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Prüfungsbehörde	vorgelegen.	

	

Düsseldorf,	12.	Juni	2025	

	

	

	 	 	 	 	

Nevena	Kraljević	
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1 Abstract 
Human	experience	and	behaviour	is	subject	to	multiple	different	mental	processes,	
which	 can	 be	 separated	 into	 cognitive	 and	 socio-affective	 processes.	Many	 studies	
investigate	how	experience	and	behaviour	is	linked	to	brain	structure	and	function,	
and	also	how	much	in]luence	can	be	attributed	to	our	genetic	makeup.	However,	little	
is	known	about	how	behavioural	domains	are	subject	to	different	in]luencing	factors	
of	 inter-individual	 differences	 of	 the	 brain.	 In	 particular,	 how	 overlapping	 genetic	
in]luences	 exhibit	 in	 brain	 structure	 and	which	 in]luence	 different	 functional	 task	
states	drive	in	predictability	of	individual	behaviour.	Therefore,	in	my	dissertation	I	
investigated	the	phenotypic	and	genetic	correlations	of	cognitive	and	affective	traits	
and	brain	structure	(cortical	thickness,	surface	area	and	subcortical	volumes;	study	
1).	I	further	examined	to	what	extent	the	correspondence	of	functional	network	priors	
and	 task	 states	 with	 behavioural	 target	 domains	 in]luenced	 the	 predictability	 of	
individual	performance	in	cognitive,	social,	and	affective	tasks	(study	2).	

Using	 phenotypic	 correlation	 and	 heritability-analysis	 the	 ]irst	 study	 investigated	
heritability	 and	 genes	 as	 in]luencing	 factors	 on	 inter-individual	 differences	 of	 the	
brain.	 Cognition	 revealed	 several	 associations	 with	 brain	 morphology,	 while	 trait	
affect	revealed	only	 few	signi]icant	correlations	with	subcortical	volumes	and	 local	
cortical	 thickness,	where	 it	 overlaps	 in	 left	 superior	 frontal	 cortex	with	 cognition.	
Decomposing	 the	 phenotypic	 association	 into	 genetic	 and	 environmental	
components,	 revealed	 that	 the	 associations	 were	 accounted	 for	 by	 shared	 genetic	
effects	between	the	traits.	Using	functional	correlation	and	predictability	of	task	states	
and	network	priors	the	second	study	 investigated	state-	and	network-speci]icity	as	
in]luencing	 factors	 on	 brain–behaviour	 relationships,	 by	 predicting	 individual	
performance	in	cognitive,	social,	and	affective	tasks.	Predictions	from	whole-brain	FC	
were	slightly	better	than	those	from	FC	in	task-speci]ic	networks,	and	a	slight	bene]it	
of	 predictions	 based	 on	 FC	 from	 task	 versus	 resting	 state	 was	 observed	 for	
performance	in	the	cognitive	domain.	

With	my	dissertation	I	provide	an	integrative	model	of	how	cognition	and	affect	relate	
to	 the	 human	 brain.	 By	 combining	 insights	 from	 structural	 anatomy,	 heritability	
modelling,	and	functional	connectivity-based	prediction,	my	results	reveal	that	these	
traditionally	distinct	domains	share	common	neural	substrates.	The	superior	frontal	
cortex	 has	 been	 identi]ied	 as	 a	 heritable	 anatomical	 hub	 for	 both	 cognitive	 and	
affective	traits.	However,	multivariate	FC	patterns	during	both	task	and	resting	states	
carried	only	moderate	predictability	of	individual	performance	levels	of	cognition	and	
socio-affective	processes,	manifesting	nevertheless	 the	 in]luence	of	brain	 state	and	
network	 dynamics	 in	 shaping	 individual	 behaviour.	 In	 sum,	 with	 these	 studies	 I	
replicated	previous	]indings,	but	also	extended	insights	into	the	interplay	of	cognitive	
and	socio-affective	processes	with	brain–behaviour	relationships,	and	how	different	
factors	in]luence	inter-individual	differences	in	the	brain.	 	
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2 Zusammenfassung 
Menschliches	 Erleben	 und	 Verhalten	 unterliegt	 vielen	 verschiedenen	 mentalen	
Prozessen,	die	in	kognitive	und	sozio-affektive	Prozesse	unterteilt	werden	können.	In	
vielen	 Studien	 wird	 untersucht,	 wie	 Erleben	 und	 Verhalten	 mit	 der	 Struktur	 und	
Funktion	 des	 Gehirns	 zusammenhängen	 und	 welchen	 Ein]luss	 genetischen	
Veranlagung	spielen.	Es	ist	jedoch	nur	wenig	darüber	bekannt,	wie	unterschiedliches	
Verhalten	 den	 verschiedenen	 Ein]lussfaktoren	 interindividueller	 Unterschiede	 des	
Gehirns	unterliegt.	Insbesondere,	wie	sich	überlappende	genetische	Ein]lüsse	in	der	
Gehirnstruktur	zeigen	und	welchen	Ein]luss	verschiedene	funktionelle	Aufgaben	auf	
die	 Vorhersagbarkeit	 des	 individuellen	 Verhaltens	 haben.	 In	 meiner	 Dissertation	
untersuchte	 ich	 daher	 die	 phänotypischen	 und	 genetischen	 Korrelationen	 von	
kognitiven	und	affektiven	Merkmalen	und	der	Hirnstruktur	(kortikale	Dicke,	Fläche	
und	subkortikale	Volumina;	Studie	1).	Darüber	hinaus	habe	ich	untersucht,	inwieweit	
die	 Ue bereinstimmung	 von	 funktionellen	 Netzwerken	 und	 Aufgabenzuständen	 die	
Vorhersagbarkeit	der	 individuellen	Leistung	bei	kognitiven,	sozialen	und	affektiven	
Aufgaben	beein]lusst	(Studie	2).	

