (Supplementary Tables 11-12).

Sub-score analyses of affect yielded that positive affect was negatively associated with cortical
thickness in left superior frontal cortex, whereas negative affect was negatively associated with
occipital cortical thickness (Supplementary Figure 2, Supplementary Tables 5-6). Furthermore,
there were significant phenotypic associations for both positive and negative affect with
bilateral caudate volumes (Supplementary Tables 14-15). Effects with surface area were not

significant.
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Genetic correlation of sub-scores of cognition and affect with local brain anatomy

To assess if the correlation between cognitive and affective traits on the one hand and local
brain structure on the other is driven by shared genetic effects, genetic correlation analyses were
performed through a bivariate polygenetic analysis. In general, there was a strong overlap
between phenotypic correlations and genetic correlations (Supplementary Figure 3,
Supplementary Figure 6). 18 out of 21 phenotypic correlations between fluid cognition, and 36
out of 42 phenotypic correlations for crystallized cognition and local cortical thickness could
be attributed to genetic effects (Supplementary Table 18).

Regarding associations with surface area, we found 11 out of 14 related to fluid cognition and
36 out of 56 related to crystallized cognition to be attributable to shared genetic effects
(Supplementary Table 19).

Fluid cognition was also genetically correlated with volume in the left pallidum (pg=-0.230,
p=0.003) and there was a genetic correlation between crystallized cognition and bilateral
hippocampal volume (left: pg=0.159, p=0.004; right: p,=0.098, p=0.026; Supplementary Table
20).

Genetic correlations with affective sub-scores yielded that only the phenotypic association of
positive affect with superior frontal cortex was driven by shared genetic effects (Supplementary
Figure 5, Supplementary Table 18). We also found that the associations of positive, as well as
negative affect with bilateral caudate volumes were driven by genetic correlations

(Supplementary Tables 20).
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SUPPLEMENTARY FIGURES

Phenotypic correlation: standardized beta values X
T T T T T T T T T T T T T
Flanker |- - - 015 012 -0.02 019 017 005 -0.02 002 -004 -0.03 -0.02 - -0.03
Card sort. - 020 018 002 018 024 010 - 003 -006 -0.09 -0.05 -0.06 -0.11- 0.8
Picture seq. -0.14  0.20 - 035 013 020 021 017 0.07 006 -004 -007 -0.08 -0.08 -0.14-
0.6
Listsort. ~0.12 018 0.35 - 011 035 034 011 0.03 - -0.03 -0.07 -0.07 -0.04 -0.12-
PMAT [--0.02  0.02 0.13 0.11 - 023 027 0.10 001 -003 -0.03 -0.07 0.04 0.05 -0.07- 0.4
Picture vocab. -0.19 018 020 036 0.3 - 015 -0.03 0.01 - -0.07 0.04 - -0.09
402
Reading -0.16 024 021 034 027 - 011 -0.02 -002 003 -0.09 004 003 -0.06-
Life satisfactiont~0.05 010 017 011 010 015 011 40
Mean purpose [--0.02 - 0.07 0.03 0.01 -0.03 -0.02
4-0.2
Positive affect -0.02  0.03  0.06 - -0.03 - -0.02
Anger-affect |--0.04 -0.06 -0.04 -0.03 -0.03 - 0.03 -0.4
Anger-hostil. ~-0.03 -0.09 -0.07 -0.07 -0.07 -0.07 -0.09
0.6
Fear-affect --0.02 -0.05 -0.08 -0.07 0.04 0.04 0.04
Sadness - -- -0.06 -0.08 -0.03 0.05 - 0.03 0.8
Perc. stress --0.03 -0.10 -0.14 -0.12 -0.07 -0.09 -0.06
1 ] 1 1 1 1 1 a1
% % % % M % Ky
% %y B, B P B 9
5 P £y i 4 o
2 Csé

Supplementary Figure 1. Phenotypic correlations between cognitive and affective sub-scores.
Abbreviations: Card sort.: Dimensional Change Card Sorting, Picture seq.: Picture Sequence Memory,
List sort.: List Sorting, PMAT: Penn Matrix Test pattern comparison test, Picture vocab.: Picture
Vocabulary, Anger-hostil.: Anger sub-scale Hostility, Perc. stress: Perceived stress.
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Phenotypic correlation between cortical thickness and cognition/affect sub-scores
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Supplementary Figure 2. Whole-brain phenotypic correlation of cortical thickness with cognitive
and affective sub-scores. Positive correlation is depicted in red, negative in blue. Only correlations
at FDRq<0.05 are depicted

Phenotypic correlation between surface area and cognition/affect sub-scores
Fluid Cognition

GOCS!

FDRq<0.05

Crystalized Cognition

Supplementary Figure 3. Whole-brain phenotypic correlation between surface area and cognitive
sub-scores. Positive correlation is depicted in red, negative in blue. Only correlations at FDRq<0.05
are depicted. Associations with affective sub-scores were not significant.
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A) Heritability of cortical thickness C) Heritability of subcortical volumes

)
B). Heritability of surface area
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Supplementary Figure 4. Heritability of local cortical thickness, surface area and subcortical
volumes. Heritability of local cortical thickness, surface area and subcortical volumes. A) Heritability
of local cortical thickness per parcel (200 parcel solution Schaefer, 2018); B) Heritability of local
surface area per parcel. C) Heritability of subcortical volumes per FreeSurfer-segmented region.
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Genetic correlation between cortical thickness and cognition/affect sub-scores
Fluid Cognition

Crystalized Cognition

< //(/ A

Positive Affect

Supplementary Figure 5. Whole-brain genetic correlation of cortical thickness with cognitive and affective
sub-scores. Positive correlation is depicted in red, negative in blue. Only correlations at FDRq<0.05 are
depicted.

Genetic correlation between surface area and cognition/affect sub-scores
Fluid Cognition

Crystalized Cognition

&)X

LEFT RIGHT

Supplementary Figure 6. Whole-brain genetic correlation between surface area and cognitive sub-scores.
Positive correlation is depicted in red, negative in blue. Only correlations at FDRq<0.05 are depicted.
Associations with affective sub-scores were not significant.
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Supplementary Figure 7. Uncorrected meta-analytical functional decoding results of left superior
frontal cortex cluster using Brainmap (p<0.05).
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SUPPLEMENTARY TABLES

Supplementary Table 1. Total cognition and local cortical thickness.

Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect
p SD y. p SD y. p SD y. p SD P /] SD P p SD P
7Networks_LH_Vis_1 0.095 0.026 0.000 0.043 0.027 0.051 0.132 0.026 0.000 -0.005 0.026 0424 0.035 0.026 0.089 -0.022 0.026 0.200
7Networks_LH_Vis_4 0.110  0.029 0.000 0.072 0.029 0.006 0.121 0.029 0.000 0.010 0.029 0.367 -0.019 0.029 0.258 0.016 0.029 0.292
7Networks_LH_Vis_9 0.074 0.025 0.002 0.081 0.026 0.001 0.046 0.026 0.036 0.062 0.025 0.007 -0.049 0.025 0.027 0.062 0.025 0.007
7Networks_LH_Vis_10 0.087 0.027 0.001 0.096 0.027 0.000 0.048 0.027 0.039 0.005 0.027 0423 -0.023 0.027 0.196 0.015 0.027 0.282
7Networks_LH_SomMot_3 0.094 0.024 0.000 0.061 0.024 0.006 0.103 0.024 0.000 0.010 0.024 0.336 -0.030 0.024 0.106 0.022 0.024 0.179
7Networks_LH_SomMot_10 0.139 0.025 0.000 0.110 0.025 0.000 0.135 0.025 0.000 0.052 0.025 0.019 -0.048 0.025 0.028 0.056 0.025 0.013
7Networks_LH_DorsAttn_Post_7 -0.073  0.025 0.002 -0.038 0.025 0.060 -0.096 0.025 0.000 -0.049 0.024 0.022 0.019 0.025 0.218 -0.039 0.024 0.057
7Networks_LH_DorsAttn_Post_10 -0.076  0.025 0.001 -0.077 0.025 0.001 -0.057 0.025 0.011 -0.016 0.025 0263 -0.006 0.025 0.399 -0.006 0.024 0.411
TNetworks_LH_DorsAttn_FEF_2 -0.071  0.024 0.001 -0.062 0.024 0.005 -0.063 0.024 0.004 -0.065 0.023 0.003 0.052 0.024 0.013 -0.066 0.023 0.003

TNetworks_LH_SalVentAttn_FrOperIns_2  0.084 0.023 0.000 0.067 0.024 0.002 0.081 0.024 0.000 0.014 0.023 0.282 0.016 0.023 0.244 -0.001 0.023 0.483

TNetworks_LH_SalVentAttn_PFCI_1 -0.088 0.023 0.000 -0.070 0.023 0.001 -0.086 0.023 0.000 -0.010 0.023 0.333 0.001 0.023 0475 -0.006 0.023 0.389
TNetworks_LH_Default Temp_5S 0.069 0.023  0.001 0.055 0.023 0.009 0.056 0.023 0.008 0.013 0.023 0.286 -0.025 0.023 0.136  0.021 0.023 0.179
TNetworks_LH_Default PFC_4 -0.083 0.025 0.000 -0.073 0.025 0.002 -0.070 0.025 0.002 -0.053 0.025 0.016 0.052 0.025 0.017 -0.058 0.025 0.009
TNetworks_LH_Default PFC_5 -0.070  0.024 0.002 -0.053 0.024 0.015 -0.066 0.024 0.003 -0.057 0.024 0.009 0.057 0.024 0.009 -0.063 0.024 0.004
TNetworks_LH_Default PFC_7 -0.114  0.025 0.000 -0.098 0.025 0.000 -0.103 0.025 0.000 -0.046 0.025 0.031 0.036 0.025 0.072 -0.046 0.025 0.031
TNetworks_LH_Default PFC_9 -0.078 0.024 0.001 -0.077 0.024 0.001 -0.054 0.024 0.013 -0.094 0.024 0.000 0.078 0.024 0.001 -0.096 0.024 0.000
TNetworks_LH_Default PFC_10 -0.103  0.023  0.000 -0.100 0.024 0.000 -0.081 0.024 0.000 -0.041 0.023 0.042 0.029 0.024 0.113 -0.039 0.023 0.050
TNetworks_LH_Default PFC_11 -0.157  0.023  0.000 -0.127 0.024 0.000 -0.146 0.024 0.000 -0.055 0.024 0.010 0.031 0.024 0.096 -0.049 0.024 0.020
TNetworks_LH_Default PFC_13 -0.086 0.024 0.000 -0.089 0.025 0.000 -0.064 0.025 0.005 -0.073 0.024 0.001 0.070  0.024 0.002 -0.079 0.024 0.001
TNetworks_LH_Default_ pCunPCC_1 0.098 0.026 0.000 0.079 0.026 0.001 0.091 0.026 0.000 0.012 0.026 0.315 0.002 0.026 0.461 0.006 0.026 0.411
TNetworks_RH_Vis_4 0.086  0.028 0.001 0.017 0.029 0.275 0.143  0.028 0.000  0.022 0.028 0.221 0.007 0.028 0.401 0.009 0.028 0.379
TNetworks_RH_Vis_9 0.083 0.028 0.002 0.100 0.028 0.000 0.038 0.028 0.089 -0.023 0.028 0.207 0.017 0.028 0.270 -0.023 0.028 0.211
TNetworks_RH_Vis_10 0.088  0.027 0.001 0.093  0.027 0.000 0.049 0.027 0.035 0.043  0.027 0.054 -0.050 0.027 0.031 0.052  0.027 0.026

TNetworks_RH_Vis_13 0.088 0.025 0.000 0.083 0.025 0.000 0.067 0.025 0.004 -0.006 0.025 0.404 -0.016 0.025 0.253 0.005 0.025 0.413
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TNetworks_ RH_SomMot_1 0.079  0.023 0.000 0.052 0.024 0.015 0.087 0.024 0.000 0.011 0.023 0316 -0.010 0.023 0334 0.012 0.023 0.305
TNetworks_ RH_SomMot_7 0.073  0.023  0.001 0.052 0.024 0.015 0.071 0.024 0.001 -0.003 0.023 0448 0.006 0.023 0397 -0.005 0.023 0.415
TNetworks_ RH_SomMot_8 0.092  0.027 0.000 0.055 0.027 0.021 0.100 0.027 0.000 0.066 0.027 0.007 -0.050 0.027 0.030 0.065 0.027 0.007
TNetworks_ RH_SomMot_12 0.096 0.026 0.000 0.095 0.027 0.000 0.066 0.027 0.007 0.057 0.026 0.015 -0.036 0.026 0.089  0.052 0.026 0.024
TNetworks RH_Cont_PFCv_1 0.085 0.027 0.001 0.061 0.027 0.014 0.084 0.027 0.001 0.063 0.027 0.010 -0.002 0.027 0464 0.038 0.027 0.082
TNetworks RH_Cont_PFCI_5 -0.072  0.023 0.001 -0.049 0.023 0.018 -0.077 0.023 0.000 -0.025 0.023 0.138  0.030 0.023 0.093 -0.031 0.023 0.090
TNetworks_ RH_Cont_PFCI_6 -0.081 0.024 0.000 -0.048 0.024 0.022 -0.101 0.024 0.000 -0.051 0.024 0.016 0.035 0.024 0.073 -0.048 0.024 0.021
TNetworks RH_Cont_PFCI1_7 -0.063 0.022 0.002 -0.051 0.022 0.010 -0.053 0.022 0.008 -0.044 0.021 0.021 0.038 0.022 0.040 -0.045 0.021 0.017
TNetworks_RH_Cont_PFCmp_2 -0.075 0.022 0.000 -0.069 0.023 0.001 -0.062 0.023 0.003 -0.020 0.022 0.183 0.048 0.022 0.015 -0.038 0.022 0.045
TNetworks_RH_Default PFCdPFCm_4 -0.105  0.024 0.000 -0.076 0.024 0.001 -0.112 0.024 0.000 -0.050 0.024 0.019 0.043 0.024 0.035 -0.052 0.024 0.015
TNetworks_RH_Default PFCdPFCm_5 -0.123  0.023  0.000 -0.115 0.023 0.000 -0.094 0.023 0.000 -0.059 0.023 0.005 0.083  0.023 0.000 -0.079 0.023 0.000
TNetworks_RH_Default_ PFCdPFCm_6 -0.084 0.023 0.000 -0.080 0.024 0.000 -0.065 0.024 0.003 -0.049 0.023 0.017 0.037 0.023 0.056 -0.049 0.023 0.019
TNetworks_RH_Default_pCunPCC_1 0.153 0.026 0.000 0.115 0.026 0.000 0.152 0.026 0.000 0.033 0.026 0.103 -0.041 0.026 0.058 0.041 0.026 0.057

Supplementary Table 2. Fluid cognition and local cortical thickness.

Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect
p SD P p SD P p SD P p SD P p SD P p SD P
7Networks_LH_Vis_9 0.074 0.025 0.002 0.081 0.026 0.001 0.046 0.026 0.036 0.062 0.025 0.007 -0.049 0.025 0.027 0.062 0.025 0.007
7Networks_LH_Vis_10 0.087 0.027 0.001 0.096 0.027 0.000 0.048 0.027 0.039 0.005 0.027 0423 -0.023 0.027 0.196 0.015 0.027 0.282
7Networks_LH_Vis_12 0.060 0.026 0.011 0.085 0.026 0.001 0.009 0.027 0.363 -0.002 0.026 0474 -0.060 0.026 0.012 0.031 0.026 0.116
7Networks_LH_SomMot_10 0.139 0.025 0.000 0.110 0.025 0.000 0.135 0.025 0.000 0.052 0.025 0.019 -0.048 0.025 0.028 0.056 0.025 0.013
7Networks_LH_DorsAttn_Post_10 -0.076  0.025 0.001 -0.077 0.025 0.001 -0.057 0.025 0.011 -0.016 0.025 0.263 -0.006 0.025 0.399 -0.006 0.024 0.411
7Networks_LH_SalVentAttn_PFCI_1 -0.088  0.023 0.000 -0.070 0.023 0.001 -0.086 0.023 0.000 -0.010 0.023 0.333 0.001 0.023 0475 -0.006 0.023 0.389
7Networks_LH_Default PFC_7 -0.114  0.025 0.000 -0.098 0.025 0.000 -0.103 0.025 0.000 -0.046 0.025 0.031 0.036 0.025 0.072 -0.046 0.025 0.031
7Networks_LH_Default PFC_9 -0.078  0.024 0.001 -0.077 0.024 0.001 -0.054 0.024 0.013 -0.094 0.024 0.000 0.078 0.024 0.001 -0.096 0.024 0.000
7Networks_LH_Default PFC_10 -0.103  0.023 0.000 -0.100 0.024 0.000 -0.081 0.024 0.000 -0.041 0.023 0.042 0.029 0.024 0.113 -0.039 0.023 0.050
7Networks_LH_Default PFC_11 -0.157 0.023 0.000 -0.127 0.024 0.000 -0.146 0.024 0.000 -0.055 0.024 0.010 0.031 0.024 0.096 -0.049 0.024 0.020
7Networks_LH_Default PFC_13 -0.086  0.024 0.000 -0.089 0.025 0.000 -0.064 0.025 0.005 -0.073 0.024 0.001 0.070 0.024 0.002 -0.079 0.024 0.001

TNetworks_LH_Default_ pCunPCC_1 0.098 0.026 0.000 0.079 0.026 0.001 0.091 0.026 0.000 0.012 0.026 0.315 0.002 0.026 0.461 0.006 0.026 0.411
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7Networks RH_Vis 9 0.083 0.028 0002 0100 0028 0.000 0.038 0028 0089 -0.023 0028 0207 0017 0028 0270 -0.023 0028 0211
7Networks RH_Vis 10 0.088 0.027 0.001 0093 0.027 0000 0049 0.027 0035 0043 0.027 0054 -0.050 0027 0031 0052 0027 0.026
7Networks RH_Vis 13 0.088 0.025 0.000 0083 0025 0000 0067 0025 0004 -0.006 0025 0404 -0.016 0025 0253 0005 0025 0413
7Networks RH_SomMot_12 0.096 0.026 0.000 0095 0027 0000 0066 0027 0007 0057 0026 0015 -0.036 0026 0089 0052 0026 0.024
7Networks RH_Cont PFCmp 2 -0.075 0.022 0000 -0.069 0023 0001 -0.062 0023 0003 -0.020 0022 0183 0048 0022 0015 -0.038 0022 0.045
7Networks RH_Default PFCAPFCm_4 -0.105 0.024 0.000 -0.076 0.024 0.001 -0.112 0.024 0.000 -0.050 0.024 0019 0043 0024 0035 -0.052 0024 0015
7Networks RH_Default PFCdPFCm_5 -0.123  0.023 0.000 -0.115 0.023 0.000 -0.094 0.023 0.000 -0.059 0.023 0.005 0.083 0.023 0.000 -0.079 0.023 0.000
7Networks RH_Default PFCAPFCm_6 -0.084 0.023 0.000 -0.080 0.024 0.000 -0.065 0.024 0003 -0.049 0.023 0017 0037 0023 0056 -0.049 0.023 0.019
7Networks RH_Default_pCunPCC_1 0.153  0.026 0.000 0.115 0026 0000 0152 0026 0000 0.033 0026 0.103 -0.041 0026 0058 0041 0026 0.057

Supplementary Table 3. Crystallized cognition and local cortical thickness.

Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect
g SD P g SD P g SD P g SD P g SD P g SD P
7Networks LH_Vis_1 0.095 0.026 0.000 0043 0027 0051 0132 0026 0000 -0.005 0026 0424 0035 0026 0089 -0.022 0026 0200
7Networks LH_Vis_2 0.060 0.024 0006 0017 0024 0245 0096 0024 0000 0.002 0024 0474 0014 0024 0276 -0.007 0.024 0388
7Networks LH_Vis_4 0.110 0.029 0.000 0072 0029 0006 0121 0029 0000 0010 0029 0367 -0.019 0029 0258 0016 0029 0292
7Networks LH_SomMot_3 0.094 0.024 0000 0061 0024 0006 0103 0024 0000 0010 0024 0336 -0.030 0024 0.106 0022 0024 0.179
7Networks LH_SomMot_8 -0.050 0.024 0020 -0.022 0024 0182 -0.072 0024 0001 0013 0024 0287 -0.009 0024 0361 0012 0024 0303
7Networks LH_SomMot_10 0.139  0.025 0.000 0.110 0025 0000 0135 0.025 0000 0.052 0025 0019 -0.048 0025 0028 0056 0025 0013
7Networks LH_DorsAttn_Post 1 0.055 0.025 0013 0027 0025 0139 0074 0025 0001 0015 0025 0266 -0.031 0025 0.103 0026 0024 0.148
7Networks LH_DorsAttn_Post 7 -0.073  0.025 0002 -0.038 0.025 0060 -0.096 0.025 0000 -0.049 0024 0022 0019 0025 0218 -0.039 0024 0.057
7Networks LH_DorsAttn_Post 9 -0.067 0.026 0005 -0.042 0026 0054 -0.075 0026 0002 0029 0026 0.134 -0.023 0026 0188 0029 0026 0.132
7Networks LH_SalVentAttn FrOperlns 2 0.084 0.023 0000 0067 0024 0002 0081 0024 0000 0014 0023 0282 0016 0023 0244 -0.001 0023 0483
7Networks LH_SalVentAttn FrOperIns 3 0.044 0.026 0042 0008 0026 0372 0078 0026 0001 0006 0.025 0404 0005 0025 0416 0.001 0025 0490
7Networks LH_SalVentAttn PFCI 1 -0.088 0.023 0.000 -0.070 0.023 0.001 -0.086 0.023 0.000 -0.010 0023 0333 0001 0023 0475 -0.006 0.023 0.389
7Networks LH_Cont_PFCI 2 -0.060 0.024 0006 -0.032 0024 0091 -0.068 0.024 0002 -0.032 0024 0087 0004 0024 0432 -0.021 0024 0.191
7Networks LH_Cont PFCI 3 -0.052  0.022 0008 -0.024 0022 0138 -0.072 0.022 0001 -0.037 0022 0043 0059 0022 0003 -0.053 0022 0.007
7Networks LH_Default Par 4 -0.033  0.022 0069 0000 0023 0493 -0.069 0.023 0001 0056 0022 0006 -0.030 0022 009 0048 0022 0.015
7Networks LH_Default PFC 4 -0.083  0.025 0.000 -0.073 0.025 0002 -0.070 0.025 0.002 -0.053 0025 0016 0052 0025 0017 -0.058 0.025 0.009
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TNetworks_LH_Default PFC_6
TNetworks_LH_Default PFC_7
TNetworks_LH_Default PFC_10
TNetworks_LH_Default PFC_11
TNetworks_LH_Default_ pCunPCC_1
TNetworks_RH_Vis_3
TNetworks_RH_Vis_4
TNetworks_RH_Vis_8

TNetworks_ RH_SomMot_1

TNetworks_ RH_SomMot_3

TNetworks_ RH_SomMot_7

7Networks_ RH_SomMot_8

TNetworks_ RH_SomMot_10
TNetworks_RH_SalVentAttn_TempOccPar_1
TNetworks_RH_SalVentAttn_FrOperlns_4
TNetworks_RH_Limbic_TempPole_1
TNetworks RH_Cont_PFCv_1
TNetworks_RH_Cont_PFCI_3
TNetworks RH_Cont_PFCI_4
TNetworks_ RH_Cont_PFCI_5
TNetworks RH_Cont_PFCI_6
TNetworks_RH_Default_Par_1
TNetworks_RH_Default_Temp_5
TNetworks_RH_Default PFCdPFCm_4
TNetworks_RH_Default PFCdPFCm_5
TNetworks_RH_Default_pCunPCC_1

-0.068
-0.114
-0.103
-0.157
0.098
0.024
0.086
0.055
0.079
0.051
0.073
0.092
0.056
0.067
0.045
0.064
0.085
-0.060
-0.050
-0.072
-0.081
-0.040
0.069
-0.105
-0.123
0.153

0.026
0.025
0.023
0.023
0.026
0.024
0.028
0.023
0.023
0.024
0.023
0.027
0.022
0.025
0.024
0.027
0.027
0.022
0.021
0.023
0.024
0.024
0.025
0.024
0.023
0.026

0.005
0.000
0.000
0.000
0.000
0.153
0.001
0.009
0.000
0.018
0.001
0.000
0.006
0.004
0.032
0.010
0.001
0.003
0.009
0.001
0.000
0.048
0.003
0.000
0.000
0.000

-0.045
-0.098
-0.100
-0.127
0.079
-0.027
0.017
0.023
0.052
0.027
0.052
0.055
0.040
0.037
0.012
0.024
0.061
-0.037
-0.022
-0.049
-0.048
-0.005
0.022
-0.076
-0.115
0.115

0.026
0.025
0.024
0.024
0.026
0.024
0.029
0.023
0.024
0.024
0.024
0.027
0.022
0.025
0.025
0.028
0.027
0.022
0.021
0.023
0.024
0.024
0.025
0.024
0.023
0.026

0.043
0.000
0.000
0.000
0.001
0.131
0.275
0.166
0.015
0.132
0.015
0.021
0.036
0.071
0.319
0.188
0.014
0.049
0.144
0.018
0.022
0.412
0.186
0.001
0.000
0.000

-0.076
-0.103
-0.081
-0.146
0.091
0.084
0.143
0.078
0.087
0.073
0.071
0.100
0.062
0.079
0.079
0.090
0.084
-0.068
-0.064
-0.077
-0.101
-0.069
0.098
-0.112
-0.094
0.152

0.026
0.025
0.024
0.024
0.026
0.024
0.028
0.023
0.024
0.024
0.024
0.027
0.022
0.025
0.024
0.027
0.027
0.022
0.021
0.023
0.024
0.024
0.025
0.024
0.023
0.026

0.002
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.001
0.000
0.003
0.001
0.001
0.001
0.001
0.001
0.001
0.000
0.000
0.002
0.000
0.000
0.000
0.000

-0.045
-0.046
-0.041
-0.055
0.012
0.029
0.022
0.053
0.011
0.040
-0.003
0.066
-0.007
0.021
0.022
0.008
0.063
0.010
-0.026
-0.025
-0.051
-0.001
0.016
-0.050
-0.059
0.033

0.026
0.025
0.023
0.024
0.026
0.023
0.028
0.023
0.023
0.024
0.023
0.027
0.022
0.025
0.024
0.027
0.027
0.022
0.021
0.023
0.024
0.024
0.025
0.024
0.023
0.026

0.040
0.031
0.042
0.010
0.315
0.106
0.221
0.011
0.316
0.047
0.448
0.007
0.381
0.193
0.177
0.377
0.010
0.317
0.105
0.138
0.016
0.491
0.258
0.019
0.005
0.103

0.000
0.036
0.029
0.031
0.002
0.015
0.007
-0.024
-0.010
-0.036
0.006
-0.050
-0.013
-0.028
-0.005
-0.001
-0.002
0.012
0.021
0.030
0.035
0.010
-0.015
0.043
0.083
-0.041

0.026
0.025
0.024
0.024
0.026
0.024
0.028
0.023
0.023
0.024
0.023
0.027
0.022
0.025
0.024
0.027
0.027
0.022
0.021
0.023
0.024
0.024
0.025
0.024
0.023
0.026

0.499
0.072
0.113
0.096
0.461
0.261
0.401
0.151
0.334
0.069
0.397
0.030
0.274
0.134
0.414
0.487
0.464
0.287
0.152
0.093
0.073
0.336
0.271
0.035
0.000
0.058

-0.026
-0.046
-0.039
-0.049
0.006
0.009
0.009
0.043
0.012
0.043
-0.005
0.065
0.003
0.027
0.016
0.005
0.038
-0.001
-0.027
-0.031
-0.048
-0.006
0.017
-0.052
-0.079
0.041

0.026
0.025
0.023
0.024
0.026
0.023
0.028
0.023
0.023
0.024
0.023
0.027
0.022
0.025
0.024
0.027
0.027
0.022
0.021
0.023
0.024
0.024
0.025
0.024
0.023
0.026

0.158
0.031
0.050
0.020
0.411
0.356
0.379
0.030
0.305
0.039
0.415
0.007
0.440
0.136
0.258
0.422
0.082
0.488
0.101
0.090
0.021
0.404
0.240
0.015
0.000
0.057
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Supplementary Table 4. Mean affect and local cortical thickness.

Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect
B SD P B SD P B SD P B SD P B SD p B SD p
TNetworks_LH_Vis_14 -0.007 0.023 0.382 -0.002 0.024 0.461 -0.012 0.023 0312 0.068 0.023 0.002 -0.098 0.023 0.000 0.092 0.023 0.000

TNetworks_LH_Default PFC_9 -0.078 0.024 0.001 -0.077 0.024 0.001 -0.054 0.024 0.013 -0.094 0.024 0.000 0.078 0.024 0.001 -0.096 0.024 0.000
TNetworks_RH_DorsAttn_Post 5  0.012 0.022 0.295 0.023 0.022 0.146 -0.012 0.022 0.296 0.071 0.022 0.001 -0.065 0.022 0.002 0.076 0.022 0.000

Supplementary Table 5. Positive affect and local cortical thickness.

Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect
p SD P p SD P p SD P )i SD P p SD P )i SD P
TNetworks_LH_Default PFC_9 -0.078 0.024 0.001 -0.077 0.024 0.001 -0.054 0.024 0.013 -0.094 0.024 0.000 0.078 0.024 0.001 -0.096 0.024 0.000

Supplementary Table 6. Negative affect and local cortical thickness.

Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect
p SD P p SD P p SD P p SD P )i SD P p SD P
TNetworks LH_Vis 14 -0.007 0.023 0.382 -0.002 0.024 0.461 -0.012 0.023 0312 0.068 0.023 0.002 -0.098 0.023 0.000 0.092 0.023 0.000

Supplementary Table 7. Total cognition and local surface area.

Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect
B___SD___p B SD___p B___SD___p B SD___p gD p gD p
7Networks_LH_Vis_7 0.076 0.028 0.003 0.085 0.027 0.001 0.030 0.028 0.138  0.003 0.027 0.459 -0.040 0.027 0.068 0.023 0.027 0.192
7Networks_LH_Vis_9 0.073 0.028 0.005 0.073 0.028 0.005 0.028 0.029 0.165 0.008 0.028 0392 -0.039 0.027 0.080 0.025 0.027 0.179
7Networks_LH_Vis_10 0.075 0.028 0.004 0.082 0.028 0.002 0.034 0.028 0.118 0.023 0.027 0.198 -0.036 0.027 0.095 0.033 0.027 0.115
7Networks_LH_Vis_11 0.072 0.026 0.003 0.052 0.026 0.023 0.067 0.026 0.005 0.015 0.025 0271 -0.048 0.025 0.030 0.035 0.025 0.085
7Networks_LH_Vis_13 0.112 0.026 0.000 0.113 0.026 0.000 0.061 0.026 0.010 0.050 0.025 0.024 -0.044 0.025 0.042 0.053 0.025 0.019
7Networks_LH_Vis_14 0.078 0.027 0.002 0.081 0.027 0.001 0.042 0.027 0.064 0.052 0.026 0.024 -0.015 0.026 0286 0.038 0.026 0.075
7Networks_LH_SomMot_8 0.079 0.026 0.001 0.057 0.026 0.013 0.076 0.026 0.002  0.044 0.025 0.040 -0.040 0.025 0.054 0.047 0.025 0.030
7Networks_LH_SomMot_10 0.082 0.027 0.001 0.060 0.027 0.012 0.081 0.027 0.001 -0.021 0.026 0210 0.012 0.026 0322 -0.018 0.026 0.238
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TNetworks_ LH_SomMot_12
TNetworks_LH_SalVentAttn_Med_2
TNetworks_LH_Limbic_OFC_1
TNetworks_LH_Limbic_TempPole_1
TNetworks_LH_Limbic_TempPole_2
TNetworks_LH_Limbic_TempPole_3
TNetworks_LH_Limbic_TempPole_4
TNetworks_ LH_Cont_PFCI_2
TNetworks_ LH_Cont_PFCI_5
TNetworks_LH_Default Temp_1
TNetworks_LH_Default_ Temp_2
TNetworks_LH_Default PFC_1
TNetworks_LH_Default PFC_6
TNetworks_LH_Default PFC_8
TNetworks_LH_Default PFC_11
TNetworks_RH_Vis_4
TNetworks_RH_Vis_9
TNetworks_RH_Vis_12
TNetworks_RH_Vis_14

TNetworks_ RH_SomMot_10
TNetworks_ RH_SomMot_12
TNetworks_ RH_SomMot_14
TNetworks_RH_DorsAttn_PrCv_1
TNetworks_RH_SalVentAttn_PrC_1
TNetworks_RH_SalVentAttn_FrOperlns_2
TNetworks_RH_Limbic_TempPole_1
TNetworks_RH_Limbic_TempPole_2
TNetworks_RH_Limbic_TempPole_3
TNetworks RH_Cont_Temp_1
TNetworks_ RH_Cont_PFCI_1

0.083
0.075
0.076
0.126
0.087
0.113
0.078
0.090
0.095
0.098
0.116
0.075
0.078
0.068
0.078
0.085
0.108
0.079
0.095
0.072
0.075
0.076
0.088
0.082
0.081
0.121
0.093
0.088
0.069
0.074

0.027
0.026
0.025
0.025
0.027
0.027
0.023
0.026
0.028
0.025
0.026
0.024
0.023
0.026
0.028
0.027
0.027
0.027
0.026
0.027
0.028
0.027
0.027
0.029
0.023
0.027
0.026
0.027
0.026
0.024

0.001
0.002
0.001
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.000
0.004
0.002
0.001
0.000
0.002
0.000
0.004
0.004
0.003
0.001
0.002
0.000
0.000
0.000
0.001
0.004
0.001

0.077
0.076
0.089
0.085
0.056
0.075
0.049
0.047
0.046
0.052
0.070
0.066
0.054
0.047
0.033
0.063
0.108
0.081
0.077
0.047
0.056
0.060
0.048
0.038
0.061
0.102
0.078
0.041
0.035
0.053

0.027
0.026
0.024
0.025
0.027
0.027
0.023
0.026
0.028
0.025
0.026
0.024
0.023
0.026
0.027
0.027
0.027
0.027
0.026
0.027
0.028
0.027
0.027
0.029
0.023
0.027
0.026
0.027
0.026
0.024

0.002
0.002
0.000
0.000
0.019
0.002
0.017
0.033
0.051
0.020
0.004
0.003
0.009
0.035
0.113
0.009
0.000
0.001
0.001
0.039
0.024
0.012
0.038
0.094
0.004
0.000
0.001
0.067
0.092
0.015

0.061
0.047
0.035
0.126
0.089
0.119
0.091
0.108
0.115
0.113
0.121
0.056
0.080
0.070
0.100
0.075
0.061
0.038
0.080
0.076
0.068
0.066
0.100
0.103
0.082
0.088
0.070
0.105
0.084
0.072

0.027
0.027
0.025
0.026
0.027
0.027
0.023
0.026
0.028
0.025
0.026
0.025
0.023
0.026
0.028
0.027
0.027
0.027
0.026
0.027
0.028
0.027
0.027
0.029
0.023
0.027
0.026
0.027
0.026
0.024

0.012
0.039
0.078
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.011
0.000
0.004
0.000
0.003
0.012
0.081
0.001
0.003
0.008
0.008
0.000
0.000
0.000
0.001
0.004
0.000
0.001
0.002

-0.008
0.027
0.036
0.032
0.049
0.027
0.014
0.023
0.006
0.036
0.034
0.043
0.000
0.000
0.016
0.026
0.022
0.035
0.067

-0.038

-0.020

-0.030
0.044
0.025
0.023
0.018
0.043
0.010
0.028
0.022

0.026
0.026
0.024
0.025
0.026
0.026
0.023
0.025
0.027
0.025
0.026
0.024
0.022
0.025
0.027
0.026
0.026
0.026
0.025
0.026
0.027
0.026
0.027
0.028
0.023
0.026
0.026
0.027
0.025
0.024

0.375
0.145
0.065
0.096
0.031
0.149
0.268
0.180
0.411
0.071
0.091
0.034
0.498
0.493
0.272
0.161
0.199
0.094
0.004
0.072
0.238
0.124
0.048
0.190
0.158
0.248
0.048
0.349
0.137
0.176

-0.009
-0.015
-0.026
-0.040
-0.040
-0.016
-0.005
-0.021

0.043
-0.025
-0.031
-0.043
-0.014
-0.016

0.021
-0.012
-0.012
-0.054
-0.055

0.009

0.009

0.023

0.010
-0.003
-0.019
-0.048
-0.023
-0.012
-0.009
-0.010

0.026
0.026
0.024
0.025
0.026
0.026
0.023
0.025
0.027
0.025
0.026
0.024
0.022
0.025
0.027
0.026
0.026
0.026
0.025
0.026
0.027
0.026
0.027
0.028
0.023
0.026
0.026
0.026
0.025
0.024

0.360
0.273
0.141
0.052
0.061
0.273
0.417
0.205
0.056
0.155
0.114
0.034
0.261
0.266
0.211
0.323
0.328
0.019
0.014
0.358
0.371
0.192
0.355
0.464
0.206
0.033
0.184
0.324
0.363
0.340

0.000
0.024
0.035
0.041
0.050
0.024
0.011
0.024
-0.020
0.034
0.036
0.048
0.008
0.009
-0.002
0.021
0.019
0.049
0.068
-0.027
-0.016
-0.030
0.020
0.015
0.023
0.036
0.037
0.012
0.021
0.018

0.026
0.026
0.024
0.025
0.026
0.026
0.022
0.025
0.027
0.025
0.026
0.024
0.022
0.025
0.027
0.026
0.026
0.026
0.025
0.026
0.027
0.026
0.027
0.028
0.023
0.026
0.025
0.026
0.025
0.024

0.495
0.175
0.073
0.051
0.028
0.178
0.319
0.165
0.232
0.082
0.078
0.020
0.363
0.363
0.466
0.206
0.234
0.030
0.003
0.150
0.278
0.128
0.226
0.290
0.153
0.082
0.074
0.319
0.207
0.224
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TNetworks RH_Cont_Cing_2 0.073  0.028 0.004 0.072 0.027 0.004 0.045 0.028 0.051 0.025 0.027 0.172 -0.003 0.027 0.455 0.016 0.027 0.272
TNetworks RH_Default_Temp_1 0.111  0.026 0.000 0.083 0.026 0.001 0.110 0.026 0.000 0.055 0.025 0.016 -0.049 0.025 0.028 0.058 0.025 0.011
TNetworks RH_Default_Temp_2 0.082 0.025 0.001 0.037 0.025 0.070 0.108 0.025 0.000 0.062 0.025 0.006 -0.019 0.025 0.217 0.046  0.025 0.031
TNetworks RH_Default PFCAPFCm_7 0.125 0.029 0.000 0.098 0.029 0.000 0.101 0.029 0.000 0.015 0.028 0.295 -0.009 0.028 0.377 0.013 0.028 0.316
Supplementary Table 8. Fluid cognition and local surface area.

Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect

B SD p B SD p B SD p B SD p B SD p B SD p

TNetworks_LH_Vis_7 0.076  0.028 0.003 0.085 0.027 0.001 0.030 0.028 0.138 0.003 0.027 0459 -0.040 0.027 0.068 0.023 0.027 0.192
TNetworks LH_Vis_10 0.075 0.028 0.004 0.082 0.028 0.002 0.034 0.028 0.118 0.023  0.027 0.198 -0.036 0.027 0.095 0.033 0.027 0.115
TNetworks LH_Vis_13 0.112 0.026 0.000 0.113 0.026 0.000 0.061 0.026 0.010 0.050 0.025 0.024 -0.044 0.025 0.042 0.053 0.025 0.019
TNetworks LH_Vis_14 0.078 0.027 0.002 0.081 0.027 0.001 0.042 0.027 0.064 0.052 0.026 0.024 -0.015 0.026 0.286 0.038 0.026 0.075
TNetworks LH_SomMot_12 0.083 0.027 0.001 0.077 0.027 0.002 0.061 0.027 0.012 -0.008 0.026 0.375 -0.009 0.026 0360 0.000 0.026 0.495
TNetworks LH_Limbic_OFC_1 0.076  0.025 0.001 0.089 0.024 0.000 0.035 0.025 0.078 0.036 0.024 0.065 -0.026 0.024 0.141 0.035 0.024 0.073
TNetworks LH_Limbic_TempPole_1 0.126  0.025 0.000 0.085 0.025 0.000 0.126 0.026 0.000 0.032 0.025 0.096 -0.040 0.025 0.052 0.041 0.025 0.051
TNetworks RH_Vis_8 0.070  0.028 0.006 0.080 0.027 0.002 0.035 0.028 0.108 0.011 0.027 0335 -0.025 0.027 0.172 0.020 0.027 0.224
TNetworks RH_Vis 9 0.108 0.027 0.000 0.108 0.027 0.000 0.061 0.027 0.012 0.022 0.026 0.199 -0.012 0.026 0.328 0.019 0.026 0.234
TNetworks RH_Vis_12 0.079 0.027 0.002 0.081 0.027 0.001 0.038 0.027 0.081 0.035 0.026 0.094 -0.054 0.026 0.019 0.049 0.026 0.030
TNetworks RH_Vis_14 0.095 0.026 0.000 0.077 0.026 0.001 0.080 0.026 0.001 0.067 0.025 0.004 -0.055 0.025 0.014 0.068 0.025 0.003
TNetworks RH_Limbic_TempPole_1 0.121  0.027 0.000 0.102 0.027 0.000 0.088 0.027 0.001 0.018 0.026 0.248 -0.048 0.026 0.033 0.036 0.026 0.082
TNetworks RH_Limbic_TempPole_2 0.093 0.026 0.000 0.078 0.026 0.001 0.070 0.026 0.004 0.043 0.026 0.048 -0.023 0.026 0.184 0.037 0.025 0.074
TNetworks RH_Default_Temp_1 0.111  0.026 0.000 0.083 0.026 0.001 0.110 0.026 0.000 0.055 0.025 0.016 -0.049 0.025 0.028 0.058 0.025 0.011
TNetworks RH_Default PFCAPFCm_7 0.125 0.029 0.000 0.098 0.029 0.000 0.101 0.029 0.000 0.015 0.028 0.295 -0.009 0.028 0.377 0.013 0.028 0.316
Supplementary Table 9. Crystallized cognition and local surface area.

Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect

B SD p B SD p B SD p B SD p B SD p B SD p
TNetworks_LH_Vis_8 0.057 0.029 0.024 0.015 0.029 0.299 0.089 0.029 0.001 -0.004 0.028 0.445 -0.009 0.028 0.379 0.002 0.028 0.465
TNetworks LH_Vis_11 0.072  0.026  0.003 0.052 0.026 0.023 0.067 0.026 0.005 0.015 0.025 0.271 -0.048 0.025 0.030 0.035 0.025 0.085
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TNetworks_ LH_SomMot_4

TNetworks_ LH_SomMot_6

TNetworks_ LH_SomMot_8

TNetworks LH_SomMot_10
TNetworks_LH_DorsAttn_Post_1
TNetworks_LH_DorsAttn_Post_2
TNetworks_LH_DorsAttn_Post_5
TNetworks_LH_DorsAttn_PrCv_1
TNetworks_LH_SalVentAttn_ParOper_1
TNetworks_LH_SalVentAttn_FrOperlns_1
TNetworks_LH_SalVentAttn_FrOperlns_3
TNetworks_LH_SalVentAttn_FrOperlns_4
TNetworks_LH_SalVentAttn_PFCI_1
TNetworks_LH_Limbic_TempPole_1
TNetworks_LH_Limbic_TempPole_2
TNetworks_LH_Limbic_TempPole_3
TNetworks_LH_Limbic_TempPole_4
TNetworks_ LH_Cont_PFCI_2

TNetworks_ LH_Cont_PFCI_5
TNetworks_LH_Default Temp_1
TNetworks_LH_Default_ Temp_2
TNetworks_LH_Default PFC_6
TNetworks_LH_Default PFC_8
TNetworks_LH_Default PFC_11
TNetworks_RH_Vis_1
TNetworks_RH_Vis_4
TNetworks_RH_Vis_5
TNetworks_RH_Vis_14

TNetworks_ RH_SomMot_10

TNetworks RH_SomMot_13

0.037
0.045
0.079
0.082
0.048
0.031
0.034
0.060
0.058
0.053
0.041
0.067
0.066
0.126
0.087
0.113
0.078
0.090
0.095
0.098
0.116
0.078
0.068
0.078
0.058
0.085
0.067
0.095
0.072
0.068

0.026
0.026
0.026
0.027
0.024
0.028
0.028
0.028
0.028
0.023
0.025
0.027
0.027
0.025
0.027
0.027
0.023
0.026
0.028
0.025
0.026
0.023
0.026
0.028
0.025
0.027
0.028
0.026
0.027
0.029

0.080
0.044
0.001
0.001
0.022
0.134
0.108
0.016
0.020
0.011
0.049
0.007
0.007
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.004
0.002
0.009
0.001
0.008
0.000
0.004
0.009

0.002
0.009
0.057
0.060
0.025
-0.007
-0.017
0.024
0.024
0.030
0.012
0.027
0.015
0.085
0.056
0.075
0.049
0.047
0.046
0.052
0.070
0.054
0.047
0.033
0.028
0.063
0.036
0.077
0.047
0.023

0.026
0.026
0.026
0.027
0.024
0.028
0.027
0.028
0.028
0.023
0.025
0.027
0.027
0.025
0.027
0.027
0.023
0.026
0.028
0.025
0.026
0.023
0.026
0.027
0.025
0.027
0.028
0.026
0.027
0.029

0.474
0.365
0.013
0.012
0.141
0.408
0.261
0.194
0.194
0.095
0.314
0.160
0.293
0.000
0.019
0.002
0.017
0.033
0.051
0.020
0.004
0.009
0.035
0.113
0.128
0.009
0.100
0.001
0.039
0.214

0.067
0.073
0.076
0.081
0.062
0.073
0.086
0.081
0.071
0.064
0.067
0.085
0.103
0.126
0.089
0.119
0.091
0.108
0.115
0.113
0.121
0.080
0.070
0.100
0.069
0.075
0.085
0.080
0.076
0.091

0.026
0.026
0.026
0.027
0.024
0.028
0.027
0.028
0.028
0.023
0.025
0.027
0.027
0.026
0.027
0.027
0.023
0.026
0.028
0.025
0.026
0.023
0.026
0.028
0.025
0.027
0.028
0.026
0.027
0.029

0.005
0.003
0.002
0.001
0.005
0.005
0.001
0.002
0.006
0.003
0.004
0.001
0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.004
0.000
0.003
0.003
0.001
0.001
0.003
0.001

-0.003
-0.004
0.044
-0.021
-0.003
-0.012
0.016
0.040
0.033
0.020
-0.004
0.038
-0.035
0.032
0.049
0.027
0.014
0.023
0.006
0.036
0.034
0.000
0.000
0.016
0.050
0.026
0.011
0.067
-0.038
0.035

0.025
0.025
0.025
0.026
0.023
0.027
0.027
0.027
0.027
0.022
0.024
0.026
0.026
0.025
0.026
0.026
0.023
0.025
0.027
0.025
0.026
0.022
0.025
0.027
0.024
0.026
0.027
0.025
0.026
0.028

0.451
0.438
0.040
0.210
0.455
0.334
0.276
0.068
0.113
0.190
0.442
0.074
0.089
0.096
0.031
0.149
0.268
0.180
0.411
0.071
0.091
0.498
0.493
0.272
0.019
0.161
0.345
0.004
0.072
0.105

0.022
-0.006
-0.040

0.012

0.036

0.026

0.002
-0.010
-0.002
-0.008

0.004
-0.004

0.028
-0.040
-0.040
-0.016
-0.005
-0.021

0.043
-0.025
-0.031
-0.014
-0.016

0.021
-0.023
-0.012

0.003
-0.055

0.009
-0.041

0.025
0.025
0.025
0.026
0.023
0.027
0.027
0.027
0.027
0.022
0.024
0.026
0.026
0.025
0.026
0.026
0.023
0.025
0.027
0.025
0.026
0.022
0.025
0.027
0.024
0.026
0.027
0.025
0.026
0.028

0.195
0.403
0.054
0.322
0.057
0.174
0.469
0.353
0.472
0.354
0.431
0.445
0.142
0.052
0.061
0.273
0.417
0.205
0.056
0.155
0.114
0.261
0.266
0.211
0.167
0.323
0.460
0.014
0.358
0.071

-0.014
0.001
0.047

-0.018

-0.021

-0.021
0.008
0.029
0.020
0.016

-0.004
0.024

-0.035
0.041
0.050
0.024
0.011
0.024

-0.020
0.034
0.036
0.008
0.009

-0.002
0.041
0.021
0.005
0.068

-0.027
0.042

0.025
0.025
0.025
0.026
0.023
0.027
0.027
0.027
0.027
0.022
0.024
0.026
0.026
0.025
0.026
0.026
0.022
0.025
0.027
0.025
0.026
0.022
0.025
0.027
0.024
0.026
0.027
0.025
0.026
0.028