Mit	Hilfe	 phänotypischer	Korrelationen	und	Heritabilitätsanalysen	untersuchte	 die	
erste	 Studie	 die	 Heritabilität	 und	 Gene	 als	 Ein]lussfaktoren	 auf	 interindividuelle	
Unterschiede	 des	 Gehirns.	 Kognitive	 Prozesse	 zeigten	 mehrere	 Assoziationen	 mit	
Hirnstruktur,	 während	 Affekt	 nur	 wenige	 signi]ikante	 Korrelationen	 mit	 den	
subkortikalen	Volumina	und	der	lokalen	kortikalen	Dicke	aufwies,	wobei	es	im	linken	
superioren	frontalen	Kortex	Ue bereinstimmungen	mit	Kognition	gab.	Die	Analyse	der	
phänotypischen	Assoziation	in	genetische	und	umweltbedingte	Komponenten	ergab,	
dass	die	Assoziationen	durch	gemeinsame	genetische	Effekte	zwischen	den	Domänen	
erklärt	 werden	 konnten.	 Mit	 Hilfe	 der	 funktionellen	 Korrelation	 (functional	
connectivity;	 FC)	 und	 der	 Prädiktion	 von	 Aufgabenzuständen	 und	 Netzwerken	
untersuchte	 die	 zweite	 Studie	 die	 Zustands-	 und	 Netzwerkspezi]ität	 als	
Ein]lussfaktoren	auf	die	Beziehungen	zwischen	Gehirn	und	Verhalten,	indem	sie	die	
individuelle	Leistung	bei	kognitiven,	 sozialen	und	affektiven	Aufgaben	vorhersagte.	
Die	Vorhersagen	aus	der	FC	des	gesamten	Gehirns	waren	etwas	besser	als	die	aus	der	
FC	 in	 aufgabenspezi]ischen	 Netzwerken.	 Für	 die	 Leistung	 im	 kognitiven	 Bereich	
wurde	 ein	 leichter	 Vorteil	 der	 Vorhersagen	 auf	 der	 Grundlage	 der	 FC	 aus	 dem	
Aufgaben-	gegenüber	dem	Ruhezustand	festgestellt.	

In	meiner	Dissertation	stelle	ich	ein	integratives	Modell	vor,	wie	Kognition	und	Affekt	
mit	 dem	 menschlichen	 Gehirn	 zusammenhängen.	 Durch	 die	 Kombination	 von	
Erkenntnissen	aus	der	strukturellen	Anatomie,	der	Modellierung	der	Vererbbarkeit	
und	 der	 auf	 FC	 basierenden	 Vorhersage	 zeigen	 meine	 Ergebnisse,	 dass	 diese	
traditionell	unterschiedlichen	Bereiche	gemeinsame	neuronale	Substrate	aufweisen.	
Der	 superiore	 frontale	 Kortex	 wurde	 als	 vererbbarer	 anatomischer	 Knotenpunkt	
sowohl	für	kognitive	als	auch	für	affektive	Merkmale	identi]iziert.	Die	multivariaten	
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FC-Muster	 sowohl	 im	Aufgaben-	 als	 auch	 im	Ruhezustand	 zeigten	 jedoch	 nur	 eine	
mäßige	 Vorhersagbarkeit	 des	 individuellen	 Leistungsniveaus	 bei	 kognitiven	 und	
sozio-affektiven	 Prozessen,	 was	 den	 Ein]luss	 des	 Hirnzustands	 und	 der	
Netzwerkdynamik	auf	die	Gestaltung	des	individuellen	Verhaltens	deutlich	macht.		

Zusammenfassend	 lässt	 sich	 sagen,	 dass	 ich	mit	 diesen	 Studien	 nicht	 nur	 frühere	
Ergebnisse	 replizieren	 konnte,	 sondern	um	Erkenntnisse	 über	 das	 Zusammenspiel	
von	 kognitiven	 und	 sozio-affektiven	 Prozessen	mit	 Gehirn-Verhaltens-Beziehungen	
erweitern	 konnte	 und	 darüber,	 wie	 verschiedene	 Faktoren	 interindividuelle	
Unterschiede	im	Gehirn	beein]lussen.	
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3 General Introduction 
Everyone	is	unique	in	experience,	thought	and	behaviour,	affect	and	cognition,	but	also	
brain	 structure	 and	 function.	 Understanding	 the	 link	 between	 the	 human	 brain,	
individual	behaviour,	thoughts	and	feelings,	remains	one	of	the	greatest	questions	in	
neuroscience.	Researching	the	link	between	brain	and	behaviour	is	a	scienti]ic	pursuit	
that	offers	great	potential	for	mental	health	and	personalized	medicine,	by	offering	
pathways	 to	 more	 precise	 diagnostic	 and	 therapeutic	 approaches.	 Therefore,	
investigating	the	human	brain	helps	us	to	elucidate	human	inter-individual	variability.	
Both	within	healthy	individuals,	and	with	regards	to	mental	health	and	the	treatment	
of	brain	disorders.		

Human	experience	and	behaviour	is	subject	to	multiple	different	mental	processes.	
Roughly,	 these	 processes	 can	 be	 separated	 into	 cognitive	 and	 socio-affective	
processes.	Many	studies	investigate	how	experience	and	behaviour	is	linked	to	brain	
structure	 and	 function,	 and	 how	much	 in]luence	 can	 be	 attributed	 to	 our	 genetic	
makeup.	 However,	 little	 is	 known	 about	 how	 behavioural	 domains	 are	 subject	 to	
different	in]luencing	factors	of	inter-individual	differences	of	the	brain.	In	particular,	
how	overlapping	 genetic	 in]luences	 exhibit	 in	 brain	 structure	 and	which	 in]luence	
different	functional	task	states	drive	predictability	of	individual	behaviour.	

There	 are	 various	 neuroscienti]ic	 approaches	 in	 the	 quest	 to	 study	 human	 brain–
behaviour	relationships	and	to	investigate	how	experience	and	behaviour	is	linked	to	
brain	structure	and	function:	Some	studies	use	electrophysiological	methods,	such	as	
electroencephalography.	 Some	 use	 neuroimaging	 methods,	 such	 as	 structural	
magnetic	resonance	imaging	(MRI),	or	functional	imaging	methods,	such	as	functional	
MRI	(fMRI).	Some	use	genetic	tools,	such	as	genome-wide	association	studies	or	twin	
studies.	Some	use	speci]ic	analytic	tools,	such	as	machine	learning	(ML)	or	predictive	
modelling,	 connectomics	 or	 network	 analysis,	 or	 functional	 decoding	 and	 meta-
analytic	annotation.	But	irrespective	which	are	the	chosen	measures,	in	order	to	study	
behaviour,	 there	need	to	be	behavioural	and	psychometric	measures.	These	can	be	
conducted	in	tasks	or	in	self-report	questionnaires.		