0.296
0.483
0.030
0.238
0.178
0.225
0.382
0.144
0.232
0.240
0.429
0.183
0.088
0.051
0.028
0.178
0.319
0.165
0.232
0.082
0.078
0.363
0.363
0.466
0.043
0.206
0.431
0.003
0.150
0.064
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TNetworks_ RH_SomMot_15 0.056  0.030 0.031 0.014 0.030 0322 0.079 0.030 0.004 0.046 0.029 0.056 -0.033 0.029
TNetworks_RH_DorsAttn_Post_1 0.030 0.025 0.110 -0.004 0.025 0428 0.063 0.025 0.005 0.025 0.024 0.150 0.002 0.024
TNetworks_RH_DorsAttn_PrCv_1 0.088 0.027 0.001 0.048 0.027 0.038 0.100 0.027 0.000 0.044 0.027 0.048 0.010  0.027
TNetworks_RH_SalVentAttn_PrC_1 0.082  0.029 0.002 0.038 0.029 0.094 0.103 0.029 0.000 0.025 0.028 0.190 -0.003 0.028
TNetworks_RH_SalVentAttn_FrOperlns_1 0.057 0.025 0.012 0.028 0.025 0.134 0.080 0.025 0.001 -0.010 0.024 0.341 0.018 0.024
TNetworks_RH_SalVentAttn_FrOperlns_ 2 0.081 0.023  0.000 0.061 0.023 0.004 0.082 0.023 0.000 0.023 0.023 0.158 -0.019 0.023
TNetworks_RH_Limbic_OFC_3 0.059 0.025 0.009 0.028 0.025 0.126 0.072 0.025 0.002 0.046 0.024 0.029 -0.029 0.024
TNetworks_RH_Limbic_TempPole_1 0.121  0.027  0.000 0.102  0.027 0.000 0.088 0.027 0.001 0.018 0.026 0.248 -0.048 0.026
7Networks_RH_Limbic_TempPole_2 0.093  0.026  0.000 0.078 0.026 0.001 0.070 0.026 0.004 0.043 0.026 0.048 -0.023 0.026
TNetworks_RH_Limbic_TempPole_3 0.088 0.027 0.001 0.041 0.027 0.067 0.105 0.027 0.000 0.010 0.027 0349 -0.012 0.026
TNetworks_ RH_Cont_Par_1 0.051 0.029 0.039 0.006 0.029 0.414 0.093 0.029 0.001 0.023  0.028 0.201 -0.022  0.028
TNetworks_ RH_Cont_Par_2 0.031 0.029 0.138 -0.021 0.028 0.230 0.088 0.029 0.001 -0.021 0.028 0.229 -0.012 0.028
TNetworks RH_Cont_Temp_1 0.069 0.026  0.004 0.035 0.026 0.092 0.084 0.026 0.001 0.028 0.025 0.137 -0.009 0.025
TNetworks_ RH_Cont_PFCI_1 0.074 0.024 0.001 0.053 0.024 0.015 0.072 0.024 0.002 0.022 0.024 0.176 -0.010 0.024
TNetworks RH_Cont_PFCI_2 0.032  0.027 0.112 -0.007 0.026 0.397 0.074 0.027 0.003 0.033  0.026 0.098 -0.025 0.026
TNetworks_ RH_Cont_PFCI_4 0.053 0.026 0.022 0.032  0.026 0.111 0.068 0.027 0.005 -0.031 0.026 0.116 0.044 0.026
TNetworks RH_Cont_PFCI_5 0.022  0.026 0.208 -0.020 0.026 0.224 0.068 0.026 0.005 0.017 0.026 0.257 -0.005 0.026
TNetworks_ RH_Cont_pCun_1 0.056  0.027 0.019 0.035 0.027 0.100 0.068 0.027 0.006 0.000 0.026 0.497 0.015 0.026
TNetworks_RH_Cont_PFCmp_2 0.055 0.025 0.015 0.024 0.025 0.172 0.063 0.025 0.006 0.061 0.024 0.006 -0.037 0.024
TNetworks_RH_Default_Temp_1 0.111  0.026  0.000 0.083 0.026 0.001 0.110 0.026 0.000 0.055 0.025 0.016 -0.049 0.025
TNetworks_RH_Default_Temp_2 0.082  0.025 0.001 0.037 0.025 0.070 0.108 0.025 0.000 0.062 0.025 0.006 -0.019 0.025
TNetworks_RH_Default_Temp_4 0.026  0.027 0.164 -0.025 0.026 0.173 0.093 0.027 0.000 0.032 0.026 0.105 0.008 0.026
TNetworks_RH_Default PFCdPFCm_6 0.068 0.027 0.007 0.033  0.027 0.113 0.088 0.027 0.001 0.020 0.026 0.231 -0.010 0.026
TNetworks_RH_Default PFCdPFCm_7 0.125  0.029 0.000 0.098 0.029 0.000 0.101 0.029 0.000 0.015 0.028 0.295 -0.009 0.028
Supplementary Table 10. Total cognition and subcortical volumes.
Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect
B___SD___p B SD___p B___SD___p gD p B___SD___p gD p
hipp_1 0.078 0.025 0.001 0.027 0.025 0.141 0.056 0.012 0.000 -0.023 0.024 0.173 0.050 0.024 0.020 -0.040 0.024 0.049

0.125
0.463
0.355
0.464
0.226
0.206
0.110
0.033
0.184
0.324
0.215
0.337
0.363
0.340
0.161
0.044
0.427
0.288
0.063
0.028
0.217
0.377
0.346
0.377

0.044
0.013
0.020
0.015
-0.016
0.023
0.042
0.036
0.037
0.012
0.025
-0.005
0.021
0.018
0.033
-0.041
0.012
-0.008
0.055
0.058
0.046
0.014
0.017
0.013

0.029
0.024
0.027
0.028
0.024
0.023
0.024
0.026
0.025
0.026
0.028
0.028
0.025
0.024
0.026
0.026
0.026
0.026
0.024
0.025
0.025
0.026
0.026
0.028

0.062
0.293
0.226
0.290
0.260
0.153
0.040
0.082
0.074
0.319
0.181
0.422
0.207
0.224
0.100
0.053
0.317
0.379
0.012
0.011
0.031
0.292
0.262
0.316
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Supplementary Table 11. Fluid cognition and subcortical volumes.

Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect
p SD P p SD P p SD P p SD P p SD P p SD P
pall 1 -0.076 0.028 0.004 -0.088 0.028 0.001 -0.006 0.007 0.178 -0.013 0.027 0.321 0.039 0.027 0.076 -0.029 0.027 0.148
Supplementary Table 12. Crystallized cognition and subcortical volumes.
Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect
B__SD___p B___SD___p B__SD___p B SO p B__SD___p B___SD___p
amy r 0.031 0.023 0.092 -0.001 0.023 0.482 0.014 0.005 0.003 -0.001 0.023 0491 0.032 0.023 0.081 -0.018 0.023 0.219
hipp_1 0.078 0.025 0.001  0.027 0.025 0.141 0.056 0.012 0.000 -0.023 0.024 0.173 0.050 0.024 0.020 -0.040 0.024 0.049
hipp_r 0.063 0.024 0.004 0.020 0.023 0.192 0.044 0.011 0.000 -0.001 0.023 0477 0.036 0.023 0.056 -0.020 0.023 0.186
Supplementary Table 13. Mean affect and subcortical volumes.
Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect
B__SD___p B___SD___p B__SD___p B___SD___p B__SD___p B___SD___p
caud_1 0.002 0.026 0467 -0.027 0.025 0.147 0.020 0.012 0.056 -0.099 0.025 0.000 0.086 0.025 0.000 -0.104 0.025 0.000
caud_r 0.002 0.025 0467 -0.025 0.025 0.161 0.018 0.012 0.067 -0.081 0.024 0.000 0.077 0.024 0.001 -0.088 0.024 0.000
Supplementary Table 14. Positive affect and subcortical volumes.
Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect
p SD P p SD P p SD P p SD P p SD P p SD P
caud_1 0.002 0.026 0467 -0.027 0.025 0.147 0.020 0.012 0.056 -0.099 0.025 0.000 0.086 0.025 0.000 -0.104 0.025 0.000
caud_r 0.002 0.025 0467 -0.025 0.025 0.161 0.018 0.012 0.067 -0.081 0.024 0.000 0.077 0.024 0.001 -0.088 0.024 0.000
Supplementary Table 15. Negative affect and subcortical volumes.
Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect
NA g SD P p SD y. g SD y. p SD y. g SD y. p SD y.
caud_1 0.002 0.026 0467 -0.027 0.025 0.147 0.020 0.012 0.056 -0.099 0.025 0.000 0.086 0.025 0.000 -0.104 0.025 0.000
caud_r 0.002 0.025 0467 -0.025 0.025 0.161 0.018 0.012 0.067 -0.081 0.024 0.000 0.077 0.024 0.001 -0.088 0.024 0.000
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Supplementary Table 16. Genetic correlation of cognition and affect with local cortical thickness.
Environmental correlation (p.) and genetic correlation (pg) per parcel associated with total cognition
score and mean affect score, respectively (see Figure 3A).

Total Cognition Pe p Pe p

7Networks LH Vis 1 | -0.027 | 0.697 | 0.211 | 0.003

7Networks LH Vis 4 | 0.000 | 0.998 | 0.182 | 0.004

7Networks LH Vis 9 | -0.057 | 0.412 | 0.189 | 0.003

7Networks LH Vis 10 | 0.029 | 0.688 | 0.134 | 0.020

7Networks LH SomMot 3 | 0.009 | 0.905 | 0.201 | 0.004
7Networks LH SomMot 10 | -0.078 | 0.265 | 0.327 | 0.000
7Networks LH DorsAttn Post 7 | 0.144 | 0.052 | -0.235 | 0.001
7Networks LH DorsAttn FEF 2| 0.043 | 0.559 | -0.214 | 0.009
7Networks LH SalVentAttn PFCI 1| 0.113 ] 0.096 | -0.274 | 0.000
7Networks LH Default Temp 5 | -0.046 | 0.528 | 0.245 | 0.014
7Networks LH Default PFC 4| 0.018 | 0.806 | -0.177 | 0.007
7Networks LH Default PFC 5| 0.124 | 0.084 | -0.281 | 0.001
7Networks LH Default PFC 7 | -0.018 | 0.802 | -0.212 | 0.001
7Networks LH Default PFC 9| 0.017 | 0.814 | -0.171 | 0.007
7Networks LH Default PFC 10 | -0.044 | 0.530 | -0.235 | 0.002
7Networks LH Default PFC 11 | 0.124 | 0.075 | -0.432 | 0.000
7Networks LH Default PFC 13 | 0.042 | 0.567 | -0.212 | 0.003
7Networks LH Default pCunPCC [ | 0.014 | 0.852 | 0.187 | 0.008
7Networks RH Vis 4| -0.119 | 0.104 | 0.176 | 0.004

7Networks RH Vis 9 | -0.075 | 0.310 | 0.158 | 0.009

7Networks RH Vis 10 | -0.173 | 0.018 | 0.256 | 0.000

7Networks RH Vis 13 | -0.091 | 0.209 | 0.215 | 0.001

7Networks RH SomMot 7 | -0.023 | 0.754 | 0.137 | 0.035
7Networks RH SomMot 8 | -0.053 | 0.464 | 0.256 | 0.003
7Networks RH SomMot 12 | -0.060 | 0.403 | 0.226 | 0.001
7Networks RH Cont PFCv -0.106 | 0.127 | 0.313 | 0.001
7Networks RH Cont PFCI -0.011 | 0.875 | -0.179 | 0.015
7Networks RH Cont PFCI -0.008 | 0.909 | -0.210 | 0.007
7Networks RH Cont PFCI 0.140 | 0.049 | -0.287 | 0.001
7Networks RH Cont PFCmp 0.179 | 0.016 | -0.283 | 0.000
7Networks RH Default PFCAPFCm 0.051 | 0.482 | -0.247 | 0.000
7Networks RH Default PFCAPFCm -0.078 | 0.283 | -0.217 | 0.001
7Networks RH Default PFCdPFCm 0.150 | 0.036 | -0.299 | 0.000
7Networks RH Default pCunPCC -0.043 | 0.563 | 0.329 | 0.000

~ [N [ A (NN (DY [ [~

Mean affect Pe p Pe p

7Networks LH Default PFC 9| 0.120 | 0.071 | -0.480 | 0.000
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Supplementary Table 17. Genetic correlation between cognition and local surface area.
Environmental correlation (p.) and genetic correlation (pg) per parcel associated with total cognition

score (see Figure 3B).

Total Cognition | Pe p Ps p
7Networks LH Vis 7 | 0.025 | 0.742 | 0.118 | 0.042
7Networks LH Vis 10 | -0.063 | 0.411 | 0.101 | 0.039
7Networks LH Vis 13 | -0.128 | 0.085 | 0.239 | 0.000
7Networks LH Vis 14 | 0.022 | 0.770 | 0.150 | 0.034
7Networks LH SomMot 8 | 0.000 | 0.997 | 0.151 | 0.024
7Networks LH SomMot 10 | 0.039 | 0.564 | 0.172 | 0.024
7Networks LH SomMot 12 | 0.003 | 0.966 | 0.182 | 0.006
7Networks LH_SalVentAttn Med 2 | -0.074 | 0.303 | 0.206 | 0.004
7Networks LH Limbic_TempPole 1 | 0.008 | 0.911 | 0.213 | 0.001
7Networks LH Limbic_TempPole 3 | 0.050 | 0.474 | 0.174 | 0.015
7Networks LH Limbic_TempPole 4 | -0.030 | 0.682 | 0.167 | 0.006
7Networks LH Cont PFCl 2 | -0.064 | 0.387 | 0.242 | 0.001
7Networks LH Cont PFCIl 5| 0.055 | 0.421 | 0.205 | 0.037
7Networks LH Default Temp 1 | -0.111 | 0.141 | 0.199 | 0.001
7Networks LH Default Temp 2 | -0.044 | 0.536 | 0.293 | 0.000
7Networks LH Default PFC 6 | -0.017 | 0.823 | 0.154 | 0.011
7Networks LH Default PFC 8 | -0.068 | 0.350 | 0.179 | 0.012
7Networks RH Vis 4 | 0.009 | 0.904 | 0.135 | 0.037
7Networks RH Vis 9 | -0.068 | 0.390 | 0.176 | 0.001
7Networks RH Vis 12 | -0.004 | 0.954 | 0.147 | 0.017
7Networks RH Vis_14 | -0.070 | 0.323 | 0.257 | 0.001
7Networks RH Limbic _TempPole 1 | -0.204 | 0.004 | 0.322 | 0.000
7Networks RH Limbic TempPole 2 | -0.119 | 0.094 | 0.231 | 0.001
7Networks RH Limbic TempPole 3 | -0.076 | 0.290 | 0.202 | 0.004
7Networks RH Cont PFCI 1 | -0.017 | 0.805 | 0.163 | 0.009
7Networks RH Cont_Cing 2 | -0.103 | 0.153 | 0.210 | 0.006
7Networks RH Default Temp 1 | 0.073 | 0.291 | 0.173 | 0.008
7Networks RH Default Temp 2 | -0.042 | 0.549 | 0.193 | 0.009
7Networks RH Default PFCAPFCm 7 | 0.030 | 0.666 | 0.228 | 0.008

Supplementary Table 18. Genetic correlation of cognitive and

cortical thickness.

affective sub-scores and local

Fluid Cognition Pe p P p
7Networks LH Vis 9 | -0.058 | 0.388 | 0.240 | 0.002
7Networks LH Vis 10 | 0.048 | 0.498 | 0.146 | 0.039
7Networks LH SomMot 10 | -0.069 | 0.300 | 0.319 | 0.000
7Networks LH SalVentAttn PFCI 1 | 0.131 | 0.043 | -0.315 | 0.000
7Networks LH Default PFC 7 | 0.043 | 0.525 | -0.258 | 0.002
7Networks LH Default PFC 9 | 0.066 | 0.343 | -0.240 | 0.002
7Networks LH Default PFC 10 | 0.056 | 0.401 | -0.355 | 0.000
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7Networks LH Default PFC 11 | 0.145 | 0.026 | -0.479 | 0.000

7Networks LH Default PFC 13 | 0.049 | 0.471 | -0.271 | 0.002

7Networks RH Vis 9 | -0.133 | 0.060 | 0.270 | 0.000

7Networks RH Vis 10| -0.177 | 0.011 | 0.333 | 0.000

7Networks RH Vis 13 | -0.127 | 0.066 | 0.287 | 0.000

7Networks RH SomMot 12 | -0.089 | 0.191 | 0.298 | 0.001

7Networks RH Cont PFCmp 2 | 0.195 | 0.005 | -0.362 | 0.000

7Networks RH Default PFCAPFCm_4 | 0.060 | 0.389 | -0.231 | 0.005

7Networks RH Default PFCAPFCm 5 | -0.022 | 0.751 | -0.260 | 0.001

7Networks RH Default PFCdPFCm_6 | 0.166 | 0.015 | -0.380 | 0.000

7Networks RH Default pCunPCC 1 | -0.044 | 0.531 | 0.308 | 0.001

Crystallized Cognition | 5, p Pe p

7Networks LH Vis 1 | 0.038 | 0.609 | 0.220 | 0.001

7Networks LH Vis 2 | 0.053 | 0.471 | 0.178 | 0.007

7Networks LH Vis 4 | -0.009 | 0.896 | 0.184 | 0.001

7Networks LH SomMot_3 | -0.001 | 0.987 | 0.205 | 0.001

7Networks LH SomMot 10 | -0.097 | 0.185 | 0.287 | 0.000

7Networks LH DorsAttn_Post_1 | -0.084 | 0.291 | 0.204 | 0.004

7Networks LH DorsAttn_Post_7 | 0.087 | 0.270 | -0.213 | 0.001

7Networks LH DorsAttn_Post 9 | 0.015 | 0.839 | -0.135 | 0.021

7Networks LH SalVentAttn FrOperlns 2 | 0.050 | 0.509 | 0.131 | 0.045

7Networks LH SalVentAttn FrOperins 3 | -0.044 | 0.566 | 0.173 | 0.010

7Networks LH SalVentAttn_PFCI 1 | 0.096 | 0.177 | -0.219 | 0.000

7Networks LH Cont PFCI 2 | 0.082 | 0.274 | -0.189 | 0.003

7Networks LH Cont PFCI 3 | -0.011 | 0.885 | -0.194 | 0.013

7Networks LH Default PFC 4| 0.018 | 0.816 | -0.137 | 0.020

7Networks LH Default PFC 7| -0.048 | 0.523 | -0.160 | 0.007

7Networks LH Default PFC 11 | 0.069 | 0.353 | -0.312 | 0.000

7Networks LH Default pCunPCC_1 | -0.039 | 0.607 | 0.177 | 0.006

7Networks RH Vis 3 | -0.084 | 0.273 | 0.204 | 0.001

7Networks RH Vis_4 | -0.067 | 0.380 | 0.220 | 0.000

7Networks RH Vis_8 | -0.007 | 0.926 | 0.162 | 0.006

7Networks RH SomMot_1 | 0.053 | 0.492 | 0.144 | 0.020

7Networks RH SomMot 3 | -0.049 | 0.535 | 0.188 | 0.007

7Networks RH SomMot 8 | 0.011 | 0.884 | 0.214 | 0.006

7Networks RH SomMot 10 | -0.027 | 0.724 | 0.205 | 0.029

7Networks RH SalVentAttn_TempOccPar 1 | -0.018 | 0.814 | 0.188 | 0.016

7Networks RH SalVentAttn FrOperlns 4| 0.008 | 0.917 | 0.193 | 0.024

7Networks RH Limbic TempPole 1 | -0.011 | 0.883 | 0.210 | 0.011

7Networks RH Cont_PFCv_1 | -0.085 | 0.250 | 0.249 | 0.003

7Networks RH Cont_PFCI_3 | -0.035 | 0.646 | -0.149 | 0.025

7Networks RH Cont_PFCI_5 | 0.030 | 0.681 | -0.186 | 0.005

7Networks RH Cont PFCI 6 | -0.112 | 0.117 | -0.167 | 0.016

7Networks RH Default Par 1 | 0.040 | 0.610 | -0.251 | 0.009
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7Networks RH Default Temp_5 | -0.035 | 0.643 | 0.299 | 0.001
7Networks_RH Default PFCAPFCm_4 | 0.017 | 0.830 | -0.208 | 0.001
7Networks RH Default PFCAPFCm_5 | -0.094 | 0.213 | -0.135 | 0.020

7Networks RH Default pCunPCC_1 | -0.030 | 0.706 | 0.280 | 0.000

Positive affect Pe p Pe p

7Networks LH Default PFC 9| 0.129 | 0.044 | -0.540 | 0.000

Negative affect Pe p Pe P

7Networks LH Vis 14 | -0.211 | 0.002 | 0.011 | 0.925

Supplementary Table 19. Genetic correlation of cognitive sub-scores and local surface area.

Fluid Cognition | 5, p Pe p

7Networks LH Vis 7 | 0.006 | 0.937 | 0.158 | 0.028

7Networks LH Vis 10 | -0.085 | 0.268 | 0.158 | 0.009

7Networks LH Vis 13 | -0.109 | 0.132 | 0.290 | 0.000

7Networks LH SomMot 12 | 0.032 | 0.631 | 0.165 | 0.042
7Networks LH Limbic_TempPole 1 | -0.018 | 0.796 | 0.182 | 0.023
7Networks RH Vis 9 | -0.082 | 0.296 | 0.222 | 0.000

7Networks RH Vis 12 | -0.005 | 0.944 | 0.182 | 0.018

7Networks RH Vis 14 | -0.083 | 0.215 | 0.284 | 0.002

7Networks RH Limbic_TempPole 1 | -0.179 | 0.008 | 0.361 | 0.000
7Networks RH Limbic_TempPole_2 | -0.156 | 0.020 | 0.311 | 0.000
7Networks RH Default Temp 1 | 0.001 | 0.985 | 0.179 | 0.028

Crystallized Cognition | 5, p Pe p

7Networks LH SomMot_4 | -0.058 | 0.433 | 0.168 | 0.022
7Networks LH SomMot_6 | -0.041 | 0.577 | 0.147 | 0.011
7Networks LH DorsAttn Post 1| -0.121 | 0.124 | 0.197 | 0.003
7Networks LH DorsAttn Post 2 | -0.068 | 0.378 | 0.175 | 0.008
7Networks LH DorsAttn Post 5 | -0.014 | 0.852 | 0.221 | 0.010
7Networks LH DorsAttn PrCv 1 | 0.003 | 0.972 | 0.176 | 0.016
7Networks LH_SalVentAttn_PFCI 1 | -0.172 | 0.035 | 0.324 | 0.000
7Networks LH Limbic_TempPole 1 | 0.024 | 0.757 | 0.203 | 0.000
7Networks LH Limbic_TempPole 2 | 0.019 | 0.797 | 0.136 | 0.026
7Networks LH Limbic_TempPole 3 | 0.060 | 0.409 | 0.180 | 0.005
7Networks LH Limbic_TempPole 4 | -0.058 | 0.451 | 0.190 | 0.000
7Networks LH Cont PFCI 2 | -0.069 | 0.379 | 0.255 | 0.000
7Networks LH Cont PFCI 5 | 0.089 | 0.220 | 0.223 | 0.010
7Networks LH Default Temp 1 | 0.016 | 0.837 | 0.155 | 0.002
7Networks LH Default Temp 2 | -0.052 | 0.493 | 0.282 | 0.000
7Networks_LH Default PFC 6 | 0.066 | 0.394 | 0.108 | 0.043
7Networks RH Vis_1 | -0.083 | 0.258 | 0.145 | 0.010
7Networks RH Vis_5 | -0.136 | 0.066 | 0.298 | 0.001
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7Networks RH Vis 14 | -0.002 | 0.977 | 0.161 | 0.015
7Networks RH SomMot 13 | -0.048 | 0.538 | 0.200 | 0.005
7Networks RH DorsAttn_Post 1 | -0.034 | 0.657 | 0.117 | 0.045
7Networks RH DorsAttn_PrCv_I1 | 0.011 | 0.882 | 0.221 | 0.002
7Networks RH SalVentAttn PrC 1 | 0.054 | 0.472 | 0.202 | 0.008
7Networks RH Limbic OFC 3 | 0.000 | 0.996 | 0.137 | 0.032
7Networks RH Limbic TempPole 1 | -0.118 | 0.106 | 0.183 | 0.001
7Networks RH Limbic_TempPole 3 | -0.069 | 0.358 | 0.204 | 0.001
7Networks RH Cont_Par 2 | 0.006 | 0.938 | 0.200 | 0.026
7Networks RH Cont Temp 1 | -0.025 | 0.756 | 0.180 | 0.012
7Networks RH Cont PFCI 1 | 0.042 | 0.568 | 0.117 | 0.035
7Networks RH Cont PFCI 2 | -0.056 | 0.473 | 0.174 | 0.019
7Networks RH Cont PFCmp 2 | -0.108 | 0.146 | 0.180 | 0.004
7Networks RH Default Temp 1 | 0.135 | 0.059 | 0.153 | 0.008
7Networks RH Default Temp 2 | 0.115 | 0.112 | 0.150 | 0.019
7Networks RH Default Temp 4 | 0.023 | 0.749 | 0.167 | 0.013
7Networks RH Default PFCAPFCm 6 | -0.092 | 0.213 | 0.195 | 0.003
7Networks RH Default PFCAPFCm_7 | -0.134 | 0.072 | 0.269 | 0.000

Supplementary Table 20. Genetic correlation of cognitive

volumes.
Total Cognition Pe P P p
hipp 1| 0.175 | 0.015 | 0.057 | 0.349
Fluid Cognition Pe P P P
pall 1] 0.089 | 0.212 | -0.230 | 0.003
Crystallized Cognition Pe P Pe P
amy r | 0.042 | 0.621 | 0.075 | 0.138
hipp 1| 0.124 | 0.093 | 0.159 | 0.004
hipp r | 0.214 | 0.008 | 0.098 | 0.026
Mean affect Pe P P p
caud 1| 0.041 | 0.603 | -0.280 | 0.001
caud r | 0.084 | 0.297 | -0.283 | 0.001
Positive affect Pe P P P
caud 1| 0.018 | 0.820 | -0.275 | 0.002
caud r | 0.083 | 0.284 | -0.287 | 0.001
Negative affect Pe P P p
caud 1] -0.055 | 0.499 | 0.224 | 0.003
caud r | -0.052 | 0.526 | 0.217 | 0.005

and affective scores and subcortical
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Supplementary Table 21. Heritability of local

cortical thickness.