My	dissertation	focuses	on	the	in]luencing	factors	of	inter-individual	differences	of	the	
brain,	 speci]ically,	 how	 genetic	 in]luences	 exhibit	 in	 brain	 structure,	 and	 how	 task	
states	drive	predictability	of	individual	behaviour.	For	this,	I	will	]irst	elaborate	on	the	
speci]ic	behaviours	investigated	here	–	cognition	and	affect	–	and	their	relationship	to	
the	 brain.	 Then,	 I	 will	 elaborate	 on	 heritability	 and	 functional	 task	 states,	 as	
in]luencing	factors	of	inter-individual	differences	of	the	brain.	
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3.1 Individual differences in behaviour 

Human	 behaviour	 is	 driven	 by	 different	 complex	 mental	 processes,	 that	 can	 be	
roughly	separated	into	cognitive	and	socio-affective	processes.	Therefore,	I	decided	to	
investigate	 cognition	 and	 affect	 as	 representations	 of	 human	 complex	 and	 rich	
behavioural	variability.	Despite	covering	only	a	fraction,	they	provide	insight	into	how	
individuals	 perceive,	 interpret,	 and	 respond	 to	 their	 environment	 (Gross,	 2015;	
Langner	et	al.,	2018;	Pessoa,	2008).	As	such,	they	serve	as	robust,	multidimensional	
phenotypes	for	linking	behaviour	to	underlying	neural	and	genetic	mechanisms.	

	

3.1.1 Cognition 

Cognition	refers	to	mental	processes	involved	in	acquiring,	processing,	storing,	and	
applying	 information.	 These	 processes	 include	 perception,	 attention,	 memory,	
language,	 reasoning,	 and	 executive	 control,	 including	 working	 memory,	 enabling	
individuals	to	interpret	and	respond	to	their	environment.	Intelligence	is	described	as	
the	 capacity	 to	 carry	 out	 cognitive	 tasks	 effectively.	 It	 re]lects	 how	 ef]iciently	 and	
]lexibly	cognitive	processes	are	deployed,	usually	in	novel	or	complex	situations.	

The	human	interest	and	contemplation	about	cognition	and	intelligence	have	a	long	
history.	A	scienti]ic	approach	on	cognition	dates	back	to	the	early	nineteen	hundreds,	
where	Spearman	 framed	 the	 “general	 ability	 factor	 g”	 (Spearman,	1904).	This	was	
further	investigated	and	developed	by	Cattel	into	two	sub-constructs:	crystallised	and	
]luid	intelligence	(Cattell,	1943,	1963).		

Crystallized	intelligence	refers	to	the	ability	to	recognise	and	apply	solutions	through	
previously	acquired	knowledge	and	past	experiences.	It	involves	knowledge	and	skills	
accumulated	 over	 time,	 such	 as	 cultural	 and	 general	 knowledge.	 It	 can	 therefore	
improve	with	age,	peaking	in	adult	life,	with	only	a	slow	decline	until	the	age	of	70	
(Cattell,	1963;	Hunt,	2001;	Jones	&	Conrad,	1933;	Salthouse,	2019).	

In	 contrast,	 ]luid	 intelligence	 refers	 to	 the	 ability	 to	 solve	 novel	 problems	without	
relying	on	prior	knowledge.	Therefore,	]luid	intelligence	is	usually	involved	in	tasks	of	
non-verbal	nature,	such	as	solving	mathematical	or	spatial	problems.	This	 involves	
quick,	 abstract,	 and	 ]lexible	 reasoning,	 as	 well	 as	 the	 ability	 to	 comprehend	 and	
manage	multiple	information	simultaneously	and	manage	the	amount	of	information	
needed	to	solve	the	problem	(Cattell,	1963).	A	core	component	of	]luid	intelligence	is	
therefore	 working	 memory,	 the	 ability	 to	 maintain	 and	 update	 or	 manipulating	
relevant	 information	(Baddeley,	2012;	Hofmann	et	al.,	2012;	Little	et	al.,	2014).	On	
average,	 ]luid	 intelligence	 reaches	 the	maximum	 in	 ability	 in	 early	 adulthood	 and	
declines	with	age	(Baltes	et	al.,	1999;	Jones	&	Conrad,	1933;	Salthouse,	2019).	

Crystallised	and	]luid	intelligence	are	distinct	but	 interconnected	cognitive	systems	
(Cattell,	 1963;	 Tucker-Drob,	 2009).	 The	 ability	 of	 ]luid	 intelligence	 to	 solve	 novel	
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problems,	reason	abstractly,	and	adapt	to	new	situations	is	required	for	acquiring	and	
integrating	 new	 knowledge	 –	 which	 over	 time	 consolidates	 and	 contributes	 to	
crystallized	 intelligence.	 Furthermore,	 crystallized	 intelligence	 can	 support	 ]luid	
intelligence	by	providing	context	and	meaning.	This	bidirectional	support	is	especially	
interesting,	given	that	crystallised	and	]luid	intelligence	have	different	decline	rates	
throughout	life	(Baddeley,	2012;	Tucker-Drob,	2009).		

Moreover,	 while	 working	 memory	 (WM)	 represents	 only	 one	 aspect	 of	 ]luid	
intelligence,	 it	 has	 been	 shown	 to	 be	 a	 good	 proxy	 and	 representation	 for	 ]luid	
intelligence	(Colom	et	al.,	2015).	Furthermore,	it	has	been	investigated,	that	working	
memory	capacity	predict	variation	not	only	in	]luid	intelligence,	but	also	crystallised	
intelligence	(Alloway	&	Alloway,	2009;	Martinez,	2019).	

	

3.1.2 Affect: Emotion, Social Cognition 

As	a	clear	distinction	between	“emotion”	and	“affect”	remains	unresolved,	the	terms	
are	often	used	interchangeably	in	the	literature	(Bradley	&	Lang,	2002;	Pessoa,	2008;	
Salsman	et	al.,	2013).	Broadly,	affect	is	a	complex	and	multifaceted	construct	used	to	
refer	 to	 emotional	 experience	 (Lindquist	 et	 al.,	 2012).	 Its	 elusive	 de]inition	 and	
inherently	subjective,	bodily	nature	makes	it	dif]icult	to	be	measured	in	a	standardized	
fashion	 (Nummenmaa	et	al.,	 2014).	Therefore,	measurement	methods	 include	self-
reports,	 physiological	 indicators	 (such	 as	 heart	 rate	 or	 skin	 conductance),	 or	 the	
behavioural	 response	 to	 stimuli	 (Bradley	 &	 Lang,	 2002).	 Nevertheless,	 in	 the	
assessment	a	distinction	can	be	made	between	emotional	processes	and	trait	affect.	
On	 the	one	hand,	 affective	 traits	 can	be	assessed	with	 self-reports,	which	are	 then	
divided	into	positive	and	negative	traits.	On	the	other	hand,	emotional	processes,	that	
pertain	to	identi]ication	and	responding,	can	be	assessed	using	tasks.		

Trait	affect	 is	commonly	measured	through	self-reports	and	divided	 into	a	positive	
and	 negative	 dimension,	 which	 are	 considered	 independent,	 instead	 of	 opposites.	
Hence,	allowing	both	to	be	experienced	at	the	same	time	(Diener	&	Emmons,	1984;	
Salsman	et	al.,	2013).	Positive	affect	includes	emotions	such	as	happiness,	enthusiasm,	
and	contentment,	contributing	to	psychological	well-being,	including	life	satisfaction	
and	 a	 sense	of	 purpose	 (Salsman	et	 al.,	 2014).	 Conversely,	 negative	 affect	 includes	
emotions	like	anger,	fear,	and	sadness,	which	can	also	manifest	in	varying	intensities	
and	are	linked	to	negative	self-evaluation	or	life	dissatisfaction	(Pilkonis	et	al.,	2013;	
Salsman	et	al.,	2013).		

Emotion	 processing	 starts	with	 a	 trigger	 and	 ends	with	 a	mental	 and	 behavioural	
response.	 Importantly,	 an	 emotional	 response	 can	 only	 be	 elicited	with	 a	 relevant	
stimulus.	Emotion	processing	 refers	 to	 identifying,	 interpreting,	 and	 responding	 to	
emotional	cues	in	oneself	and	others	(Gross,	2015;	Langner	et	al.,	2018).	It	is	closely	
linked	to	social	cognition,	which	includes	the	understanding	of	others’	thoughts	and	
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feelings.	 It	 is	 crucial	 in	 engaging	 in	 effective	 social	 interactions,	 since	 it	 includes	
understanding	both	oneself	and	others	as	social	beings.		

Social	cognition	spans	across	both	the	cognitive	and	affective	domain.	Social	cognition	
is	linked	to	theory	of	mind,	which	is	described	as	the	ability	to	infer	others’	mental	
states,	beliefs,	intentions,	and	emotions.	Theory	of	mind	allows	individuals	to	make	
sense	of	others’	behaviour,	predict	and	interpret	social	interactions	and	communicate	
effectively	and	appropriately	in	social	settings	(Bzdok et al., 2012; Salazar Kämpf et 
al., 2023; Wheatley et al., 2007).	