Parcel h? p
7Networks LH Vis 1 0.411 0.000
7Networks LH Vis 2 0.387  0.000
7Networks LH Vis 3 0.168 0.002
7TNetworks LH Vis 4 0.476  0.000
7Networks LH Vis_5 0.512  0.000
7Networks LH Vis_6 0.437  0.000
7Networks LH Vis_7 0.509  0.000
7Networks LH Vis_8 0.237  0.000
7Networks LH Vis_9 0.472  0.000
7Networks LH Vis_10 0.600  0.000
7Networks LH Vis 11 0.400  0.000
7Networks LH Vis 12 0.464 0.000
7Networks LH Vis_13 0.557  0.000
7Networks LH Vis 14 0.454  0.000
7Networks LH SomMot 1 0.445  0.000
7TNetworks LH SomMot 2 0.260  0.000
7Networks LH SomMot 3 0.439  0.000
7TNetworks LH SomMot 4 0.416 0.000
7Networks LH SomMot_5 0.274  0.000
7Networks LH SomMot_6 0.511  0.000
7Networks LH SomMot_7 0.330  0.000
7Networks LH SomMot_8 0.269  0.000
7Networks LH SomMot_9 0.305 0.000
7Networks LH SomMot 10 0.460 0.000
7Networks LH SomMot 11 0.199  0.000
7TNetworks LH SomMot 12 0.423  0.000
7Networks LH SomMot_13 0.367 0.000
7TNetworks LH SomMot 14 0.332  0.000
7Networks LH SomMot 15 0.531  0.000
7Networks LH SomMot 16 0.348  0.000
7TNetworks LH DorsAttn Post 1 0.364 0.000
7TNetworks LH DorsAttn Post 2 0.240  0.000
7TNetworks LH DorsAttn Post 3 0.349  0.000
7TNetworks LH DorsAttn Post 4 0.298  0.000
7TNetworks LH DorsAttn Post 5 0.142  0.004
7TNetworks LH DorsAttn Post 6 0.225  0.000
7TNetworks LH DorsAttn Post 7 0.460 0.000
7TNetworks LH DorsAttn Post 8 0.278  0.000
7TNetworks LH DorsAttn Post 9 0.486 0.000
7Networks LH DorsAttn Post 10 0.479  0.000
7TNetworks LH DorsAttn FEF 1 0.307  0.000
7TNetworks LH DorsAttn FEF 2 0.337  0.000

7Networks LH DorsAttn PrCv 1

7TNetworks LH SalVentAttn ParOper
1

7TNetworks LH SalVentAttn ParOper
2

7TNetworks LH SalVentAttn ParOper

3

7TNetworks LH SalVentAttn FrOperl

ns 1

7TNetworks LH SalVentAttn FrOperl

ns 2

7TNetworks LH SalVentAttn FrOperl

ns 3

7TNetworks LH SalVentAttn FrOperl

ns 4

7TNetworks LH SalVentAttn PFCI 1
7Networks LH SalVentAttn Med 1
7Networks LH SalVentAttn Med 2
7TNetworks LH SalVentAttn Med 3
7Networks LH Limbic OFC 1
7TNetworks LH Limbic OFC 2
7TNetworks LH Limbic TempPole 1
7TNetworks LH Limbic TempPole 2
7Networks LH Limbic TempPole 3
7TNetworks LH Limbic TempPole 4
7TNetworks LH Cont Par 1
7TNetworks LH Cont Par 2
7TNetworks LH Cont Par 3
7TNetworks LH Cont Temp 1
7Networks LH Cont OFC 1
7TNetworks LH Cont PFCI 1
7Networks LH Cont PFCI 2
7Networks LH Cont PFCI 3
7Networks LH Cont PFCI 4
7TNetworks LH Cont PFCI 5
7TNetworks LH Cont pCun_1
7Networks LH Cont Cing 1
7Networks LH Cont Cing 2
7TNetworks LH Default Temp 1
7TNetworks LH Default Temp 2
7Networks LH Default Temp 3
7TNetworks LH Default Temp 4
7Networks LH Default Temp 5
7TNetworks LH Default Par 1
7TNetworks LH Default Par 2
7Networks LH Default Par 3
7TNetworks LH Default Par 4
7TNetworks LH Default PFC 1
7TNetworks LH Default PFC 2

0.272
0.102

0.311

0.255

0.309

0.404

0.392

0.225

0.434
0.343
0.351
0.288
0.306
0.423
0.479
0.356
0.241
0.430
0.257
0.288
0.113
0.203
0.348
0.280
0.404
0.274
0.373
0.234
0.387
0.558
0.427
0.250
0.290
0.350
0.226
0.238
0.330
0.328
0.240
0.255
0.355
0.323

0.000
0.043

0.000

0.000

0.000

0.000

0.000

0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.022
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
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7Networks LH Default PFC 3
7Networks LH Default PFC 4
7TNetworks LH Default PFC 5
7Networks LH Default PFC 6
7Networks LH Default PFC 7
7TNetworks LH Default PFC 8
7Networks LH Default PFC 9
7TNetworks LH Default PFC 10
7TNetworks LH Default PFC 11
7TNetworks LH Default PFC 12
7TNetworks LH Default PFC 13

7TNetworks LH Default pCunPCC 1
7Networks LH Default pCunPCC 2
7TNetworks LH Default pCunPCC 3
7TNetworks LH Default pCunPCC 4

7TNetworks LH Default PHC 1
7Networks RH Vis 1
7TNetworks RH Vis 2
7Networks RH Vis 3
7Networks RH Vis 4
7Networks RH Vis 5
7Networks RH Vis 6
7Networks RH Vis 7
7Networks RH Vis 8
7Networks RH Vis 9
7TNetworks RH Vis 10
7Networks RH Vis 11
7TNetworks RH Vis 12
7Networks RH Vis 13
7TNetworks RH Vis 14
7Networks RH Vis 15
7TNetworks RH SomMot 1
7TNetworks RH SomMot 2
7Networks RH SomMot 3
7Networks RH SomMot 4
7Networks RH SomMot 5
7Networks RH SomMot 6
7Networks RH SomMot 7
7Networks RH SomMot 8§
7Networks RH SomMot 9
7Networks RH SomMot 10
7Networks RH SomMot 11
7Networks RH SomMot 12
7Networks RH SomMot 13
7Networks RH SomMot 14

0.168
0.488
0.322
0.489
0.483
0.340
0.517
0.359
0.443
0.471
0.429
0.434
0.240
0.458
0.362
0.484
0.379
0.437
0.436
0.580
0.336
0.544
0.523
0.505
0.585
0.514
0.277
0.544
0.520
0.345
0.342
0.452
0.286
0.374
0.316
0.224
0.319
0.517
0.287
0.348
0.202
0.316
0.440
0.279
0.480

0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

7Networks RH SomMot 15
7Networks RH SomMot 16
7Networks RH SomMot 17
7Networks RH SomMot 18
7Networks RH SomMot 19
7Networks RH DorsAttn Post 1
7TNetworks RH DorsAttn Post 2
7Networks RH DorsAttn Post 3
7TNetworks RH DorsAttn Post 4
7Networks RH DorsAttn Post 5
7TNetworks RH DorsAttn Post 6
7TNetworks RH DorsAttn Post 7
7Networks RH DorsAttn Post 8
7TNetworks RH DorsAttn Post 9
7TNetworks RH DorsAttn Post 10
7Networks RH DorsAttn FEF 1
7TNetworks RH DorsAttn FEF 2
7Networks RH DorsAttn PrCv 1

7TNetworks RH SalVentAttn TempOc
cPar 1

7TNetworks RH SalVentAttn TempOc
cPar 2

7TNetworks RH SalVentAttn TempOc
cPar 3

7TNetworks RH_SalVentAttn PrC 1

7Networks RH SalVentAttn FrOperl
ns 1
7Networks RH SalVentAttn FrOperl
ns 2
7Networks RH SalVentAttn FrOperl
ns 3
7Networks RH SalVentAttn FrOperl
ns 4

7Networks RH SalVentAttn Med 1
7TNetworks RH SalVentAttn Med 2
7TNetworks RH SalVentAttn Med 3
7TNetworks RH Limbic OFC 1
7Networks RH Limbic OFC 2
7TNetworks RH Limbic OFC 3
7Networks RH Limbic TempPole 1
7Networks RH Limbic TempPole 2
7Networks RH Limbic_TempPole 3
7Networks RH Cont Par 1
7Networks RH Cont Par 2
7Networks RH Cont Par 3
7Networks RH Cont Temp 1
7TNetworks RH Cont PFCv 1
7Networks RH Cont PFCI 1
7Networks RH Cont PFCI 2

0.378
0.233
0.481
0.400
0.369
0.273
0.192
0.274
0.189
0.226
0.395
0.208
0.397
0.359
0.378
0.306
0.269
0.283
0.299

0.240

0.303

0.168
0.381

0.459

0.308

0.238

0.211
0.487
0.381
0.434
0.335
0.423
0.263
0.353
0.462
0.196
0.159
0.198
0.246
0.259
0.276
0.324

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000

0.000

0.003
0.000

0.000

0.000

0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.002
0.000
0.000
0.000
0.000
0.000
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7Networks RH Cont PFCIl 3
7Networks RH Cont PFCI 4
7TNetworks RH Cont PFCIl 5
7Networks RH Cont PFCIl 6
7Networks RH Cont PFCIl 7
7Networks RH Cont pCun_1
7Networks RH Cont Cing 1
7Networks RH Cont Cing 2
7TNetworks RH Cont PFCmp 1
7Networks RH Cont PFCmp 2
7Networks RH Default Par 1
7TNetworks RH Default Par 2
7TNetworks RH Default Par 3
7TNetworks RH Default Temp 1
7Networks RH Default Temp 2
7Networks RH Default Temp 3
7Networks RH Default Temp 4

0.385
0.427
0.382
0.336
0.318
0.279
0.525
0.394
0.289
0.460
0.196
0.201
0.173
0.331
0.377
0.463
0.275

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.000
0.001
0.000
0.000
0.000
0.000

Supplementary Table 22. Heritability of local

surface area.

Parcel h? p
7Networks LH Vis 1 0.610  0.000
7Networks LH Vis 2 0.554  0.000
7Networks LH Vis_ 3 0.399  0.000
7Networks LH Vis 4 0.406  0.000
7Networks LH Vis 5 0.331  0.000
7Networks LH Vis 6 0.619  0.000
7Networks LH Vis 7 0.645 0.000
7Networks LH Vis 8 0.398  0.000
7Networks LH Vis 9 0.472  0.000
7Networks LH Vis 10 0.795  0.000
7Networks LH Vis 11 0.447 0.000
7Networks LH Vis 12 0.591  0.000
7Networks LH Vis 13 0.644  0.000
7Networks LH Vis 14 0.462 0.000
7Networks LH SomMot 1 0.463  0.000
7Networks LH SomMot 2 0.509  0.000
7Networks LH SomMot 3 0.416  0.000
7TNetworks LH SomMot 4 0.345  0.000
7Networks LH SomMot 5 0.434  0.000
7Networks LH SomMot 6 0.498  0.000
7Networks LH SomMot 7 0.288  0.000
7Networks LH SomMot 8 0.477  0.000
7Networks LH SomMot 9 0222 0.000

7Networks RH Default Temp 5
7Networks RH Default PFCv 1

7Networks RH Default PFCdPFCm
;Networks_RH_Default_PFCdPFCm_
%Networks_RH_Default_PFCdPFCm_
gNetworks_RH_Default_PFCdPFCm_
;‘Networks_RH_Default_PFCdPFCm_
gNetworks_RH_Default_PFCdPFCm_
gNetworks_RH_Default_PFCdPFCm_
;Networks_RH_Default . pCunPCC 1

7Networks RH Default pCunPCC 2
7Networks RH Default pCunPCC 3

7TNetworks LH SomMot 10
7Networks LH SomMot 11
7TNetworks LH SomMot 12
7Networks LH SomMot 13
7TNetworks LH SomMot 14
7Networks LH SomMot 15
7Networks LH SomMot 16
7TNetworks LH DorsAttn Post 1
7TNetworks LH DorsAttn Post 2
7TNetworks LH DorsAttn Post 3
7TNetworks LH DorsAttn Post 4
7TNetworks LH DorsAttn Post 5
7TNetworks LH DorsAttn Post 6
7TNetworks LH DorsAttn Post 7
7TNetworks LH DorsAttn Post 8
7TNetworks LH DorsAttn Post 9
7TNetworks LH DorsAttn Post 10
7TNetworks LH DorsAttn FEF 1
7TNetworks LH DorsAttn FEF 2
7TNetworks LH DorsAttn PrCv 1

7TNetworks LH SalVentAttn ParOper
1

5Networks_LH_S alVentAttn ParOper
ﬁz\letworks_LH_S alVentAttn ParOper
513\Ietworks_LH_S alVentAttn FrOperl
r7llS\Teltworks_LH_S alVentAttn FrOperl
ns 2

0.214
0.403
0.349

0.331

0.361

0.481

0.498

0.402

0.280

0.432
0.435
0.254

0.363
0.416
0.479
0.440
0.291
0.475
0.380
0.407
0.405
0.483
0.390
0.246
0.213
0.354
0.322
0.417
0.364
0.279
0.244
0.330
0.408

0.470

0.327

0.619

0.570

0.000
0.000
0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000

0.000

0.000

0.000
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7TNetworks LH SalVentAttn FrOperl
ns 3
7TNetworks LH SalVentAttn FrOperl
ns 4

7TNetworks LH SalVentAttn PFCI 1
7Networks LH SalVentAttn Med 1
7Networks LH SalVentAttn Med 2
7TNetworks LH SalVentAttn Med 3
7Networks LH Limbic OFC 1
7TNetworks LH Limbic OFC 2
7TNetworks LH Limbic TempPole 1
7TNetworks LH Limbic TempPole 2
7TNetworks LH Limbic TempPole 3
7TNetworks LH Limbic TempPole 4
7Networks LH Cont Par 1
7Networks LH Cont Par 2
7Networks LH Cont Par 3
7TNetworks LH Cont Temp 1
7TNetworks LH Cont OFC 1
7TNetworks LH Cont PFCI 1
7Networks LH Cont PFCI 2
7Networks LH Cont PFCI 3
7TNetworks LH Cont PFCI 4
7Networks LH Cont PFCI 5
7Networks LH Cont pCun_1
7Networks LH Cont Cing 1
7TNetworks LH Cont Cing 2
7TNetworks LH Default Temp 1
7TNetworks LH Default Temp 2
7Networks LH Default Temp 3
7TNetworks LH Default Temp 4
7Networks LH Default Temp 5
7TNetworks LH Default Par 1
7TNetworks LH Default Par 2
7Networks LH Default Par 3
7TNetworks LH Default Par 4
7TNetworks LH Default PFC 1
7Networks LH Default PFC 2
7TNetworks LH Default PFC 3
7Networks LH Default PFC 4
7TNetworks LH Default PFC 5
7Networks LH Default PFC 6
7Networks LH Default PFC 7
7Networks LH Default PFC 8
7Networks LH Default PFC 9
7TNetworks LH Default PFC 10

0.528

0.370

0.314
0.587
0.435
0.353
0.586
0.590
0.548
0.459
0.423
0.603
0.236
0.246
0.208
0.341
0.449
0.446
0.408
0.386
0.330
0.226
0.506
0.516
0.303
0.659
0.363
0.392
0.503
0.354
0.336
0.278
0.160
0.353
0.478
0.591
0.449
0.562
0.414
0.597
0.402
0.446
0.393
0.447

0.000

0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.002
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

7TNetworks LH Default PFC 11
7TNetworks LH Default PFC 12
7TNetworks LH Default PFC 13
7TNetworks LH Default pCunPCC 1
7TNetworks LH Default pCunPCC 2
7TNetworks LH Default pCunPCC 3
7Networks LH Default pCunPCC 4
7TNetworks LH Default PHC 1

7Networks RH Vis 1
7TNetworks RH Vis 2
7Networks RH Vis 3
7Networks RH Vis 4
7Networks RH Vis 5
7Networks RH Vis 6
7Networks RH Vis 7
7Networks RH Vis 8§
7Networks RH Vis 9
7Networks RH Vis 10
7Networks RH Vis 11
7TNetworks RH Vis 12
7Networks RH Vis 13
7TNetworks RH Vis 14
7Networks RH Vis 15
7Networks RH SomMot 1
7TNetworks RH SomMot 2
7Networks RH SomMot 3
7Networks RH SomMot 4
7Networks RH SomMot 5
7Networks RH SomMot 6
7Networks RH SomMot 7
7Networks RH SomMot 8§
7Networks RH SomMot 9
7Networks RH SomMot 10
7Networks RH SomMot 11
7Networks RH SomMot 12
7Networks RH SomMot 13
7Networks RH SomMot 14
7Networks RH SomMot 15
7Networks RH SomMot 16
7Networks RH SomMot 17
7Networks RH SomMot 18
7Networks RH SomMot 19

7Networks RH DorsAttn Post 1
7TNetworks RH DorsAttn Post 2
7Networks RH DorsAttn Post 3

0.352
0.333
0.324
0.700
0.494
0.372
0.435
0.602
0.523
0.492
0.459
0.519
0.238
0.646
0.631
0.369
0.774
0.760
0.267
0.578
0.553
0.401
0.308
0.652
0.568
0.510
0.513
0.317
0.508
0.428
0.314
0.213
0.315
0.520
0.380
0.368
0.460
0.204
0.302
0.160
0.475
0.444
0.510
0.339
0.402

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.003
0.000
0.000
0.000
0.000
0.000
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7TNetworks RH DorsAttn Post 4
7Networks RH DorsAttn Post 5
7TNetworks RH DorsAttn Post 6
7TNetworks RH DorsAttn Post 7
7Networks RH DorsAttn Post 8
7TNetworks RH DorsAttn Post 9
7Networks RH DorsAttn Post 10
7Networks RH DorsAttn FEF 1
7TNetworks RH DorsAttn FEF 2
7Networks RH DorsAttn PrCv 1

7TNetworks RH SalVentAttn TempOc
cPar 1

7TNetworks RH SalVentAttn TempOc
cPar 2

7TNetworks RH SalVentAttn TempOc
cPar 3

7Networks RH_SalVentAttn PrC 1

7TNetworks RH SalVentAttn FrOperl
ns 1
7TNetworks RH SalVentAttn FrOperl
ns 2
7TNetworks RH SalVentAttn FrOperl
ns 3
7TNetworks RH SalVentAttn FrOperl
ns 4

7Networks RH SalVentAttn Med 1
7TNetworks RH SalVentAttn Med 2
7TNetworks RH SalVentAttn Med 3
7Networks RH Limbic OFC 1
7TNetworks RH Limbic OFC 2
7Networks RH Limbic OFC 3
7Networks RH Limbic TempPole 1
7Networks RH Limbic TempPole 2
7Networks RH Limbic_TempPole 3
7Networks RH Cont Par 1
7Networks RH Cont Par 2
7Networks RH Cont Par 3
7Networks RH Cont Temp 1
7TNetworks RH Cont PFCv 1

0.232
0.267
0.247
0.192
0.227
0.451
0.393
0.216
0.586
0.337
0.335

0.222

0.419

0.315
0.584

0.547

0.435

0.488

0.577
0.527
0.488
0.532
0.516
0.461
0.509
0.493
0.455
0.283
0.228
0.225
0.370
0.358

0.000
0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000

0.000

0.000
0.000

0.000

0.000

0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

7Networks RH Cont PFCI 1
7Networks RH Cont PFCIl 2
7Networks RH Cont PFCI 3
7Networks RH Cont PFCI 4
7TNetworks RH Cont PFCIl 5
7Networks RH Cont PFCIl 6
7Networks RH Cont PFCIl 7
7Networks RH Cont pCun_1
7Networks RH Cont Cing 1
7Networks RH Cont Cing 2
7Networks RH Cont PFCmp 1
7Networks RH Cont PFCmp 2
7TNetworks RH Default Par 1
7TNetworks RH Default Par 2
7TNetworks RH Default Par 3
7TNetworks RH Default Temp 1
7Networks RH Default Temp 2
7Networks RH Default Temp 3
7Networks RH Default Temp 4
7Networks RH Default Temp 5
7Networks RH Default PFCv 1

7Networks RH Default PFCdPFCm
;Networks_RH_Default_PFCdPFCm_
%Networks_RH_Default_PFCdPFCm_
gNetworks_RH_Default_PFCdPFCm_
;‘Networks_RH_Default_PFCdPFCm_
gNetworks_RH_Default_PFCdPFCm_
gNetworks_RH_Default_PFCdPFCm_
;Networks_RH_Default . pCunPCC 1

7Networks RH Default pCunPCC 2
7Networks RH Default pCunPCC 3

Supplementary Table 23. Heritability of subcortical volumes.

Volume h? p
accumb_| 0.535 0.000
accumb_r 0.571 0.000

amy_l 0.621 0.000
amy_r 0.698 0.000
caud | 0.837 0.000

0.527
0.346
0.396
0.415
0.327
0.272
0.418
0.416
0.469
0.379
0.569
0.425
0.314
0.206
0.198
0.490
0.416
0.408
0.374
0.453
0.367
0.574

0.493

0.188

0.592

0.381

0.400

0.307

0.666
0.401
0.319

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000

0.001

0.000

0.000

0.000

0.000

0.000
0.000
0.000
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caud_r 0.835 0.000
hipp_I 0.556 0.000
hipp_r 0.812 0.000
spall_I 0.571 0.000
pall_r 0.666 0.000
put_| 0.709 0.000
put_r 0.848 0.000
thal I 0.584 0.000
thal_r 0.667 0.000
ventDC_I 0.704 0.000
ventDC_r 0.718 0.000
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Abstract

Predicting individual behavior from brain functional connectivity (FC) patterns can
contribute to our understanding of human brain functioning. This may apply in partic-
ular if predictions are based on features derived from circumscribed, a priori defined
functional networks, which improves interpretability. Furthermore, some evidence
suggests that task-based FC data may yield more successful predictions of behavior
than resting-state FC data. Here, we comprehensively examined to what extent the
correspondence of functional network priors and task states with behavioral target
domains influences the predictability of individual performance in cognitive, social,
and affective tasks. To this end, we used data from the Human Connectome Project
for large-scale out-of-sample predictions of individual abilities in working memory
(WM), theory-of-mind cognition (SOCIAL), and emotion processing (EMO) from FC of
corresponding and non-corresponding states (WM/SOCIAL/EMO/resting-state) and
networks (WM/SOCIAL/EMO/whole-brain connectome). Using root mean squared
error and coefficient of determination to evaluate model fit revealed that predictive
performance was rather poor overall. Predictions from whole-brain FC were slightly
better than those from FC in task-specific networks, and a slight benefit of predic-
tions based on FC from task versus resting state was observed for performance in
the WM domain. Beyond that, we did not find any significant effects of a correspon-
dence of network, task state, and performance domains. Together, these results sug-
gest that multivariate FC patterns during both task and resting states contain rather
little information on individual performance levels, calling for a reconsideration of

how the brain mediates individual differences in mental abilities.

KEYWORDS
brain-based prediction, brain-behavior relationships, fMRI, functional connectivity,
interindividual differences, machine learning
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Practitioner Points

1 | INTRODUCTION

No two individuals are alike in perception, affect, thought, and behav-
ior, but also brain structure and function. A major goal of neuroscience
is uncovering the relationships between these dimensions by investi-
gating individual differences. An approach that has recently become
popular is predicting individual behavior, affective characteristics or
cognitive abilities from brain data (Gao et al., 2019; Greene
et al., 2018; Kong et al., 2019; Larabi et al., 2021; Nostro et al., 2018;
QOoi et al., 2022; Rosenberg et al., 2020; Sasse et al., 2023; Shen
et al., 2017). Such predictive modeling is thought to yield important
insights about generalizable brain-behavior relationships and is con-
sidered a crucial step toward personalized medicine (Mueller
etal., 2013; D. Wang et al., 2015).

A number of studies in this area have shown that, for example,
regional gray-matter volume and structural connectivity significantly
predict age (Cole et al., 2017; Franke et al., 2012; More et al., 2023),
reading comprehension (Cui et al., 2018), inhibitory control (N. He
et al., 2020), or fear of pain (X. Wang et al., 2019). Similarly, functional
neuroimaging data has also been reported to predict different behav-
jors or traits, ranging from personality (Dubois, Galdi, Han,
et al., 2018; Nostro et al, 2018) or life satisfaction (Itahashi
et al., 2021) to cognitive abilities such as creative thinking (Zhuang
et al., 2021), cognitive flexibility (Chén et al., 2019), or working mem-
ory (WM) capacity (Stark et al., 2021).

While a variety of different brain characteristics have been
employed as features to predict behavior, one of the most widely
used measures (Yeung et al., 2022) is resting-state (in the following
also “rest” or “REST”) functional connectivity (FC) obtained from
functional magnetic resonance imaging (fMRI). Some recent studies,
however, suggest that behavior prediction may benefit from the use
of task-based FC, as compared to resting-state data (Avery
et al, 2020; Greene et al, 2018; Jiang et al., 2020; Rosenberg
et al., 2016, 2016; Stark et al., 2021). For example, Sripada and col-
leagues found that the correlation between predicted and observed
scores of a general cognitive ability factor improved when using FC
from the 2-back WM-task state (r=.50), as compared to using
resting-state FC (r = .26; Sripada et al., 2019, 2020). A similar pattern
has been reported for the prediction of different measures of atten-
tion (Yoo et al., 2018) as well as for the prediction of intelligence
based on FC from tasks taxing executive functioning (L. He
et al., 2021) or attention (Rosenberg et al., 2016).

Importantly, all the studies mentioned above showed an improve-

ment in prediction performance for task-fMRI data derived from the

in a cognitive domain.

e Better prediction of behavior from task versus resting-state functional connectivity (FC) only

o Little evidence for specificity of state, network, or task similarity.
e Predicting complex behavior based on FC remains a significant challenge.
o We extend research on brain-based behavior prediction beyond the cognitive domain.

same domain as the predicted measure (i.e., prediction of stop-signal
task performance based on FC derived from stop-signal task-fMRI
data). However, there is not only resting versus task states but rather
different task states depending on which task is performed during
fMRI data acquisition. That is, every task performed in the scanner
can be thought of as eliciting a specific state. Interestingly, it has been
shown that in predicting intelligence, using almost any other task state
(i.e., fMRI acquired during a WM task as well as an emotion task) or
task-rest combinations outperforms using resting-state FC only (Gao
et al,, 2019; Greene et al., 2018, 2020; Sripada et al., 2020).

Based on the concept of convergent and discriminant validity
(Campbell & Fiske, 1959; Schumann et al, 2022), it would be
expected, however, that connectivity patterns observed during the
same or a similar task, hence coming from the same domain as the
predicted target behavior (i.e., representing the same state; conver-
gent validity), lead to better prediction performance than do patterns
observed during a task state from an unrelated domain (discriminant
validity). In line with this idea, recent studies reported better accura-
cies for predicting general cognitive ability (Sripada et al., 2020) and
fluid intelligence (Gao et al., 2019) from FC during task states involv-
ing executive functions (“same-domain”), as compared to prediction
from unrelated task or resting states (“other-domain”). This improve-
ment was particularly pronounced when FC data of the cognitively
demanding WM task was used, as compared to task states from other
domains (although the authors did not test for the statistical signifi-
cance of the observed numerical differences between prediction accu-
racies). These examples suggest the possibility of state specificity
when predicting behavior from corresponding FC patterns.

While most studies predicted task performance from states of the
same domain (i.e., prediction of intelligence from FC of a WM task
state), others predicted task performance from FC observed during
the exact same task. Avery et al. (2020), for example, predicted indi-
vidual performance accuracy in an n-back WM task based on FC
derived from fMRI data obtained while the n-back task was per-
formed, which showed an increase in accuracy when using this task's
fMRI data, as compared to rest data (Avery et al., 2020). Building on
this, Stark and colleagues investigated the difference in prediction
accuracy between predictions of performance in different working
and episodic memory tasks from FC obtained while performing an
n-back WM task. Importantly, the highest prediction accuracy
(r = .36) was achieved when n-back task performance was predicted
using FC during the very same task (i.e., n-back performance mea-
sured in the MR scanner), followed by the prediction of performance

in a different WM task (list sorting; r = .24), followed by predictions
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of episodic memory performance scores (r=.05-.11) (Stark
et al., 2021). These results suggest a specificity benefit of the state
used for calculating FC, which goes beyond the prediction of ability in
a given broadly defined cognitive domain (i.e., WM) and narrows it
down to specific tasks (i.e., n-back versus list sorting). That is, beyond
the effect of state specificity (i.e., domain congruence benefits for pre-
diction accuracy), a state-target similarity effect (i.e., task congruence
benefits for prediction accuracy) should manifest in even better pre-
diction accuracies for the performance in tasks during which FC data
were acquired, as compared to the performance in other tasks of the
same domain.

The literature to date is inconclusive regarding the effects of state
specificity and state-target similarity on FC-based predictions of men-
tal abilities and psychological traits. In particular, the majority of stud-
ies investigating such prediction models have focused on cognitive
targets such as intelligence or attention (Yeung et al., 2022). Thus,
clear evidence for state specificity and state-target similarity is still
lacking, especially in domains like emotion processing and social
cognition.

The studies above mainly used whole-brain FC for behavior pre-
diction. Sometimes, post hoc examination of the most predictive fea-
tures from the whole-brain feature space are used for better
interpretability (e.g., Chén et al., 2019; Dubois, Galdi, Paul, &
Adolphs, 2018; Itahashi et al., 2021; Jiang et al., 2020; Plaschke
et al., 2020). However, such post hoc analyses come with their own
limitations, as feature weights are context-dependent, their reliability
is rather low, and the results can be highly specific to the given
dataset (Tian & Zalesky, 2021). Besides predicting behavior from
whole-brain FC, several studies reported on predictions using particu-
lar functional networks as priors (J. Chen et al, 2021; Heckner
et al., 2023; Nostro et al., 2018). That is, prediction models in these
investigations exclusively rely on FC between regions that show acti-
vation during a given task. It is argued that this aides and constrains
the functional interpretability of any observed associations (e.g., most
predictive features), since such models are based on brain regions for
which the association between brain and mental function has already
been established independently.

Therefore, network-based prediction has the advantage of better
interpretability of the results due to the a priori knowledge about the
mental function a given network subserves (Nostro et al., 2018;
Plaschke et al., 2017). Similar to state specificity, FC within networks
associated with functions that are more closely related to the target
behavior (e.g., predicting WM performance from WM network fea-
tures) should also be more informative than networks that are associ-
ated with very different functions (e.g., predicting WM performance
from pain network features). Few studies have investigated this net-
work specificity, with some suggesting some network specificity with
regard to personality (Nostro et al., 2018), but others showing a lack
of specificity (Heckner et al., 2023; Plaschke et al., 2020).

The current project, therefore, aimed to investigate the influence
of brain state (same- vs. other-domain), similarity of target behavior to
the features within one domain (same vs. similar task from same

domain), and functional network priors (same- vs. other-domain

network) on the predictability of individual behavior. This included the
specific question of whether FC from same-domain states and in
same-domain networks can predict individual behavior better than FC
from other-domain states or networks. Hence, we tested the follow-
ing three hypotheses: (1) State specificity: behavior should be better
predicted based on FC patterns observed in the same domain, hence
during the state corresponding to the behavior to be predicted, as
compared to FC patterns observed in other (non-corresponding)
domains. (2) State-target similarity: task performance should be better
predicted based on FC patterns observed during the exact same task,
as compared to another similar task from the same domain. (3) Net-
work specificity: behavior should be better predicted based on FC
patterns observed in the networks corresponding to the predicted
behavior, as compared to FC patterns in other (non-corresponding)

networks.

2 | METHODS

To investigate whether there is state specificity, state-target similarity
and/or network specificity in brain-behavior prediction, we used the
Human Connectome Project (HCP) Young Adult dataset. We divided
it into two samples: in the first sample, we defined networks, and in
the second sample, we computed FC in predefined networks from the
first sample during different task states. Using FC within each network
as features, we predicted six different target variables, matching the
selected states and networks. We included the following three pheno-
typic domains: WM, theory of mind/social cognition (SOCIAL), and

emotion processing (EMO).

21 | Samples

Data were obtained from the Young Adult S1200 release of the
publicly available database provided by the HCP (Van Essen
et al., 2013), which comprised data from 1206 healthy individuals.
We only included participants for whom all the data required for
our analyses were available. That is, (a) all four resting-state fMRI
scans; (b) fMRI data of the WM, SOCIAL, and EMO tasks; and
(c) the performance measures (accuracy and reaction time) of these
three tasks performed in the scanner, as well as (d) all the perfor-
mance measures we aimed to predict for tasks that were performed
outside the scanner for each domain. Hence, every subject was
required to have both (in-scanner and out-of-scanner) tasks per
domain (three domains, six tasks in total). Of the 1206 individuals,
180 participants were excluded due to missing imaging data and
71 due to data quality issues. We further excluded subjects with
accuracy below 50% in the six tasks of interest (n = 77). Perfor-
mance accuracy was measured as the percentage of correct trials.
We chose to include only subjects producing more than 50% correct
trials, to ensure that only participants were included who were
attentive during the task and hence present the given states we

aimed to investigate. From the remaining sample of 878 subjects,
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[ HCP Young Adult $1200 Release

Inclusion if:
*  Has all resting state runs *  No quality control issues
*  Hasall WM runs *  Has>50 % accuracy in WM task
* Hasall SOCIAL runs *  Has>50 % accuracy in SOCIAL task
* Hasall EMO runs *  Has>50 % accuracy in EMO task
\ )
Y
Large Sample (878 Subjects)
Selection Criteria: Selection Criteria:
*  Has nosiblings *  Remaining individuals, unrelated to “Sample 1”
*  Selection of one individual per family ID *  Behavioural scoring within 4 SD of the mean
\ ) \ )
Y Y
Sample 1 (250 Subjects) Sample 2 (467 Subjects)

*  Subjects are unrelated within the sample
*  No subjects related to “Sample 2”

¢ Subjects within sample may be related
*  No subjects related to “Sample 1”

Test Set
47 subjects

Training Set
420 subjects

FIGURE 1 Overview of the sampling procedure.

two nonoverlapping subsamples were randomly generated: one for
independently delineating task-based networks via general linear
modeling (GLM; sample 1) and one for brain-behavior prediction
within those (and other) networks (sample 2). Thus, the first sample
can be thought of as the sample for “network extraction” and the
second sample for “feature extraction and prediction.” We carefully
accounted for the family structure and resulting dependencies in
this dataset by ensuring that (i) sample 1 contained only one individ-
ual per family, (ii) there was no kinship between the two samples,
and (iii) a leave-n-family-out cross-validation (CV) scheme for pre-
diction analyses within sample 2 was used (Poldrack et al., 2020).
For an overview of the sample selection, see Figure 1.

Sample 1, used for delineating task networks, consisted of
250 unrelated subjects (138 females; age mean = 28.6 years, stan-
dard deviation [SD] = 3.8, range = 22-36 years). Sample 2, used for
prediction, consisted of all the remaining individuals with no siblings
in the first sample. Further, we removed individuals that scored
higher/lower than 4 SDs from the mean in any of the six target scores
of interest, leaving us with 467 participants (252 females, mean
age = 28.8 years, SD = 3.7, range = 22-36 years) for sample 2. Note
that this sample contains siblings, which was accounted for in the pre-
diction pipeline through family subsampling in the CV (Poldrack
et al., 2020). From sample 2 we further randomly selected a holdout
sample (47 subjects), which was not used in any of the CVs. There-
fore, sample 2 consisted of 420 individuals that were used for CV and
final training, while n =47 participants were held back for subse-
quently testing generalizability.

The analyses of the HCP data were approved by the ethics com-
mittee of the Medical Faculty at the Heinrich Heine University
Dusseldorf.

2.2 | Network delineation

Two different approaches were employed for delineating task-specific
networks: (i) networks reflecting brain activation in a large sample of
participants during the tasks of interest using the task fMRI data
of sample 1, and (ii) activation likelihood estimation (ALE) meta-
analyses across previously published neuroimaging results of the same
tasks. For brevity, we here only report the methods and results of the
first approach to network delineation. Further details on the results of
the second, meta-analytic, approach can be found in the supplemen-

tary material.

2.2.1 | Delineation of task-networks in sample 1

Ultimately, our network extraction approach aimed to delineate net-
works that were as closely as possible related to the states we aimed
to predict in the second sample. For this, we included strictly only the
task of interest for network delineation in both approaches—the single
study and the meta-analyses. To cover a variety of domains, we chose
three very different tasks performed in the scanner: n-back for the
WM domain, emotion recognition/face processing for the EMO
domain, and social cognition/theory of mind for the SOCIAL domain.
For details on the tasks, see Barch et al. (2013). Briefly, an n-back task
was used for WM, presenting a sequence of different stimuli with the
instruction to either decide whether the current stimulus is the same
as the one used two trials ago (2-back) or to recognize a specific tar-
get (0-back). EMO was a face-matching task in which angry or fearful
faces had to be matched (EMO condition), in contrast to matching

shapes (neutral condition). In the SOCIAL task, animated moving
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shapes were shown in either interacting or random manner and had
to be labeled subsequently as interacting or randomly moving.

For the delineation of the task-specific networks revealing nodes
that are activated in our task of interest, we used the minimally pre-
processed volumetric task fMRI data of participants of sample 1. The
preprocessing included artifact removal, motion correction, and regis-
tration to the MNI standard volume space. More details regarding the
preprocessing pipeline can be found in Glasser et al., 2013. The mini-
mally preprocessed data were input for the GLM, performed using
FSL (Version 5.0.9) (Jenkinson et al, 2012; Smith et al., 2004;
Woolrich et al., 2009). For the subject-level GLM we modified the
scripts provided by the HCP (Barch et al., 2013; https://github.com/
Washington-University/HCPpipelines), which are based on the FSL
FEAT module (Woolrich et al, 2001, 2004), for use of
volumetric data.

The subject-level GLM included for either run (two different
phase encoding directions) temporal high-pass filtering (200 s cutoff),
spatial smoothing (8 mm FWHM Gaussian kernel), and the GLM fit-
ting. The respective stimuli in each task were modeled as blocked pre-
dictors, temporal derivatives of each predictor, 6 movement
parameters and their derivatives as regressors of no interest. For each
task, linear contrasts between conditions were computed:
2-back > 0-back for WM; interaction > random for SOCIAL; and
faces > shapes for EMO, respectively. Data across both phase encod-
ing directions were then combined with a fixed-effects GLM analysis.

For the group-level GLM, we modified an FSL workflow devel-
oped by (Esteban et al., 2019), which estimated the group effects
using FSL FMRIB's Local Analysis of Mixed Effects by performing a
one-sample t test across subjects. Group-level activation maps were
thresholded at cluster-level p < .05 (FWE-corrected for multiple com-
parisons) with a cluster-forming threshold of p <.001. The resulting
activation maps can be seen in the Supplemental Figures S1-S3. From
these clusters, we extracted only the peak coordinates from gray mat-
ter with a minimum distance of 15 mm. This resulted in three net-
works: WM-NW, SOCIAL-NW, and EMO-NW. For an overview of
the workflow, please see Figure 2. For comparison with the task-
specific networks, we used FC between the Power nodes (Power
et al., 2011) as a functionally defined, spatially distributed, whole-
brain representation of the connectome. The Power nodes represent
a combination of resting-state FC ROIls and task-based meta-analytic

ROls, yielding 264 nonoverlapping independent ROls.

2.3 | Prediction in sample 2

2.3.1 | Targets: Behavioral measures

To assess state specificity and state-target similarity, we selected
behavioral performance during different tasks: First, we used perfor-
mance collected in the scanner for our three domains of interest
(WM, SOCIAL, EMO - “same task”/in-scanner task). Second, we
selected scores of tasks/questionnaires that measured behavior not

exactly in the same state but still in the same behavioral domains

(“similar task”/out-of-scanner task). The two levels of tasks (“same”
and “similar’) from the same domain enable us to advance insights
beyond state specificity, into state-target similarity.

For “same task” scores (in-scanner task), reaction time and accu-
racy of task performance were used. These two scores were com-
bined by calculating the Inverse Efficiency Score (IES; Townsend &
Ashby, 1983), which is defined as the mean response time across cor-
rect trials of the condition of interest divided by its accuracy. This was
employed to address the issue of ceiling effects in the accuracy
scores. Hence, for WM (subsequently called “n-back”), IES was calcu-
lated using mean response time and accuracy of the 2-back blocks.
For EMO, we used response time and accuracy in the face-block of
the emotional face-matching task (subsequently called “matching” or
“EMO matching”). For SOCIAL, since the accuracy in both interaction
and random trials involved theory-of-mind cognition (Castelli
et al., 2000), we averaged response time and accuracy of both interac-
tion and random trials before creating the IES (subsequently called
“Social Cognition”).

For “similar task” scores (out-of-scanner task or questionnaire
scores) in the WM domain, we selected the unadjusted list sorting
score from the NIH Toolbox List Sorting Working Memory Test (sub-
sequently called “List Sorting”). For SOCIAL, we computed a social
satisfaction compound score (Babakhanyan et al., 2018) across five
different scales (friendship, loneliness, emotional support, instrumen-
tal support, and perceived rejection) of the self-report Emotion Bat-
tery of the NIH Toolbox (Salsman et al., 2013) (subsequently called
“Social Satisfaction” or “Satisfaction”). For EMO, we computed the
IES using reaction time and accuracy of the Penn Emotion Recognition
Test (Gur et al., 2001, 2010) (subsequently called “Emotion Recogni-
tion” or “Recognition”). See supplementary Table S1 for an overview
of all targets included.

2.3.2 | Features: FC

Resting-state fMRI and the three sets of task fMRI data (WM,
SOCIAL, EMO) from sample 2 were used for calculating FC within
each network of interest (WM, SOCIAL, EMO, and Power). The net-
work extraction is explained in detail in the section “Delineation of
task-networks in Sample 17; for an illustration of the methods applied,
please see Figure 2. For all four states we used all runs available (four
runs for REST and two runs each for the tasks) and their full duration
per run. MRI protocols of HCP were previously described in detail
(Glasser et al., 2013; Van Essen et al., 2013). For the task-fMRI data,
we used the minimally preprocessed version provided by the HCP,
which includes removal of spatial distortions, volume realignment, reg-
istration to the anatomical image, bias field reduction, normalization
to the global mean, and masking the data with the final brain mask
(Glasser et al., 2013). The approach to treat task fMRI comparable to
resting state fMRI data has been suggested by (Greene et al., 2020).
For the resting-state fMRI data, we used the ICA-FIX denoised data
provided by the HCP, which uses the minimally preprocessed fMRI
data (processed in the same way as task fMRI data) as input and
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FIGURE 2 Overview of the applied methods. Yellow blocks depict the network extraction from sample 1. Violet blocks depict the network-
based prediction in sample 2, together with the feature extraction (functional connectivities) from the networks delineated in the first step and
sample. The upper heatmap under “FC-Features” shows the FC from the different states in the WM-network. GLM: General linear modeling, PE:
Phase encoding; FC: Functional connectivity; Soc. Cog., Social cognition task (in-scanner task); Soc. Satisf., Social Satisfaction Questionnaire (out-
of-scanner score); Emo. Match., Emotional Face-Matching task (in-scanner task); Emo. Recog., Emotional Face Recognition task (out-of-scanner

score).

denoises it through classification of ICA components. This classifier
identifies “good” and “bad” components and automatically removes
artifactual or “bad” components. For further details, see Griffanti et al.
(2014), Salimi-Khorshidi et al. (2014), and Smith et al. (2013).
Additional processing as well as the FC analysis for both resting-
state and task-fMRI data were performed using SPM12 (www.fil.ion.
ucl.ac.uk/spm/software/spm12/) and MATLAB 2020a (The Math-
Works, Natick, MA). Nuisance regression was done to control for

mean white matter and cerebrospinal-fluid signals, mean global signal,

within-scanner motion using the 6 movement parameters and their
derivatives stored in the Movement_Regressors_dt.txt file provided
by the HCP. Further, we applied band-pass filtering [0.01-0.1 Hz] and
detrended the time series. We opted for the band-pass filter, as this
has been shown to be successful in filtering out movement and physi-
ological artifacts, without leading to information loss (Ciric
et al., 2017; Satterthwaite et al., 2013). Using the network coordinates
obtained from sample 1 (depicted in Figure 2 and in the supplemental

material in Figures S7-S13 and Tables $2-S7), for each network, we
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modeled a 5-mm sphere around each node's coordinate. The sphere
size was the same for all coordinates to ensure the same number of
voxels within each node. However, as we extracted multiple peak
coordinates from larger clusters of task-activation in sample 1, larger
activated regions are represented by multiple spheres. From each
sphere, we extracted the mean time series. We then calculated the
Pearson's correlations between all pairs of nodes of each respective
network, before applying Fisher's Z-transformation. These steps were
done for each run separately (four runs for REST and two runs each
for the tasks) and for each state (REST, WM, SOCIAL, and EMO). The
z-scored FC values were finally averaged across all runs of each state.
This was done for all four networks as well as for each of the four
states. Connectivity matrices for the WM network can be seen in
Figure 2, all other networks averaged across all subjects can be found
in the supplemental material (Figures $14-520).

To ensure that any effects were not due to the different lengths
of the tasks performed in the scanner, we trimmed all time series to
the length of the shortest scan duration (EMO: 2:16 min) for a control
analysis. These results are reported in the supplemental material
(Figure S22).

233 |
behavior

Network-based prediction of individual

We predicted the task performance/characteristics for each domain
from resting- and task-state FC (four states: REST, WM, EMO,
SOCIAL; to investigate state specificity) and task of interest (same and
similar tasks in WM, EMO, SOCIAL; to further investigate state-target
similarity) of the delineated networks (four networks: whole-brain
Power nodes and three task networks [WM, SOCIAL, EMO from sam-
ple 1; to investigate network specificity]).

For the main analysis, we used partial least squares (PLS) as the
prediction model. PLS is a form of supervised learning which uses lin-
ear regression fitting, but it can handle violation of the assumption of
no multicollinearity by reducing the dimensionality of correlated vari-
ables. However, to confirm our results and to cover models that have
been used in the past for behavioral prediction, we additionally per-
formed analyses using other algorithms: Kernel ridge regression,
which, like PLS, is a linear parametric model. As well as support vector
regression (with both linear and nonlinear RBF kernel) and random
forest as nonparametric models, where both can capture nonlinear
relationships. Finally, we used PLS and kernel ridge also with
connectivity-based prediction modeling (CBPM; Finn et al., 2015;
Shen et al., 2017) as a popular feature reduction. CBPM correlates the
features to the target variable, retaining only the features showing a
significant relation to the target for the model to learn. Note that all
models were trained using the same set of FC features and target var-
iables. All results from the additional analyses are presented in the
supplemental material (Figures S21-528).

Separate prediction analyses were conducted for each combina-
tion of network, state, and behavioral score, resulting in a total of

4 states x 4 networks x 6 targets = 96 predictions. The FC pattern

of the respective network and state constituted the given feature
space, and the respective behavioral scores were the targets. All
algorithms were used as implemented in Julearn (Hamdan
et al., 2023), which is a toolbox based on scikit-learn (Pedregosa
et al., 2011). It includes hyperparameter tuning, nested-CV, and fea-
ture reduction methods making sure that data leakage is avoided.
For PLS, we tuned the hyperparameters in an inner fivefold CV, with
the number of latent components increasing in steps from 1 to 10.
As having a sibling in the training set could lead to a better predic-
tion of the related participant's score in the validation set, we
applied a 100x leave-30%-families-out CV scheme on 420 subjects
from sample 2 to account for the family structure of the sample
(i.e., individuals from the same family were not split into training or
validation sample but kept in either one of them). This is done to
counter potential nonindependence induced by the family structure
in the HCP dataset (Poldrack et al., 2020). We deconfounded the
features by regressing out age and sex as well as normalizing them
by z-transformation. For comparability of prediction performance
between the different behavioral scores, we additionally normalized
the targets. To avoid data leakage, confound regression and normal-
ization were done within the CV. That is, the confound regression
models and parameters for z-transformation were computed in the
CV on the training set only (70% of the families) and then applied to
the test set (30% of the families) (Poldrack et al., 2020). Prediction
performance was evaluated by the root mean squared error (RMSE)
as well as the coefficient of determination (COD), as a measure of
goodness of model fit, averaged across all CV runs. Additionally, the
mean Pearson correlation across all CV runs between predicted and
observed scores was calculated. After hyperparameter tuning and
CV, we finally applied the model, that has been trained on all the
data provided and with the hyperparameter tuning performed on it,
to the randomly drawn holdout sample (47 subjects from sample 2)
to evaluate the model's generalizability.

The RMSE was used for testing for significant differences of pre-
diction performance between states, networks and, tasks using
machine-learning (ML)-adjusted t tests (Nadeau & Bengio, 1999).
These modified t tests are evaluated and adjusted for comparing ML
algorithms (Bouckaert & Frank, 2004) to account for violating the
independence assumption in a paired Student's t test. This is done by
correcting the variance estimate through considering the training and
sample size. In our case, due to the leave-30%-families-out CV
scheme, the number of data points changed in each fold. Therefore,
we used the mean training sample size across the 100 folds for the
adjustment.