Cognition	and	affect	are	essential	behavioural	domains,	each	representing	distinct	but	
interacting	 processes.	 Further,	 they	 each	 offer	 important	 insights	 into	 human	
individual	 behavioural	 variability.	 In	 sum,	 cognition	 includes	 attention,	 memory,	
reasoning	 and	 problem-solving.	 It	 is	 linked	 to	 information	 processing	 and	 goal-
directed	responses.	Affect	includes	emotional	states,	responses	and	regulation,	and	is	
driven	 by	 re]lexive,	 spontaneous	 responses.	 However,	 despite	 these	 distinctions,	
cognition	and	affect	interact	dynamically.	Emotional	states	can	bias	decision-making,	
while	 cognitive	 appraisal	 can	 in]luence	 and	 regulate	 emotion	 processing.	
Furthermore,	they	are	both	in]luenced	by	internal	and	external	stimuli	(Langner	et	al.,	
2018;	 Pessoa,	 2008).	 In	 my	 dissertation	 I	 aim	 to	 investigate	 these	 concepts	 both	
separately	as	well	as	their	overlap.	

	

3.2 Brain–Behaviour Relationships 

To	investigate	the	human	brain	and	to	link	structure	and	function	to	behaviour,	a	lot	
of	 different	neuroimaging	modalities	 have	 evolved.	The	prerogatives	 of	 being	non-
invasive	and	in-vivo	have	been	crucial	for	behavioural	neuroscience.	In	my	research	I	
primarily	focused	on	structural	and	functional	MRI,	while	further	using	multivariate	
analyses	comprised	of	heritability	analyses	and	machine	learning	prediction.		

	

3.2.1 Structural MRI - grey matter structure 

Structural	MRI	captures	the	anatomy	in	a	static,	high-resolution	image	of	the	brain,	
while	fMRI	measures	brain	activity	over	time.	Structural	MRI	takes	advantage	of	the	
different	densities	of	water	content	in	the	brain	tissues.	This	is	translated	into	images,	
where	the	different	tissues	and	structures	of	the	brain,	such	as	grey	and	white	matter,	
and	cerebrospinal	]luid	can	be	distinguished.	In	my	research	I	focused	on	grey	matter	
structure.	Grey	matter	can	be	found	in	the	central	nervous	system,	hence	the	spinal	
cord	and	the	brain.	It	consists	of	neuronal	cell	bodies,	dendrites,	unmyelinated	axons,	
astrocytes,	 oligodendrocytes,	microglia	 and	blood	vessels.	 It	 plays	 a	 central	 role	 in	
sensory	perception,	motor	control,	and	higher-order	cognitive	functions.		
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3.2.1.1 Cortical thickness and subcortical volume 

Cortical	thickness	refers	to	the	distance	in	millimetres	between	the	white	matter	and	
the	pial	surface.	The	distance	typically	ranges	between	1	and	4.5	millimetres	(Fischl	
&	Dale,	2000;	Palomero-Gallagher	&	Zilles,	2019).	Even	though	measuring	the	grey	
matter	cortical	thickness	sounds	simple,	 it	 is	no	small	 feat,	since	the	pial	surface	is	
dif]icult	 to	 detect	 in	 standard	 MRI.	 Hence,	 (Fischl	 &	 Dale,	 2000)	 developed	 with	
FreeSurfer	 an	 algorithm	 to	 estimate	 the	 grey	 and	 white	 matter	 boundary.	 This	
boundary	representation	is	then	deformed,	with	speci]ic	constrains,	outward	until	the	
pial	surface.	From	there,	the	distance	to	the	white	matter	border	at	any	point	results	
in	the	cortical	thickness	(Fischl	&	Dale,	2000).	This	procedure	requires	both	T1	and	T2	
weighted	 images	 to	 accurately	map	 the	 grey	matter	 as	well	 as	 distinguish	 the	pial	
surface	from	dura	and	blood	vessels	(Glasser	et	al.,	2013).		