Within each phenotypic domain, we first tested effects of state
and network by averaging prediction performance of the respective
other factors (i.e., averaging across networks and task when testing
for state effects, and across state and task when testing for network
effects). As state-target similarity is an extension of state specificity,
we here only averaged across networks for same and similar tasks,
respectively. Significant effects (Bonferroni corrected for multiple
comparisons) were then further assessed by comparing the respective

individual prediction scores between each other.
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3 | RESULTS

In a first step (upper/yellow part of Figure 2), we compared the result-
ing task-networks from both sample 1 and the meta-analyses to
ensure they covered and showed overlap with frequently observed
regions in previously reported large-scale analyses (WM: Daamen
et al., 2015; Fuentes-Claramonte et al., 2019; Kennedy et al., 2017;
Rottschy et al., 2012; Snoek et al, 2021; https://identifiers.org/
neurovault.collection:7103; SOCIAL: T. Chen et al., 2023; Hennion
et al., 2016; Mossad et al., 2022; Patil et al., 2017; EMO: Chaudhary
et al., 2023; Herrmann et al., 2020; Nord et al., 2017; Snoek
et al, 2021; https://identifiers.org/neurovault.collection:7103). The
resulting WM-NW had 49 nodes, the SOCIAL-NW had 66 nodes, and
EMO-NW had 84 nodes. For an overview of the networks, please see
Figure 2. Please refer to the supplemental material for a comprehen-
sive depiction of the original activation maps resulting from the
group-level (Figures S1-S3) and the activation likelihood maps of
S4-56),
(Figures S7-S13) and further details on the exact coordinates, includ-

the  meta-analyses  (Figures extracted  networks
ing the anatomical labels (supplemental Tables $2-57).

Following this, we examined the FC of sample 2 within the net-
works derived from sample 1 for each individual state. Averaged
across all subjects, the pattern of FC of all networks looks similar
between different states. However, we see a tighter network coupling
within the WM-NW in the WM state, compared to the other states
(i.e., SOCIAL, EMO, and resting state; see Supplemental Figures S14
and S15). A tendency of higher FC within the congruent network was
also visible in the EMO domain (Supplemental Figures S18 and S19).
However, the picture was more fuzzy within the SOCIAL domain
(Supplemental Figures S16 and S17), where no apparent pattern was
discernable. This further motivated the next step—the application of
ML and its assessment—to investigate whether the algorithms would
be able to pick up complex and subtle signal that we were unable to
observe within the averaged FC matrices.

The main focus of this study, therefore, lies on the prediction ana-
lyses (bottom/violet part of Figure 2). We mainly report on the out-
comes of the prediction analyses using PLS. Predictions using
different algorithms and approaches showed highly similar patterns
and their details can be found in the supplementary material. Further-
more, regarding outcome measures, we here focus on the RMSE from
the CV as well as the COD as a measure of goodness of fit. In the sup-
plementary material, additional results of Pearson's r of the predicted
and observed score from the CV can be found.

Averaged across all CV-folds per prediction, the COD and RMSE
(Figure 3) revealed that the models show a poor fit and prediction accura-

cies are rather low. Note, that COD values below zero indicate that

prediction of individual scores were worse than predicting the mean of
the target. The mean COD showed a positive mean value only for 2 out
of 96 predictions, while all others showed a mean COD of zero or a nega-
tive value. Other models (e.g., kernel ridge regression or SVR) yielded
some more COD values above zero, but no model achieved a mean COD
higher than 0.07. Similarly, the RMSE was quite high for all predictions.
Because these scores indicated a generally poor fit to the data, we
refrained from applying the best model to the holdout sample. The corre-
lations (for details, see the supplementary material) between predicted
and observed values ranged from —0.11 to 0.32 with a mean prediction
accuracy of 0.08 (SD: 0.09) and only one mean correlation from the
96 predictions reaching a medium effect size.

3.1 | State specificity in network-based prediction
To answer the question if the correspondence between state and tar-
get (e.g., WM score predicted using FC during WM state) improves
predictions, and whether there even is state specificity (e.g., WM
scores predicted significantly better from FC during WM state than
from FC during other states: REST, SOCIAL, or EMO), we examined
the differences in prediction accuracy between states.

No significant differences were found for the SOCIAL and EMO
domain (Figure 4b,c). For the WM domain, the ML-adjusted t test
(Bonferroni corrected for multiple comparisons) showed a significant
benefit for all task states compared to the resting state (see Figure 4a;
see Table 1 for mean RMSE and significant t test statistics). However,
non-WM domain states (i.e., SOCIAL and EMO) only showed a signifi-
cant difference to the WM state at an uncorrected threshold (not
shown in Table 1). This difference was also significant when using
other algorithms and feature selection approaches (PLS with CBPM,
random forest, and SVR with the RBF kernel). At an uncorrected
threshold, the difference was also significant for all other models (ker-
nel ridge regression, SVR with linear kernel, and CBPM with ridge
regression), as well as when using only the trimmed time-series.

To asses which effect was driving the significant differences, we
compared prediction performance between states using post hoc ML-
adjusted t tests, while keeping network and task constant. That is, we
only compared predictions between same-domain networks and tasks
(e.g., comparing the prediction performance of “same” WM task score
based on FC between Power nodes in resting state to the prediction
performance of “same” WM task score based on FC between Power
nodes in WM state). Comparing prediction performance between rest
and different states for each network and WM score revealed that
the difference between REST and WM state was driven by the differ-

ence in prediction performance of the n-back task using the Power

FIGURE 3 Prediction performance: Boxplots of the distribution of COD and RMSE from the 100x CV for each phenotypic domain (a—WM,
b—Social, c—EMO domain), state and network. Boxes represent the model fit/COD and RMSE of prediction of a specific score (WM, SOCIAL,
EMO; performed in [darker background] or outside [lighter background] the scanner) based on functional connectivity within a given network
(POWER, WM, SOCIAL, EMO) in a given state (REST, WM, SOCIAL, EMO). Green: WM, blue: SOCIAL, red: EMOTION, yellow: resting state,
white: Power nodes. Darker background: target is the task performed in the scanner; lighter background: target is the task performed outside the
scanner. Soc. Cog., Social cognition task (in-scanner task); Soc. Satisf., Social Satisfaction Questionnaire (out-of-scanner score); Matching:
Emotional Face-Matching task (in-scanner task); Recognition: Emotional Face Recognition task (out-of-scanner score).
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State and network specificity: State (a-c) and network (d-e) specificity for each phenotypic domain (a and d—prediction of WM

scores, b and e—prediction of SOCIAL scores, ¢ and f—prediction of EMO scores). For state specificity, (a-c) RMSE of all networks (POWER, WM,
SOCIAL, EMO) and the two tasks of the respective domain in a given state (REST, WM, SOCIAL, EMO) are averaged. For network specificity, all
states (REST, WM, SOCIAL, EMO) and the two task of the respective domain are averaged in a given network (Power nodes, WM, SOCIAL,
EMO). Green: WM, blue: SOCIAL, red: EMOTION, yellow: resting state. Horizontal bars indicate significance pc, <.05.

nodes and the EMO network (for mean RMSE and significant t test
statistics, see Table 1). The EMO network additionally showed a dif-
ference between WM and REST state when predicting list sorting.
The difference between REST and EMO state was also driven by
Power nodes and the EMO network when predicting n-back perfor-
mance, and by the EMO network when predicting list sorting. The sig-
nificant difference in REST versus SOCIAL was driven by the Power
nodes in predicting n-back performance.

Overall, state had a significant influence on predicting WM
scores, with better predictions when using task compared to resting
state. This state-specific improvement was, however, not uniformly
observed and mainly driven by predictions based on FC within the

Power nodes and the EMO network.

3.2 | State-target similarity in network-based
prediction

In a next step, we examined differences in predictability between the
“same” and “similar” tasks in a given domain. We were interested in

whether the behavior would be predicted better in the state where

the predicted behavior was measured (“same task™), and whether the
FC-based predictivity could translate to a related task (“similar task”).
An example would be the comparison between the predictability of
n-back task performance (WM task performed during scanning) and
the list sorting task (WM task performed outside of the scanner)
based on FC patterns observed during the WM n-back task.

For this comparison of “same task™ with “similar task,” we found
a slight (numerical) benefit in the performance of the “same task.”
However, a direct statistical comparison of RMSE values using ML-
adjusted t tests did not show any significant effects after Bonferroni

correction for multiple comparisons (see Figure 5).

3.3 | Network specificity in network-based
prediction

Finally, we set out to answer the question if predicting task perfor-
mance does benefit from being based on FC within a network known
to be engaged in performing that same task (e.g., n-back task perfor-
mance predicted from FC within the WM-network), as compared to
other task-related networks (e.g., n-back task performance predicted
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TABLE 1 Comparison of prediction accuracies between states.

Domain of predicted RMSE RMSE p-

performance State A mean (SD) State B mean (SD) t Value

Significant main effect of state

WM REST 1.10 (0.06) WM 1.02 (0.05) 5.10 <.001
REST 1.10 (0.06) SOCIAL 1.05 (0.06) 349 013
REST 1.10 (0.06) EMOTION 1.05 (0.06) 3.68 .007

Significant post hoc tests for specific state—task—network combinations

WM REST (n-back, Power nodes) 1.06 (0.09) WM (n-back, Power nodes) 0.95 (0.09) 483 <.001
REST (n-back, EMO 1.13(0.10) WM (n-back, EMO network) 1.00 (0.10) 351 .016
network)
REST (List Sorting, EMO 1.19 (0.09) WM (List Sorting, EMO 1.05 (0.09) 410 .002
network) network)
REST (n-back task, Power 1.06 (0.09) SOCIAL (n-back task, Power 0.98 (0.09) 321 .043
nodes) nodes)
REST (n-back task, Power 1.06 (0.09) EMOTION (n-back task, Power 0.97 (0.09) 3.72 .008
nodes) nodes)
REST (n-back, EMO 1.13 (0.10) EMOTION (n-back, EMO 1.00 (0.10) 340 .023
network) network)
REST (List Sorting, EMO 1.19 (0.09) EMOTION (List Sorting, EMO 1.10 (0.09) 3.32 .030
network) network)

Note: Machine-learning-adjusted t test to assess state specificity using the averaged 100 RMSE values obtained from 100-fold cross-validation within the
state listed in column “State A” versus the state listed in column “State B.” p-Values are Bonferroni corrected for multiple comparisons. Post hoc t tests
between individual predictions of the task in the network (both noted in brackets) and the state listed in column “State A” versus the state listed in column

“State B.”
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FIGURE 5 State-target similarity: Boxplots of the distribution of
RMSE from the 100x CV averaged across all networks (Power nodes,
WM, SOCIAL, EMO network) within a given state (WM, SOCIAL, and
EMO) and task (SAME or SIMILAR). Green: WM, blue: SOCIAL, red:
EMOTION, gray: averaged across networks. Darker background:
target is the “same” task performed in the scanner, lighter
background: target is the “similar” task performed outside the
scanner.

from FC within a SOCIAL task-based network or the whole-brain con-
nectome). ML-adjusted t tests showed, for all three domains, a benefit
for the whole-brain Power nodes over the task-specific networks (see
Figure 4d-f). In the WM domain, FC between the Power nodes pre-
dicted WM-related targets better than did FC within the n-back WM-
specific network, the SOCIAL-specific network, or the EMO-specific
network (see Figure 4d and Table 2 for mean RMSE and t test statis-
tics). In the SOCIAL domain, the Power nodes predicted SOCIAL-
related targets better than did the WM-specific, SOCIAL-specific, or
EMO-specific networks (see Figure 4e). Finally, in the EMO domain,
the Power nodes again predicted EMO-related targets better than all
three domain-specific networks including the EMO-specific network
derived from an emotional face-matching task (see Figure 4f).

Post hoc tests (see Table 2) indicated that the difference between
the Power and WM networks was driven by the EMO and WM state
when predicting social satisfaction, while there was no specific
state or task driving the effects for the EMO and WM domain. The
priority of Power over the SOCIAL-specific network was in particular
evident when predicting social cognition and social satisfaction in the
EMO state and when predicting emotion recognition in the REST,
SOCIAL, and EMO states. No specific state or task was driving the
effect for the WM domain. The effect of Power versus the
EMO-specific network was driven by the predictions of list sorting
and emotion recognition in the REST state. No specific state or task
was driving the effect in the SOCIAL domain.
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TABLE 2 Comparison of prediction accuracies between networks.

Domain of predicted RMSE
performance Network A

Significant main effect of network

WM Power nodes 1.02 (0.06)
SOCIAL Power nodes 1.04 (0.07)
EMO Power nodes 1.01 (0.06)

Significant post hoc tests for specific network—task—state combinations

WM Power (List Sorting, REST 1.07 (0.09)
state)

SOCIAL Power (Soc. Cog., EMO state)  1.02 (0.11)
Power (Soc. Satisf., EMO 1.01 (0.08)

state)

Power (Soc. Satisf., WM state)  1.04 (0.08)
1.00 (0.09)

EMO Power (Emo. Recog., REST
state)

Power (Emo. Recog., WM
state)

Power (Emo. Recog., SOCIAL
state)

Power (Emo. Recog., EMO
state)

mean (SD)

0.99 (0.09)

1.00 (0.09)

1.01 (0.09)

RMSE p-
Network B mean (SD) t Value
WM 1.06 (0.06) -3.30 .025
SOCIAL 1.08 (0.06) —-4.65 <.001
EMO 1.08 (0.06) —-6.03 <.001
WM 1.11 (0.06) -6.37 <.001
SOCIAL 1.11 (0.06) -5.72 <.001
EMO 1.08 (0.07) —-443 <.001
WM 1.07 (0.07) -5.05 <.001
SOCIAL 1.09 (0.06) -7.10 <.001
EMO 1.05 (0.06) -3.93 .003
EMO (List Sorting, REST state) 1.19 (0.09) —-441 .002
SOCIAL (Soc. Cog., EMO 1.14 (0.11) -4.80 <.001
state)
WM (Soc. Satisf., EMO state) 1.11(0.08) -3.82 .017
WM (Soc. Satisf., WM state) 1.15(0.08) -3.68 .027
SOCIAL (Emo. Recog., REST 1.13 (0.10) —4.05 .008
state)
EMO (Emo. Recog., REST 1.11 (0.09) —4.39 .002
state)
SOCIAL (Emo. Recog., WM 1.13 (0.10) —-5.18 <.001
state)
SOCIAL (Emo. Recog., 1.11 (0.09) —4.47 .002
SOCIAL state)
SOCIAL (Emo. Recog., EMO 1.12(0.09) —4.47 002
state)

Note: Machine-learning-adjusted t tests to assess network specificity using the averaged 100 RMSE values obtained from 100-fold cross-validation within
the network listed in column “Network A” versus the network listed in column “Network B.” p-Values are Bonferroni corrected for multiple comparisons.
Post hoc t tests between individual predictions of the task in the state (both noted in brackets) and the network listed in column “Network A” versus the

state listed in column “Network B.”

Abbreviations: Emo. Recog., Emotional Face Recognition task (out-of-scanner score).; Soc. Cog., Social cognition task (in-scanner task); Soc. Satisf., Social

Satisfaction Questionnaire (out-of-scanner score).

This superiority of the Power nodes over functional network
definitions in all three domains was not present in other ML algo-
rithms. However, we still saw a similar trend when trimming the
time series to the shortest task (EMO: 2:16 min), as the Power
nodes performed better in all domains and networks, except for the
EMO domain where the EMO network did not perform significantly

worse.

4 | DISCUSSION

Using state-of-the-art fMRI preprocessing and ML approaches, this
study investigated brain-behavior relationships. Specifically, how
brain features from specific states and networks, or the task similarity

within the behavioral domain, affects this relationship. Based on

previous studies, we hypothesized that brain features obtained from
networks and/or states that are corresponding to the target task are
more informative about individual behavior than those obtained from
other (non-corresponding) states or networks. Additionally, we
expected that behavior in the task performed during fMRI data acqui-
sition will be predicted better than similar tasks of the same pheno-
typic domain. Contrary to expectations, we found no significant
differences in predictability (when correcting for multiple compari-
sons) that would indicate specific benefits of state, task, or network
correspondence. Rather, our results show a general benefit of predict-
ing WM scores using (any) task state, relative to rest, and for predict-
ing performance in any domain from whole-brain FC (Power nodes),
relative to predefined functional networks. Importantly, however, pre-
diction accuracies were overall quite low, raising the question to what
extent the observed differences (or their absence) in prediction
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performance between state and network conditions, and task similar-

ity can be meaningfully interpreted.

4.1 | s there state specificity for brain-behavior
prediction?

We expected not only an improvement in predicting behavior based
on FC during task states compared to FC at rest as demonstrated by
(Greene et al., 2018), but especially in predicting behavior based on
FC within corresponding states. However, apart from the overall low
prediction performance, our results, show only weak evidence for the
former, that is, an advantage of task states compared to resting state,
but only for predicting WM scores (see Figure 4a). Previous studies
have already reported that predictions of cognitive scores such as
intelligence or attention improve when using task fMRI data
(vs. resting state) to derive FC patterns (Avery et al., 2020; Greene
et al.,, 2018; Jiang et al., 2020). But also when combining task and rest
(Jiang et al., 2020), and specifically when using FC within a WM task
state (Avery et al., 2020; Jiang et al., 2020; Sripada et al., 2020; Stark
et al., 2021). Our results extend this work to different states and addi-
tionally show that this benefit of using task-fMRI data cannot be
assumed for behaviors other than WM. Task-fMRI data may lead to
better predictions compared to resting-state data, particularly for WM
performance, possibly because task-based fMRI has a more con-
strained setup which potentially enhances reliability. Resting-state
fMRI has been shown to be less reliable than stimulating (such as
movies or task) fMRI (Noble et al., 2019). Task-based modulations of
brain states may therefore contain more information about individual
differences in brain functioning and behavior (Greene et al., 2018).
This is consistent with a recent emphasis on shifting from solely
focusing on resting-state FC (Finn, 2021; Greene et al., 2018) to accel-
erate progress in human neuroscience. Possibly, predictive perfor-
mance can be improved by using naturalistic stimuli (Finn &
Bandettini, 2021), as such settings are still more constrained than rest
but less constrained than certain laboratory tasks. However, using
movie data would not readily allow testing of state specificity effects,
and therefore would not be a ready-made solution to the current

research question.

4.2 | s there state-target similarity?

Surprisingly, prediction accuracy was low even when FC was derived
from the exact same task state in which the behavioral data were col-
lected, with no improvement when predicting the same score, as com-
pared to a similar score (see Figure 5). Also using the HCP dataset and
WM task data, Stark et al. (2021) reported similar though slightly
higher accuracies than ours for n-back (“same task”) and list-sorting
(“similar task”) scores, with higher correlations for the former (but not
tested for significance). We here extend these insights by also testing
effects of task similarity for SOCIAL and EMO scores and by showing
that although n-back WM performance seems to be predicted better,

the difference between “same task™ and “similar task™ score predic-
tion is not significant.

A possible reason for the lack of support of our hypothesis might
lie in the nature of the task used in the scanner. That is, a lot of para-
digms were developed in experimental contexts (Hedge et al., 2018)
and therefore optimized for inducing a robust effect across partici-
pants instead of assessing interindividual differences. This might espe-
cially be the case for experimental tasks used in the scanner. For
example, the emotional face-matching task (Hariri et al., 2002) used
for EMO assessment was developed to induce robust amygdala acti-
vation, rather than capturing individual emotion processing abilities.
Additionally, the tasks used here were rather short and may have
lacked enough difficult items for a clearer differentiation between par-
ticipants. The n-back task, for example, most strongly differentiates
between individuals when using high-load conditions (>3-back), both
in terms of behavior and brain activity (Lamichhane et al., 2020).
Therefore, using behavioral measurements from tasks optimized for
obtaining stable group-average effects might have counteracted the
successful prediction of interindividual differences.

4.3 | Isthere network specificity for brain-
behavior predictions?

We based the network specificity hypothesis on the assumption that
if networks are reliably engaged during a task, then these networks
should play an important role in the task outcome (i.e., specific perfor-
mance). Importantly, our aim to demonstrate network specificity was
based on the idea that a priori task-defined networks improve inter-
pretability (Bzdok et al, 2012; Langner et al, 2018; Miiller
et al., 2018; Rottschy et al., 2012) as they reflect interactions between
regions that are jointly engaged during a specific task and should
therefore be biologically meaningful (J. Chen et al., 2021; Nostro
et al., 2018; Plaschke et al., 2017). Further, visual inspection of FC
within task networks and states averaged across subjects (see supple-
mental Figures S14-S20) revealed the expected stronger FC within
the congruent networks and states, respectively. This was most
strongly expressed in WM and EMO, whereas in SOCIAL no clear pat-
tern was visible. Yet, this apparently tighter coupling of congruent
networks did not provide enough information for the prediction of
individual behavior to translate into a significant improvement.
Nonetheless, our results showed that prediction performance
was weak regardless of the networks used (see Figure 3—COD). Com-
parison of the differences between networks showed that prediction
from the whole-brain representation (Power et al., 2011) significantly
improved prediction compared to the task specific networks (see
Figure 4d-f). The reason for an advantage of the whole-brain connec-
tome remains to be revealed. We assume that some subtle pieces of
information in the whole-brain connectome, which are not captured
by the task networks, reflect individual processing differences in some
parts of the tasks at hand and thus contribute to some extent to
behavior prediction. Additionally, the whole-brain connectome has

considerably more nodes than the task networks studied here, giving
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the model much more features to learn from. These nodes can poten-
tially capture interactions and integration of multiple brain regions,
including regions, that are not consistently involved in the investi-
gated mental processes and do not translate into group-level average
task networks. However, despite the whole-brain Power nodes per-
forming, on average, significantly better than the task networks, they
were not consistently superior (see Supplemental Figure 529 showing
the prediction performance sorted by network size).

Nevertheless, our results suggest that there is no network speci-
ficity, which is in line with the findings of Heckner et al., 2023 and
Plaschke et al., 2017, 2020. Using networks based on group analyses
may therefore not be a suitable avenue for assessing individual differ-
ences (Finn et al., 2017; O'Connor et al., 2017; Shah et al., 2016).
Brain mapping results from group analyses typically reveal regions
with low inter-subject variability (Hedge et al., 2018), and group-
averaged patterns of brain activation often look quite different from
patterns observed on the individual subject level (Miller et al., 2002).
In addition, it has been shown that brain regions, for which activation
has been found to be associated with behavioral outcomes, are not
necessarily those that show up in standard group-average analyses
(Ganis et al., 2005). Our results now indicate that this might also apply
to networks derived from large samples that also reflect small average
effects (HCP-derived networks) or from large-scale meta-analyses.
However, improvement may be gained through an individualization of
the networks prior to prediction. For example, Kong and colleagues
employed a multi-session hierarchical Bayesian model to estimate
individual-specific cortical network parcellations, significantly improv-
ing prediction performance relative to other parcellations (Kong
et al.,, 2019). Similarly, using a different approach (Li et al., 2019) dem-
onstrated an improvement in prediction accuracy using an iterative
search based on a population-based functional atlas in combination
with a map of inter-individual variability (D. Wang et al., 2015).

44 | Methodological considerations

In this study, we aimed to predict complex behavior based on
FC. Generally, our prediction accuracies were rather low. Neverthe-
less, they are comparable to the accuracies (correlation between pre-
dicted and observed score) reported in the literature (Dubois, Galdi,
Han, et al., 2018; Greene et al., 2018; Heckner et al., 2023; Kandaleft
et al., 2022; Ooi et al., 2022; Tomasi & Volkow, 2020). However, using
correlation alone as a measure for prediction accuracy can skew the
picture. All measures individually (correlation, COD, RMSE) have been
shown to have their drawbacks and therefore it has been suggested
that they should be considered together as a whole (Poldrack
et al., 2020). Our results emphasize the importance of using more than
one measure and especially using more than Pearson's r as a measure
for prediction performance, as this metric, when used in isolation, may
draw an overly optimistic picture. As illustrated in our plots (see sup-
plementary material), Pearson's r invites the observer to interpret
some apparent patterns. Yet, when looking at the model fit given by
COD values, it can be easily seen that most models barely fit the data

(see e.g. Figure 3). Surprisingly, only few prediction studies in the neu-
roimaging literature have reported metrics other than r. However, if
they did, results were rather similar to ours, with finding only small
amounts of variance explained (COD) and reporting high prediction
errors on average (Dubois, Galdi, Han, et al, 2018; Kandaleft
et al,, 2022; Ooi et al., 2022).

There may be several reasons why we did not successfully predict
behavioral performance. One is predicting behavioral scores of single
tasks or questionnaires, like WM, as opposed to compound scores
across many tests, like overall cognition (Akshoomoff et al., 2013;
Dubois, Galdi, Paul, & Adolphs, 2018). Studies using compound scores
generally report better accuracies (McCormick et al., 2022; Ooi
et al., 2022), as they may capture individual abilities better and show
higher reliabilities compared to individual test scores (Hedge
et al., 2018). However, the interpretation and biological foundation of
compound scores is debatable (Dubois, Galdi, Paul, & Adolphs, 2018;
McFarland, 2012; Van Der Maas et al., 2006). In this study, we aimed
to investigate specificity, and hence we focused on individual tasks or
questionnaires at the cost of a potential decrease in prediction
performance.

Another reason for the low prediction performance, related to
the first explanation, might be the reliability of the predicted measures
but also the features, setting an upper bound for detecting relation-
ships (Cohen et al., 2013; Vul et al., 2009; Yarkoni & Braver, 2010).
Using the HCP test-retest sample calculation of the correlations
between measurement time points 1 and 2 (test-retest reliability) of
the scores we used revealed reliabilities between 0.5 and 0.8, with
highest reliabilities for the WM domain. In our and other studies, WM
or intelligence scores were generally predicted better than other cog-
nitive measures (Avery et al., 2020; Kandaleft et al., 2022; Ooi
et al., 2022; Sripada et al., 2020; Takeuchi et al., 2021), which could
be because these constructs are measured more accurately than
others.

Finally, for ML applications in CV schemes, sample size is an
important factor for achieving good prediction performance. The more
data is available, the better a model can learn. In our case, our sample
size decreased due to our carving out a subsample for a priori network
delineation, leaving us with 420 subjects in the training set. This step
was essential to assess network specificity using networks as close as
possible to the investigated tasks. Other studies using the HCP data-
set and similar algorithms have in part achieved slightly better predic-
tions, possibly through larger training sets (Jiang et al., 2020; Ooi
et al, 2022). The effects we sought to detect are presumably very
small; hence, a substantially larger dataset and/or more reliable behav-
joral assessments could be required to detect them (Marek
etal., 2022).

4.5 | Limitations and outlook
We are aware that there is a plethora of preprocessing pipelines and
feature selection models that may improve prediction. We used a

well-established preprocessing pipeline (Glasser et al., 2016) and
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widely used ML models that previously yielded the highest predictions
(Greene et al., 2018; Jiang et al., 2020; Yeung et al., 2022). Given that
we saw a similar pattern of prediction accuracies irrespective of the
model used, we would not expect a substantial change of the result
pattern if other models were used.

Further, we aimed to cover a broad range of task network repre-
sentations by (i) extracting networks from a high-powered single
study using task fMRI data, (ii) using ALE meta-analyses based on pre-
viously published neuroimaging results (see supplemental material), as
well as (iii) including a whole-brain representation (Power et al., 2011)
for comparison with the task networks. We acknowledge that differ-
ent whole-brain representations, such as the parcellation by Schaefer
et al. (2018) could yield different and possibly even better prediction
accuracies. Also, the inclusion of data-driven approaches to network
definition, like principle component analysis or group independent
component analysis, could lead to different results. Testing the influ-
ence of such methodological choices is an important research topic
and should be addressed more systematically in future studies. Until
then, our results should only be generalized to settings that employ
the same or similar methods as were used here. We here, hence, lim-
ited our analyses to one whole-brain representation, as our focus was
on task networks and their interpretability. This also entails using the
task-specific networks in their most accurate representation, encom-
passing their unique spatial distributions as well as their different
sizes. We believe that both aspects constitute fundamental inherent
characteristics of networks.

Finally, the HCP dataset comprises young and healthy adults, with
an above-population average intelligence. As the majority of subjects
in the HCP dataset were highly educated, performed generally well on
the tests, and as tests are optimized for group effects, the between-
subject variability in this dataset is relatively limited, that is, subopti-
mal for approaches relying on individual differences. Nevertheless,
the HCP currently offers the only dataset that allows for the investi-
gation of such complex research questions as state specificity, state-
target similarity, and network specificity in brain-based prediction set-
tings, because it covers a vast array of phenotypic domains, both in
and outside the scanner, while providing high-quality fMRI data

in task and resting states in a large number of participants.

4.6 | Conclusions

Here, using state-of-the-art ML algorithms for out-of-sample predic-
tion analyses, we aimed to investigate the specific influence of the
factors state, task, and network on behavior prediction from FC pat-
terns. Based on previous research on brain-behavior relationships, we
hypothesized that FC features from corresponding state, tasks, and
networks would be more informative than non-corresponding fea-
tures and hence improve prediction. We only found improvement for
using task over resting state fMRI, as well as better predictions for
whole brain compared to task specific networks. However, across

three behavioral domains, predictive performance was generally poor,

and there were no significant patterns indicating specificity of state,
networks, or task similarity, when looking at RMSE and COD. A signif-
icant improvement of prediction performance based on task-fMRI
(vs. resting-state fMRI) was only observed for the WM domain. Of
note, an isolated consideration of Pearson's correlation coefficient as
the sole index of model fit would have led us to different and appar-
ently overly optimistic conclusions. Hence, even with maximum
state-network-behavior compatibility, the relationship between FC
and behavior remains low. This study therefore emphasizes the need
for a critical assessment of prediction accuracies and suggests that
individual behavior cannot be successfully predicted based solely on
FC in task-specific networks.
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Methods

Overview of references per task:

Table S1: Behavioral Scores used in the prediction

random or interaction (Castelli
et al., 2000; Wheatley et al.,
2007)

Domain “Same” / In-scanner “Similar ” / Out-of-scanner
task task

Working Memory / N-back (Barch et al., 2013) List sorting (NIH Toolbox List

WM Sorting Working Memory
Test; (Cognition Measures,
n.d.)

Theory of mind / Labelling of interaction Compound score “Social

SOCIAL between animated shapes as Satisfaction” (Babakhanyan et

al., 2018) composed of scores
for:

Friendship, loneliness,
emotional support,
instrumental support, and

perceived rejection all from




NIH Toolbox Emotion battery
(Emotion Measures, n.d.;

Salsman et al., 2013).

Emotion Recognition / Face-matching. Adapted by Penn Emotion Recognition
EMO (Hariri et al., 2002) Test (Gur et al., 2002, 2010)
Network Delineation

Network Delineation via Meta-Analysis

As a second approach, to offer feature spaces that are entirely independent from the target, we
performed three activation likelihood estimation (ALE) meta-analyses for each of the selected tasks:
WM, SOCIAL, and EMO. WM and EMO were based on previous meta-analyses (WM: Rottschy et
al., 2012; EMO: Miiller, Hohner, et al., 2018), but were extended by including recent publications
(findings up to March 2020) and reduced to those tasks that matched the three tasks used in the
HCP (i.e. only 2-back vs. 0 back experiments for WM, matching faces > matching shapes for
EMO). For SOCIAL we performed our own literature search and coding procedure, following the
guidelines for neuroimaging meta-analyses (Miiller, Cieslik, et al., 2018) and including experiments
that used a theory of mind task using animated shapes and report results of the interaction > random
contrast. For each specific task, a meta-analysis was calculated using the ALE algorithm (details
about the method see Miiller, Cieslik, et al., 2018 and Kogler et al., 2020. From these resulting ALE
maps, illustrating spatial convergence across experiments, we extracted all peak coordinates with a
minimum distance of 15 mm using FSL. This resulted in three networks from the meta-analyses:
MetaWM, MetaSOCIAL, and MetaEMO. The three meta-analytically defined networks will be
openly available via the ANIMA-database (Reid et al., 2016; https://anima.fz-juelich.de/).

Network-based prediction of individual behavior

In addition to PLS, we used Support Vector Regression (SVR), Random Forest, kernel ridge
regression algorithms for prediction. Lastly, we performed connectivity-based prediction modelling
(CBPM; Finn et al., 2015; Shen et al., 2017) as a popular feature reduction technique with both PLS

and kernel ridge as algorithms.



For each algorithm we tuned the hyperparameters in an inner 5x-CV loop. For SVR we ran two
different kernels: linear and RBF-kernel. For the linear kernel we tuned the regularization parameter
C within [1e-6, 1e-5, 1e-4, 0.0005, 0.001, 0.005], with maximum 2000 iterations. For the RBF-
kernel we used the same regularization parameter range, but extended it by [0.01, 0.1, 1, 5, 10]. For
the random forest prediction, the number of trees was set to 2000, with mean squared error as the
criterion. The number of features was tuned within [0.14, 0.22, 0.33, 0.5, 0.75], with a minimum
number of 5 samples required to be at a leaf node. For kernel ridge regression we tuned the lambdas
in a range from 0-1000000. In the CBPM feature reduction, feature selection was based on Pearson
correlation, retaining features with correlations below the significance threshold of 0.01 and
grouping and summing them by positive and negative correlated features. We used the same

hyperparameter tuning outlined above with the respective algorithms.

For the significance tests, we used the Nadeau-Bengio machine learning adjusted t-test (Nadeau &

1on i
aZj=1%j

Bengio, 1999): t = . Within each cognitive domain, we first tested effects of state

1, n ~
G+ test )0.2

train
and network by averaging prediction performance of the respective other factors (i.e., averaging
across networks and task when testing for state effects, and across state and task when testing for
network effects). As domain specificity is an extension of state specificity, we here only averaged
across networks for same and similar tasks, respectively. Significant effects (corrected for multiple
comparisons) were then further assessed by comparing the respective individual prediction scores
between each other. In particular, to assess 1) state specificity we compared the prediction
performance between states, while keeping network and task constant. That is, we only compared
predictions between corresponding networks and tasks (e.g. comparing the prediction performance
of “same” WM task score based on FC within Power nodes in resting state to the prediction
performance of “same” WM task score based on FC within Power nodes in WM state). To assess ii)
network specificity we compared the prediction performance between all networks, while keeping
state and task constant (e.g. comparison of prediction performance of “same” WM score in resting
state WM networks compared to “same” WM score in resting state in EMO networks). To assess
ii1) domain specificity we compared the prediction performance of “same” and “similar” task
scores, while keeping state and network constant (e.g. comparison of prediction performance of
“same” WM task score based on Power nodes in WM state to prediction performance of “similar”

WM task score based on Power nodes in WM state).



Results

WM SOCIAL EMO

Figure S1. Group-level activation map of WM- Figure S2. Group-level activation map of Figure S3. Group-level activation map of EMO-
task (p < 0.05 (cluster-level FWE-corrected SOCIAL-task (cluster-level FWE-corrected task (cluster-level FWE-corrected threshold 0.05,
threshold 0.05, cluster-forming threshold p < threshold 0.05, cluster-forming threshold p < cluster-forming threshold p < 0.001)
0.001) 0.001)

Figure §4. Activation likelihood estimation map  Figure S5. Activation likelihood estimation map — Figure S6. Activation likelihood estimation map

of WM meta-analysis (cluster-level FWE- of SOCIAL meta-analysis (cluster-level FWE- of EMO meta-analysis (cluster-level FWE-
corrected threshold 0.05, cluster-forming corrected threshold 0.05, cluster-forming corrected threshold 0.05, cluster-forming
threshold p < 0.001). threshold p < 0.001). threshold p < 0.001).

Table S2. List of peak coordinates for WM-NW, extracted with a minimum distance of 15 mm (from
Fig. S§1)

Node X Y Z  Brain Structure

1 34 -58 -32 RCerebellum Crus |
46 -46 46 R Intraparietal Suclus
-30 -60 -32 L Cerebellum VI
-6 18 48 L Paracingulate Gyrus
32 6 58 R Middle Frontal Gyrus
-28 6 54 L Middle Frontal Gyrus

o Uk W N



7 -44 -52 46 L Intraparietal Sulcus

8 40 34 28 R Middle Frontal Gyrus

9 -8 -64 50 L Superior Parietal Lobule
10 8 -68 54 RPrecuneous Cortex

11 34 22 4 R anterior Insular Cortex
12 -32 50 16 L Frontal Pole

13 -32 20 0 Lanterior Insular Cortex
14 -44 26 34 L Middle Frontal Gyrus
15 38 -60 -48 R Cerebellum Crus I

16 12 -76 -24 R Cerebellum Crus |

17 38 48 18 R Frontal Pole

18 -8 -80 -26 L Cerebellum Crus |

19 -16 8 12 L Caudate

20 18 10 16 R Caudate

21 58 -30 -14 R posterior Middle Temporal Gyrus
22 -8 -58 -54 L Cerebellum IX

23 52 10 16 R Inferior Frontal Gyrus
24 24 46 -14 R Frontal Pole

25 -12 -92 2 L Occipital Pole

26 10 2 6 R Thalamus

27 0 -50 -18 Cerebellum I-IV

28 0 -30 -4 LThalamus

29 8 -58 -54 RCerebellum IX

30 48 6 30 RPrecentral Gyrus

31 -24 50 -12 L Frontal Pole

32 2 -12 16 R Thalamus

33 0 -62 -36 Cerebellum Vermis Vlllb
34 -56 -36 -14 L Middle Temporal Gyrus
35 2 12 24 Cingulate Gyrus

36 -2 -32 24 R Midcingulate Gyrus

37 -44 -50 20 L Angular Gyrus

38 28 -58 66 R Superior Lateral Occipital Cortex
39 -14 -26 -32 Brain Stem

40 20 -28 14 R Thalamus

41 20 -96 -14 R Occipital Pole

42 34 -90 -18 RInferior Lateral Occipital Cortex
43 16 28 -22 R Frontal Orbital Cortex
44 24 -20 -6 R Hippocampus

45 -22 -58 0 LLingual Gyrus

Table S3. List of peak coordinates for WM-Meta, extracted with a minimum distance of 15 mm
(from Fig. §4)

Node X Y Z Brain Structure

1 -46 6 36 L Middle Frontal Gyrus
2 -28 2 54 L Middle Frontal Gyrus



3 -46 26 28 L Middle Frontal Gyrus

4 -34 -54 48 LIntraparietal Suclus

5 42 -46 44 R Intraparietal Sulcus

6 10 -66 52 R Precuneous Cortex

7 -2 18 48 L Pre-supplementary motor area
8 -2 32 38 LParacingulate Gyrus

9 30 8 56 R Middle Frontal Gyrus
10 32 24 -2 Ranteriorinsular cortex
11 44 34 26 R Middle Frontal Gyrus
12 -32 -60 -34 L Cerebellum Crus |

13 30 -60 -30 RCerebellum IV

14 -32 22 0 Lanteior insular cortex
15 -38 50 8 LFrontal Pole

16 10 -76 -24 R Cerebellum IV

17 -8 -76 -28 L Cerebellum Crus |

18 -12  -68 60 L Superior Parietal Lobule
19 -16 -2 16 L Caudate

Table S4. List of peak coordinates for SOCIAL -NW, extracted with a minimum distance of 15 mm
(from Fig. S2)

Node X Y Z Brain Structure
1 -12  -94 18 L Occipital Pole
-22  -52 64 L Superior Parietal Lobule
3 22 -50 68 R Superior Parietal Lobule
4 18 -86 24 R Superior Lateral Occipital Cortex
5 -10 -80 34 LCuneal Cortex
6 -18 -12 70 L Precentral Gyrus
7
8
9

10 -80 -6 R Lingual Gyrus
12 -74 38 R Precuneous Cortex
16 -10 74 R Superior Frontal Gyrus

10 26 -44 10 R Precuneous Cortex

11 2 -24 30 R Posterior Cingulate Gyrus
12 28 66 2 RFrontal Pole

13 48 -56 46 R Inferior Parietal Lobules

14 40 54 -6 R Lateral Frontal Orbital Cortex
15 -26 68 4 L Frontal Pole

16 0 16 10 Septum

17 40 48 10 R Frontal Pole

18 50 -2 -2 RPlanum Polare

19 -20 -26 76 L Precentral Gyrus

20 -2 -10 70 LSupplementary Motor Area
21 2 40 16 R Anterior Cingulate Gyrus
22 -46 -10 60 L Precentral Gyrus

23 -22 -76 4 LlIntracalcarine Cortex



24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

R Middle Frontal Gyrus

L Caudate

L Planum Polare

L Lingual Gyrus

R Frontal Operculum Cortex
R Anterior Cingulate Gyrus

L Postcentral Gyrus

R Precentral Gyrus

R Precentral Gyrus

R Precentral Gyrus

L Inferior Parietal Lobule

R Supplementary Motor Area
R Caudate

R Postcentral Gyrus

R Thalamus

R Precentral Gyrus

L Intraparietal Sulcus

L Supplementary Motor Area
L Medial Frontal Obital Cortex
R posterior Superior Temporal Gyrus
R Anterior Insular Cortex

R Precentral Gyrus

L Parietal Opercular Cotex

R Precentral Gyrus

L Anterior Insular Cortex

L Frontal Pole

R Parietal Opercular Cortex

R Middle Frontal Gyrus

L Medial Frontal Obital Cortex

R inferior Lateral Occipital Cortex
R medial frontal orbital cortex

L Frontal Orbital Cortex
Cerebellum Vermis VI

R Intraparietal Sulcus

R Inferior Parietal Lobule

L Intraparietal Sulcus

L Middle Frontal Gyrus

R posterior Middle Temporal Gyrus
L Cerebellum Crus |

L Posterior Middle Temporal Gyrus
L Cerebellum VIlib

L Cerebellum VI

R Cerebellum Crus |




Table S5. List of peak coordinates for SOCIAL-Meta, extracted with a minimum distance of 15 mm
(from Fig. S5)

Node X Y z Brain Structure

1 58 -48 14 R Inferior Parietal Lobule
2 -58 -46 16 L Supramarginal Gyrus
3 62 -8 -16 R Middle Temporal Gyrus
4 54 6 -22 R Temporal Pole
5 10 62 22 RFrontal Pole
6 -44 -58 -10 L Mid Fusiform Gyrus
7 54 28 6 R Inferior Frontal Gyrus
8 -54 26 10 LInferior Frontal Gyrus
9 8 -48 50 R Precuneous Cortex
10 8 -54 36 RPrecuneous Cortex
11 -60 -8 -14 R Middle Temporal Gyrus

Table S6. List of peak coordinates for EMO-NW, extracted with a minimum distance of 15 mm
(from Fig. S3)

Node X Y Z  Brain Structure

1 24 -96 -4 R Occipital Pole

42 -48 -20 R Mid Fusiform Gyrus

3 -20 -94 -12 L Occipital Pole

4 38 -72 -14 R Posterior Fusiform Gyrus

5 18 -4 -16 R Amygdala
6 -18 -4 -18 LAmygdala
7
8
9

-34 -86 -12 Linferior lateral Occipital Cortex
-40 -54 -20 L Mid Fusiform Gyrus
44 18 24 R Inferior Frontal Gyrus

10 -4 -82 2 Llintracalcarine Cortex

11 14 -32 -2 R Thalamus

12 -8 -76 -38 LCerebellum Crusll

13 34 34 -14 RFrontal Pole

14 32 -6 -38 R Parahippocampal Gyrus

15 -40 18 26 L Middle Frontal Gyrus

16 48 -64 18 R Superior Lateral Occipital Cortex
17 -10 -32 -2 LThalamus

18 -34 -10 -32 L Parahippocampus

19 14 -70 10 RIntracalcarine Cortex

20 50 -42 14 R Posterior Superior Termporal Sulcus
21 -24 -24 -8 L Hippocampus

22 -36 30 -16 L Frontal Orbital Cortex

23 -2 -2 -16 LHypothalamus

24 20 -38 -44 RCerebellumX

25 0 -52 -36 Cerebellum Vermis IX



26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

R Lingual Gyrus

L Cerebellum X

L Superior Lateral Occipital Cortex
R Superior Temporal Gyrus

R Middle Temporal Gyrus

R Middle Temporal Gyrus

R Cerebellum Crus I

R Frontal Medial Cortex

R Middle Frontal Gyrus

L Posterior Superior Termporal Sulcus
R Intraparietal Sulcus

L Frontal Pole

L Middle Temporal Gyrus

R Precuneus

Midcingulate Cortex

R superior lateral Occipital Cortex
R Frontal Pole

R medial superior Frontal Gyrus
R Inferior Frontal Gyrus

L Cerebellum VIib

L Superior Temporal Gyrus

R Parieto-occipital sulcus

R Thalamus

R Parahippocampal Gyrus

L Middle Frontal Gyrus

R Precentral Gyrus

L Middle Frontal Gyrus

R Putamen

R Middle Frontal Gyrus

R Occipital Pole

L Precentral Gyrus

R Precentral Gyrus

R Basal Forebrain

L Cerebellum Crus |

R Caudate

Cuneal Cortex

L Precentral Gyrus

R Postcentral Gyrus

L Postcentral Gyrus

L Caudate

R Postcentral Gyrus

L Precentral Gyrus

L Posterior Superior Temporal Gyrus
L Middle Frontal Gyrus

R Caudate



71
72
73
74
75
76
77
78
79
80
81
82
83

-38 -18
-10
12
-12  -40
-22
-14 -2
-18 30
-30 -80
-58 -12
-68
-60 -10
-50 -68
-32 -60

40
78
70
66
12
16
60
26
48
-50
-36
46
44

L Postcentral Gyrus

R Superior Frontal Gyrus

R Pre-Supplementary Motor Area
L Postcentral Gyrus

R Posterior Insula

L Caudate

L Superior Frontal Gyrus

L Superior Lateral Occipital Cortex
L Postcentral Gyrus

R Cerebellum VIib

L Anterior Inferior Temporal Gyrus
L Superior Lateral Occipital Cortex
L Intraparietal Sulcus

Table S7. List of peak coordinates for EMO-Meta, extracted with a minimum distance of 15 mm
(from Fig. S6)

Node X Y Z  Brain Structure
1 20 -4 -18 RAmygdala
2 28 -94 -6 R Occipital Pole
3 -22 -6 -14 L Amygdala
4 -22 96 -6 L Occipital Pole
5 42 12 28 RInferior Frontal Gyrus
6 -42  -54 -22 L Mid Fusiform Gyrus
7 40 -50 -26 R Mid Fusiform Gyrus
8 -18 -32 -2 L Thalamus
9 -50 -48 4 L Posterior Superior Termporal Sulcus
10 -54 18 32 L Middle Frontal Gyrus




Figure §9. SOCIAL Network Nodes. Figure S10. SOCIAL Meta-Analysis Network
Nodes

Figure S11. EMO Network Nodes Figure S12. EMO Meta-Analysis Network
Nodes



Figure S13. Whole-brain Power nodes.



Average FC across subjects within the WM network during different states.
Resting State WM State

ann-v:-Enniﬂ-iy‘-*-uvul.-_n‘nnu-....-ruA-....

T

4 45

1

[UITITTT

45 45
-0.2 00 02 04 06
Correlation (Fishers Z)
1 RCerebellum Crus| 16 RCerebellum Crus| 31 LFrontal Pole
2 RIntraparietal Suclus 17 RFrontal Pole 32 RThalamus
3 LcCerebellumVI 18 L Cerebellum Crus| 33 Cerebellum Vermis Viiib
4 L Paracingulate Gyrus 19 L Caudate 34 L Middle Temporal Gyrus
5 RMiddle Frontal Gyrus 20 R Caudate 35 Cingulate Gyrus
6 L Middle Frontal Gyrus 21 R Posterior Middle Temporal Gyrus 36 R Midcingulate Gyrus
7 Lintraparietal Sulcus 22 L Cerebellum IX 37 LAngular Gyrus
8 RMiddle Frontal Gyrus 23 Rnferior Frontal Gyrus 38 R Superior Lateral Occipital Cortex
9 L Superior Parietal Lobule 24 RFrontal Pole 39 Brain Stem
10 RPrecuneous Cortex 25 L Occipital Pole 40 RThalamus
11 R Anterior Insular Cortex 26 RThalamus 41 R Occipital Pole
12 L Frontal Pole 27 Cerebellum I-IV 42 Rnferior Lateral Occipital Cortex
13 L Anterior Insular Cortex 28 LThalamus 43 R Frontal Orbital Cortex
14 L Middle Frontal Gyrus 29 RCerebellum IX 44 RHippocampus
15 RCerebellum Crus Il 30 RPrecentral Gyrus 45 L Lingual Gyrus

Figure S14) Heatmap of FC within the WM network averaged across participants in the four different states. FC reflects the Fisher
Z- transformed Pearson correlation coefficients between all network nodes. Anatomical labels and coordinates of the nodes can be
found in table S2-, node numbers are in the same order as in the table.



Average FC across subjects within the WM Meta-network during different states.

Resting State WM State
1 2 3 4 5 6 7 8 91011 1213141516 17 18 19 1 2 3 4 5 6 7 8 91011 121314 1516 17 18 19
V1

SOCIAL State EMO State
1 2 3 4 5 6 7 8 91011 121314 1516 17 18 19 1 2 3 45 6 7 8 91011 1213 14 1516 17 18 19
— \ y

-0.1 00 01 02 03 04 05
Correlation (Fishers Z)

1 L Middle Frontal Gyrus 8 L Paracingulate Gyrus 15 LFrontal Pole
2 L Middle Frontal Gyrus 9 RMiddle Frontal Gyrus 16 RCerebellum IV
3 L Middle Frontal Gyrus 10 Ranterior insular cortex 17 LCerebellum Crus|
4 Lintraparietal Suclus 11 R Middle Frontal Gyrus 18 L Superior Parietal Lobule
5 Rintraparietal Sulcus 12 L Cerebellum Crus| 19 L Caudate
6 RPrecuneous Cortex 13 RCerebellum IV
7 L Pre-supplementary motor area 14 L anteiorinsular cortex

Figure S15) Heatmap of FC within the WM-meta network averaged across participants during the four different states. FC reflects
the Fisher Z- transformed Pearson correlation coefficients between all network nodes. Anatomical labels and coordinates of the
nodes can be found in table S2-, node number correspond to the node number in the table.



Average FC across subjects within the SOCIAL network during different states.
Resting State WM State

1

T T _

-02 00 02 04 06
Correlation (Fishers Z)

1 L Occipital Pole 23 LIntracalcarine Cortex 45 R Precentral Gyrus

2 L Superior Parietal Lobule 24 RMiddle Frontal Gyrus 46 L Parietal Opercular Cotex

3  RSuperior Parietal Lobule 25 L Caudate 47 R Precentral Gyrus

4 R Superior Lateral Occipital Cortex 26 LPlanum Polare 48 L Anterior Insular Cortex

5 L Cuneal Cortex 27 LLingual Gyrus 49 L Frontal Pole

6 L Precentral Gyrus 28 RFrontal Operculum Cortex 50 R Parietal Opercular Cortex

7 RlLingual Gyrus 29 R Anterior Cingulate Gyrus 51 RMiddle Frontal Gyrus

8 RPrecuneous Cortex 30 L Postcentral Gyrus 52 L Medial Frontal Obital Cortex

9  RSuperior Frontal Gyrus 31 RPrecentral Gyrus 53 Rinferior Lateral Occipital Cortex
10 RPrecuneous Cortex 32 RPrecentral Gyrus 54 R medialfrontal orbital cortex

11 RPosterior Cingulate Gyrus 33 RPrecentral Gyrus 55 L Frontal Orbital Cortex

12 RFrontal Pole 34 LInferior Parietal Lobule 56 Cerebellum Vermis VI

13 RInferior Parietal Lobules 35 R Supplementary Motor Area 57 RIntraparietal Sulcus

14 R Lateral Frontal Orbital Cortex 36 RCaudate 58 RInferior Parietal Lobule

15 L Frontal Pole 37 RPostcentral Gyrus 59 LlIntraparietal Sulcus

16 Septum 38 RThalamus 60 L Middle Frontal Gyrus

17 RFrontal Pole 39 RPrecentral Gyrus 61 R posterior Middle Temporal Gyrus
18 RPlanum Polare 40 L Intraparietal Sulcus 62 L Cerebellum Crus|

19 L Precentral Gyrus 41 L Supplementary Motor Area 63 L Posterior Middle Temporal Gyrus
20 L Supplementary Motor Area 42 L Medial Frontal Obital Cortex 64 L Cerebellum Vilib

21 RAnterior Cingulate Gyrus 43 R posterior Superior Temporal Gyrus 65 L Cerebellum VI

22 L Precentral Gyrus 44 R Anterior Insular Cortex 66 RCerebellum Crus|

Figure S16) Heatmap of FC within the SOCIAL network averaged across participants during the four different states.. FC reflects
the Fisher Z- transformed Pearson correlation coefficients between all network nodes. Anatomical labels and coordinates of the
nodes can be found in table S3, node number correspond to the node number in the table.



Average FC across subjects within the SOCIAL Meta-network during different states.
Resting State WM State

SOCIAL State EMO State
1 2 3 4 5 6 7 8 9 10 1

-0.2 -0.1 00 01 02 03 04
Correlation (Fishers Z)
1 Rinferior Parietal Lobule 5 RFrontal Pole 9 RPrecuneous Cortex
2 L Supramarginal Gyrus 6 L Mid Fusiform Gyrus 10 RPrecuneous Cortex
3 R Middle Temporal Gyrus 7  Rlnferior Frontal Gyrus 11 R Middle Temporal Gyrus
4 RTemporal Pole 8 LlInferior Frontal Gyrus

Figure S17) Heatmap of FC within the SOCIAL-meta network averaged across participants during the four different states.. FC
reflects the Fisher Z- transformed Pearson correlation coefficients between all network nodes. Anatomical labels and coordinates of
the nodes can be found in table S3, node number correspond to the node number in the table.



Average FC across subjects within the EMO network during different states.

Resting State WM State
1. 83 1. 83
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Correlation (Fishers Z)

1 ROccipital Pole 29 R Superior Temporal Gyrus 57 RPrecentral Gyrus
2 R Mid Fusiform Gyrus 30 RMiddle Temporal Gyrus 58 R Basal Forebrain
3 L Occipital Pole 31 RMiddle Temporal Gyrus 59 L Cerebellum Crus|
4  RPosterior Fusiform Gyrus 32 RCerebellum Crusll 60 R Caudate
5 RAmygdala 33 RFrontal Medial Cortex 61 Cuneal Cortex
6 LAmygdala 34 R Middle Frontal Gyrus 62 L Precentral Gyrus
7 Linferior lateral Occipital Cortex 35 L Posterior Superior Termporal Sulcus 63 R Postcentral Gyrus
8 L Mid Fusiform Gyrus 36 R Intraparietal Sulcus 64 L Postcentral Gyrus
9  Rinferior Frontal Gyrus 37 LFrontal Pole 65 L Caudate
10 LIntracalcarine Cortex 38 L Middle Temporal Gyrus 66 R Postcentral Gyrus
11 RThalamus 39 RPrecuneus 67 L Precentral Gyrus
12 LCerebellum Crus |l 40 Midcingulate Cortex 68 L Posterior Superior Temporal Gyrus
13 RFrontal Pole 41 Rsuperior lateral Occipital Cortex 69 L Middle Frontal Gyrus
14 R Parahippocampal Gyrus 42 RFrontal Pole 70 R Caudate
15 L Middle Frontal Gyrus 43 Rmedial superior Frontal Gyrus 71 L Postcentral Gyrus
16 R Superior Lateral Occipital Cortex 44 RInferior Frontal Gyrus 72 R Superior Frontal Gyrus
17 LThalamus 45 L Cerebellum Vilb 73 R Pre-Supplementary Motor Area
18 L Parahippocampus 46 L Superior Temporal Gyrus 74 L Postcentral Gyrus
19 RIntracalcarine Cortex 47 RParieto-occipital sulcus 75 R Posterior Insula
20 R Posterior Superior Termporal Sulcus 48 RThalamus 76 L Caudate
21 LHippocampus 49 R Parahippocampal Gyrus 77 L Superior Frontal Gyrus
22 L Frontal Orbital Cortex 50 L Middle Frontal Gyrus 78 L Superior Lateral Occipital Cortex
23 L Hypothalamus 51 RPrecentral Gyrus 79 L Postcentral Gyrus
24 R Cerebellum X 52 L Middle Frontal Gyrus 80 RCerebellum Vilb
25 Cerebellum Vermis IX 53 RPutamen 81 L Anterior Inferior Temporal Gyrus
26 RLingual Gyrus 54 R Middle Frontal Gyrus 82 L Superior Lateral Occipital Cortex
27 LCerebellumX 55 R Occipital Pole 83 LlIntraparietal Sulcus
28 L Superior Lateral Occipital Cortex 56 L Precentral Gyrus

Figure S18) Heatmap of FC within the EMO network averaged across participants during the four different states.. F'C reflects the
Fisher Z- transformed Pearson correlation coefficients between all network nodes. Anatomical labels and coordinates of the nodes
can be found in table S4, node number correspond to the node number in the table.



Average FC across subjects within the EMO Meta-network during different states.
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Figure S19) Heatmap of FC within the EMO-meta network averaged across participants during the four different states.. FC reflects
the Fisher Z- transformed Pearson correlation coefficients between all network nodes. Anatomical labels and coordinates of the
nodes can be found in table S4, node number correspond to the node number in the table.



Average FC across subjects within the Power nodes during different states.
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Figure S20) Heatmap of FC within the Power nodes during the four different states averaged across participants. FC reflects the
Fisher Z- transformed Pearson correlation coefficients between all network nodes.



A) Predicted Phenotypic Domain: WM
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Figure S21) PLS 100 x leave-30%-out CV

Boxplots of the distribution of prediction accuracies from PLS 100 x leave-30%-out CV for WM,
SOCIAL, and EMO domain, for coefficient of determination (COD) / model fit, RMSE and
Pearson’s r.
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Figure S22) PLS 100 x leave-30%-out CV — trimmed time series

Boxplots of the distribution of prediction accuracies from PLS 100 x leave-30%-out CV —
trimmed time series for WM, SOCIAL, and EMO domain, for coefficient of determination
(COD) / model fit, RMSE and Pearson’s .
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Figure §23) Random Forest 100 x leave-30%-out CV

Boxplots of the distribution of prediction accuracies from Random Forest 100 x leave-30%-out
CV for WM, SOCIAL, and EMO domain, for coefficient of determination (COD) / model fit,
RMSE and Pearson’s r.
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Figure S24) SVR — linear kernel - 100 x leave-30%-out CV

Boxplots of the distribution of prediction accuracies from SVR — linear kernel - 100 x leave-30%-
out CV for WM, SOCIAL, and EMO domain, for coefficient of determination (COD) / model fit,
RMSE and Pearson’s r.
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Figure S25) SVR — rbf kernel - 100 x leave-30%-out CV

Boxplots of the distribution of prediction accuracies from SVR — RBF kernel - 100 x leave-30%-
out CV for WM, SOCIAL, and EMO domain, for coefficient of determination (COD) / model fit,
RMSE and Pearson’s r.
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Figure S26) Kernel Ridge Regression - 100 x leave-30%-out CV

Boxplots of the distribution of prediction accuracies from Kernel Ridge Regression - 100 x leave-
30%-out CV for WM, SOCIAL, and EMO domain, for coefficient of determination (COD) /

model fit, RMSE and Pearson’s r.
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Figure S27) CBPM — with PLS - 100 x leave-30%-out CV

Boxplots of the distribution of prediction accuracies from CBPM — with PLS - 100 x leave-30%-
out CV for WM, SOCIAL, and EMO domain, for coefficient of determination (COD) / model fit,
RMSE and Pearson’s r.
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Figure S28) CBPM — with ridge regression - 100 x leave-30%-out CV

Boxplots of the distribution of prediction accuracies from CBPM — with ridge regression - 100 x
leave-30%-out CV for WM, SOCIAL, and EMO domain, for coefficient of determination (COD)
/ model fit, RMSE and Pearson’s r.
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Figure §29. PLS 100 x leave-30%-out CV - sorted by network size

Boxplots of the distribution of prediction accuracies from PLS 100 x leave-30%-out CV for WM,
SOCIAL, and EMO domain, for coefficient of determination (COD) / model fit, RMSE and
Pearson’s r — sorted by network size from large to small: Power (264 nodes), EMO-NW (84
nodes), SOCIAL-NW (66 nodes), WM-NW (49 nodes), WM-meta-NW (19 nodes), SOCIAL-
meta-NW (11 nodes) to EMO-meta-NW (10 nodes)
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6 Summary and general discussion

With this dissertation I aimed to investigate how inter-individual differences in
cognitive and socio-affective processes are related to structural brain anatomy and
functional connectivity and how heritability and task state impact brain-behaviour
relationships as influencing factors. First, I investigated the phenotypic and
morphological association of cognition and affect in the brain, as well as their shared
genetic variance. I then assessed the predictability of task states and network
specificity.

With my first study [ was able to show phenotypic relationships with both affect and
cognition and brain structure in the left superior frontal cortex. Decomposing the
phenotypic correlations into genetic and environmental components showed that the
associations were accounted for by shared genetic effects between the traits. Yet, my
second study revealed that individual behaviour can only moderately be explained by
network interactions. The results indicate, that interactions within a priori networks
are less predictive than global effects. However, a slight benefit of predictions based
on FC from task versus resting state was observed for performance in the cognitive
domain, indicating state specificity.

6.1 Cognition and affect - integrated dimensions

Intelligence or cognition is a very well-studied and delineated concept. Reliable
measures have been developed (Akshoomoff et al., 2013; Heaton et al., 2014),
capturing different aspects of cognition such as fluid reasoning and crystallized
knowledge, including executive function, working memory, processing speed,
attention, episodic memory, and language. In the first study, I used these measures to
analyse crystallised and fluid intelligence, assessed with the National Institute of
Health (NIH) toolbox for Assessment of Neurological and Behavioral Function®
(neuroscienceblueprint.nih.gov). This measurement has been shown to capture
interindividual differences reliably (Akshoomoff et al., 2013; Gershon et al., 2013).
However in the second study, to investigate the influence of task states, I used the
cognitive process of working memory, which in this dataset was assessed with a 2-
back task. Unfortunately, the simplicity of the task leads to a ceiling effect, where many
participant solve the task successfully, leading to a low variance. This has been,
however, mitigated by introducing reaction time into an inverse efficiency score.
Nevertheless the moderate predictability of task states could be related to the low
variance within both the cognitive score, as well as a within the task states.

Emotion or affect has gained scientific attention later and has seen struggles being
investigated due to the elusive nature (Barrett, 2012; Lindquist et al., 2012). However,
emotion and trait affect influence what we notice, learn (Mather & Sutherland, 2011;
Tyng et al., 2017), remember (Cahill & McGaugh, 1998; Mather & Sutherland, 2011)
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and even how we decide (Bechara et al., 2000). Several tests have been developed to
assess emotion and affect. In the first study, self-reports were used to capture trait
affect from the Emotion Battery of the NIH Toolbox (Pilkonis et al., 2013; Salsman et
al., 2013, 2014). For the second study an emotional face matching task was performed,
which has been developed and tested to reliably activate the amygdala. However, only
little variance of individual emotion processing abilities is captured. This has been,
again, mitigated by introducing reaction time into an inverse efficiency score.
Nevertheless, it would be interesting to see a similar study setup to investigate state
and network specificity, however with different, more complex tasks.

Despite cognition and affect being seen as separate constructs for a long time and
therefore being studied separately, an integration is inevitable. This can be seen with
the word “emotional intelligence”, the ability to use and regulate emotions. But also
with social cognition or theory of mind, which has been investigated in the second
study, showing a combination of both emotional interpretation and social inference.

While cognitive functions have traditionally been attributed to higher-order cortical
regions—such as the lateral and medial prefrontal, temporal, and parietal cortices—
affective processes have historically been associated with evolutionarily older,
subcortical structures, including the amygdala, basal ganglia, and hypothalamus.
However, as outlined above, recent research increasingly investigates the integration
of affect and cognition across both cortical and subcortical systems, challenging the
historical dichotomy between emotional and cognitive brain networks. In line with
that, both my studies showed on the one hand a convergence phenotypically, as well
as in the superior frontal gyrus (study 1), as well as no network-specificity and only
moderate state-specificity for cognition (study 2), suggesting potential overlapping
networks and functions.

6.1.1 Brain morphology and heritability (study 1)

The modular approach on cognition and affect has already been challenged by several
researchers such as (Barrett etal.,, 2011; Lindquist et al., 2012; Pessoa, 2008), arguing,
that cognition and emotion are deeply intertwined in both brain and behaviour. In this
dissertation, by using anatomic data and twin modelling, I build on this by
demonstrating that cognitive and affective traits are not only theoretically connected,
but phenotypically and genetically associated, pointing toward a shared neural
infrastructure in the superior frontal gyrus. This convergence underlines previous
findings (Barrett & Satpute, 2013), while furthering this integration through
heritability modelling, showing a shared phenotypic and genetic association with
cortical thickness in the left superior frontal cortex. This convergence indicates the
prefrontal cortex as not just essential for cognitive function, but a hub where
emotional and cognitive traits are co-constructed. The discovery of a brain region
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simultaneously relating to cognitive and affective traits, while further driving these
associations genetically, strongly indicates that cognition and emotion are integrated
within the brain. Therefore, this biologically stable marker has further implications
for understanding trait-level vulnerabilities, also in mental health.

6.1.2 Functional connectivity and predictability of task states (study 2)

The finding of a shared phenotypic and genetic association between cognition and
trait affect in the superior frontal cortex is rooted in quantifiable structural
morphology providing trait-level and heritability insights. In a next step, I put a
stronger focus on the effects of state and the relationship to brain function, in contrast
to brain structure. Thus, these results led me to develop the research of cognition and
emotion into a more dynamic approach, by complementing it with functional
connectivity in resting-state und task-based fMRI.

Unlike structural markers, functional connectivity reflects state-dependent and
network-based dynamics. Therefore, in my second study I explored whether
functional connectivity could predict inter-individual differences within cognition
(represented through WM), and emotion, complemented with social cognition.
Moving from structural morphology and heritability to functional connectivity and
machine learning prediction, allowed me to investigate the influence of state on brain-
behaviour relationships.

Here, I found that, overall, FC patterns showed limited ability to predict individual
behavioural performance. The predictive power was modest, though comparable to
other studies applying a similar approach (Dubois et al., 2018; Greene et al., 2018; Ooi
et al.,, 2022). However, slightly better predictions were achieved using task-based FC
compared to resting-state FC, particularly in the working memory domain, which
extend results from previous studies, showing that FC from task-based fMRI carry
more behaviourally relevant and individual information (Finn et al.,, 2015; Finn &
Bandettini, 2021; Greene et al, 2018). Despite the modest predictive power, the
stronger prediction performance of task-based compared to resting-state FC supports
the idea that contextual activation enhances signal relevance by being more reflective
of individual differences. While in my study this was only observed for working
memory, it stands to investigate, whether an improvement could be seen within a
larger sample (through increase of statistical power) or with different task capturing
the emotion domain (through capturing more emotional variance).

6.1.3 Complementary results

With these two studies I investigated how the behavioural and brain morphometric
data provide trait-level and heritable foundations, revealing a stable hub of
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convergence between cognition and affect in the superior frontal cortex. Further, I
approached functional connectivity with machine learning predictions offering
insights into large-scale patterns in cognitive and emotional functioning. Here, task-
based connectivity yielded better prediction performance (compared to resting-state
FC, in working memory prediction) implying the importance of state and network
interactions within interindividual variation. However, no significant difference in
prediction performance between the different domains could be observed, which
could potentially indicate individual variability similarities in FC of cognitive and
socio-affective processing.

Encompassing both studies, I applied several analyses, leveraging the power of
multimodal integration. With the analyses on both structural and functional data I
offer complimentary insights. While the analysed structure in combination with the
heritability analysis reveals stable traits and genetic boundaries within which one can
change and develop, functional analysis reveals how a person behaves and feels in the
moment. Therefore, my results show that cognition and affect are both stable and
flexible within our behaviour, as well as our brain, revealing insights important for our
understand within the layered inter-individual brain-behaviour relationships. With
this dissertation I present the results of a genetically driven overlap between
cognition and affect in the superior frontal cortex, while the influence of state showed
moderate predictability only in cognition but none for the socio-affective domain. This
is in line with the latest research endeavours and important for future individualised
neuroscience. In sum, by examining structure and function and investigating different
influencing factors of brain-behaviour relationships one gets a more nuanced picture
about the integration of cognition and affect in the human brain.

6.2 Limitations and opportunities

Despite the faceted and broad approach, there are some limitations to be
acknowledged. First of all, both studies used the openly available Human Connectome
Project. Openly available large datasets such as the HCP used here, or the Adolescent
Brain Cognitive Development Study (ABCD), and the UK Biobank are tremendously
valuable and have transformed and furthered research in neuroscience. They play an
important role in the standardization of protocols and data collection, and in the
promotion of reproducibility through transparency, replicability and validation of
findings. Further, the varied data sampling within these datasets allows for the
multimodal analysis of complex research questions as done here. Importantly, the
large sample sizes increase statistical power, through which robust correlations
(study 1) and the application machine learning models (study 2) are only possible.

While the HCP is a densely sampled dataset enabling the research of complex research
questions, it also shows only a small fraction of the population: the age range is
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between 22 and 37 years, with all healthy subjects from the USA, with a slightly higher
IQ than the population average. While this sample was chosen consciously in an effort
to establish potential brain-behaviour relationships within a healthy and constrained
sample, it anyhow constrains the results to only a section of the population. For both
studies it would be beneficial to repeat the analyses in different samples in order to
test for generalisability. However, these very specific research questions addressed in
this dissertation could for now unfortunately only be answered with the HCP dataset,
as they allow for twin-based heritability testing (study 1), and further offer a wide
variety of in- and out-of-scanner tests and questionnaires allowing for the analysis
and comparison of FC predictability between different behaviour performances
(study 2). Yet, the extensive testing comes at the cost of potentially rather superficial
and short tasks. This includes the tasks performed in the scanner as well as outside.
Most of the task developed for fMRI induce a robust activation of targeted brain areas
instead of allowing for strong interindividual variability. Further, tasks performed
both inside and outside the scanner are often optimized for stable group-average
effects. In both studies this needs to be factored into the interpretation of the findings.

Furthermore, the widespread use of these datasets increases the risk of false positive
findings. Since numerous researchers are conducting a multitude of independent
analyses within these datasets, statistically significant results may arise by chance.
Publication bias adds to this problem, as positive findings are more likely to be
published, skewing the literature towards overstated effects. Therefore, it was
especially important to me to publish the results of the second paper as transparently
as possible, without overstating the findings and acknowledging the moderate
prediction performance.

As mentioned above, it would be valuable to test the generalisability of these findings
using independent samples. Since there are so far no suitable large openly available
datasets, it could be interesting to test the findings in smaller datasets, as well as in
harmonised data from several smaller datasets. Such a data pool could also be used to
inform synthetic data. Synthetic data could offer an exciting opportunity to train
machine learning models, especially in areas where there is notoriously insufficient
data (J. Wang et al.,, 2023), such as rare diseases, diseases with difficulties to be
scanned in an MRI scanner, or areas where data privacy protection is an issue (Vaden
etal.,, 2020).

Further, it is important to mention that although multimodal analyses are highly
promising, technical nuances and methodological limitations, and therefore
meaningful interpretation, depends on having (or inquiring) domain-specific
expertise. This has been especially evident in the work on the second paper applying
machine learning for behavioural performance prediction based on FC. Several
landmark papers used oversimplified assessments of prediction performance,
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painting a more optimistic picture of the achievements. For my publication it was
therefore important to offer a critical and transparent assessment of the findings.

Moreover, potential avenues to develop these findings presented here, despite the
multimodal approach within the papers, are manifold. Within the first paper the
research focus between brain-behaviour relationships and the genetic drivers, could
be extended to investigate the heritability of functional task activation and
connectivity. Based on studies performed in the same dataset, it would be expected to
be in line with our current findings and show that not only brain structure, but also
FC is heritable (Colclough et al, 2017; Ge et al, 2017). However, a potential
convergence between cognition and affect and FC has not been investigated.
Furthermore, in the second paper, only FC was used to predict behavioural
performance. While one of the goals of the second paper—to improve interpretability
of machine learning features—would be hindered, it would nevertheless be
interesting to see if a combination between structural and functional data or even
genetic or EEG data could improve prediction performance. Finally, since the network
used in the second paper were based on a priori defined delineations, future work
could adopt and compare different individualised parcellations (such as different
approaches developed by (Beckmann et al., 2005; Kong et al., 2019; Mueller et al.,,
2013; D. Wang et al., 2015)). Within the scope of my research, I have applied the
approach by (Kong et al, 2019). However, preliminary results revealed only a
marginal improvement in prediction performance for the specific networks and
behavioural targets. Therefore, I assume that even individualised a priori defined
networks may not significantly improve prediction performance and therefore
interpretability of relevant features. Instead, machine-learning appropriate post-hoc
analyses of whole-brain FC predictions (Tian & Zalesky, 2021) might offer greater
potential to identify biologically relevant features.

6.3 Relevance and impact

The research and investigation of cognition and affect is not only of theoretical
interest, but is essential in everyone’s daily life, as well as fundamental in different
mental disorders. Many cognitive and neural processes are expected to operate in
similar ways in both healthy individuals and those with neurological or psychiatric
disorders. With my dissertation, using a healthy and constrained sample, | aimed to
apply different analyses to contribute new insights for precision neuroscience, by
providing a deeper understanding of the interplay between cognition and affect, and
individual variability in brain and behaviour.

Therefore, in line with previous studies showing structural association with cognition
and emotion in the superior frontal cortex (Engen & Anderson, 2018; Okon-Singer et
al,, 2015), I extend these findings in study 1 by providing evidence for shared genetic
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effects between the traits. It therefore reinforces the importance of integrated
theories (Barrett, 2012; Pessoa, 2008) and provides a basis for investigating shared
risk factors in mental health disorders. Further, study 2 extended the already
extensive research of task-based FC compared to resting-state FC comparison for
behavioural prediction within the cognitive domain (e.g. (Avery et al., 2020; Greene et
al., 2018; Jiang et al., 2020)), by the socio-affective domain. Although the prediction
performance was moderate, an additional important contribution was the
transparent acknowledgment and reporting of these limitations. Moreover, the
undetected differences in prediction performance between unrelated FC and
behavioural score (e.g. prediction of working memory score from FC yielded from
emotion recognition task), might also suggest that cognitive and emotional processes
are interconnected at the neural level to allow for clearly separable predictive
patterns.

Finally, in order to improve interpretability of machine learning features, I defined a
priori networks based on meta-analyses and from large individual task-fMRI studies.
Therefore, I computed GLM for all tasks, and further conducted three separate meta-
analyses for working-memory (n-back task), emotion recognition and social
cognition. These meta-analytically defined networks are openly available via the
ANIMA-database (Reid et al, 2016); https://anima.fz-juelich.de/studies/
Kraljevic_NetStateSpec_2024).

6.4 Conclusion

In sum, with my dissertation I provide an integrative model of how cognition and
affect relate to the human brain. By combining insights from structural anatomy,
heritability modelling, and functional connectivity-based prediction, my results reveal
that these traditionally distinct domains share common neural substrates, while also
being dynamically shaped through context-sensitive activation and connectivity.

The identification of the superior frontal cortex as a heritable anatomical hub for both
cognitive and affective traits emphasizes the stability of this integration at the trait
level. In contrast, the moderate, yet comparable, predictability of task-based FC shows
the influence of brain state and network dynamics in shaping individual behaviour,
while also promoting a transparent and critical assessment of multi-modal analyses.
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