Further,	subcortical	structures	are	neural	formations	in	the	basal	brain,	that	have	been	
shown	integral	in	motor	function,	memory,	and	emotional	and	cognitive	processing.	
They	include	deep	grey	matter	structures	and	nuclei	such	as	the	thalamus,	caudate,	
putamen,	 pallidum,	 hippocampus,	 amygdala,	 accumbens	 area,	 and	 ventral	
diencephalon.	 Similarly	 to	 cortical	 thickness,	 estimating	 the	 difference	 in	 tissue	
densities	between	subcortical	structures	and	surrounding	white	matter,	boundaries	
can	 be	 drawn	 and	 the	 subcortical	 volume	 can	 be	 calculated.	 Since	 the	 subcortical	
structures	 are	 integral	 in	 several	 behavioural	 processes,	 it	 is	 important	 to	 include	
them	analogously	to	cortical	thickness	in	brain–behaviour	analyses.	

	

3.2.1.2 Surface area 

Surface	 area,	 understandably,	 refers	 to	 the	 surface	 of	 the	 cerebral	 cortex.	 It	 is	
intrinsically	 related	 to	 the	 cortical	 folding	 (gyri]ication).	 Therefore,	 most	 of	 the	
surface	is	hidden	in	the	sulci	(Chauhan	et	al.,	2021),	making	it	challenging	to	map	out.	
Similar	to	cortical	thickness	and	subcortical	volume,	the	computation	of	surface	area	
requires	 sophisticated	 processes.	 To	 automate	 and	 improve	 the	 delineation	 of	 the	
cortical	surface,	(Glasser	et	al.,	2013)	 further	enhanced	the	widely-used	FreeSurfer	
pipeline	for	the	Human	Connectome	Project	(HCP)	dataset	(Fischl,	2012)	used	here.	
Both	T1-	and	T2-weighted	images	are	used	to	clearly	de]ine	the	white	matter	and	pial	
surfaces	and	thereby	the	cortical	ribbon.	Following	this	ribbon,	triangles	are	formed	
and	summed	to	create	a	grid	or	mesh.	This	mesh	transforms	the	cerebral	cortex	into	
a	2D	sheet.	This	sheet	can	then	be	aligned	to	different	spaces,	such	as	the	MNI	surface	
space,	to	further	allow	for	comparison	between	subjects.	

Importantly,	surface	area	is	a	morphological	feature	distinct	from	cortical	thickness.	
It	has	been	suggested	that	cortical	thickness	and	surface	area	evolutionary	developed	
independently	 (Geschwind	&	Rakic,	 2013),	 are	 in]luenced	by	different	 genetic	 and	
environmental	 factors	 (Panizzon	 et	 al.,	 2009),	 and	 develop	 differently	 and	
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independently	across	the	lifespan	(Fjell	et	al.,	2015;	Hogstrom	et	al.,	2013).	Cortical	
thickness	 re]lects	 neuronal	 density	 and	 dendritic	 arborization	 within	 a	 cortical	
column,	while	cortical	surface	area	re]lects	the	horizontal	expansion	of	 the	cortical	
sheet	 and	 number	 of	 cortical	 columns.	 Therefore,	 it	 is	 important	 to	 look	 at	 them	
separately	(instead	of	using	cortical	volume),	as	well	as	looking	at	them	both,	in	order	
to	understand	the	individual	neural	in]luences.	

	

3.2.2 Functional MRI - functional connectivity 

While	structural	MRI	captures	static	images	of	the	brain's	anatomy	by	acquiring	each	
brain	 slice	 once,	 functional	 MRI	 (fMRI)	 measures	 brain	 activity	 over	 time	 by	
repeatedly	 scanning	 the	whole	brain.	 fMRI	 is	based	on	 the	 effect,	 that	 active	brain	
regions	have	increased	metabolic	demand,	consuming	more	oxygen,	resulting	in	an	
increased	blood	]low	into	the	speci]ic	region.	This	vascular	response	results	in	a	shift	
in	 the	 ratio	 of	 oxygenated	 to	 deoxygenated	 haemoglobin,	 producing	 the	 so-called	
Blood	Oxygen	Level	Dependent	(BOLD)	contrast,	which	can	be	detected	by	the	MRI	
scanner	as	changes	in	signal	intensity.	This	alteration	in	regional	blood	oxygenation,	
the	 hemodynamic	 response,	 is	 observed	 over	 several	 seconds,	 with	 peaks	 at	 3–5	
seconds	after	a	stimulus	(Hillman,	2014).	

To	 reliably	 capture	 these	 dynamics	 and	 acquire	 high-quality	 fMRI	 images,	 it	 is	
important	 to	 scan	 the	 brain	 with	 a	 repetition	 time	 shorter	 than	 the	 width	 of	 the	
hemodynamic	response	function.	Additionally,	shorter	repetition	time	also	improves	
artefact	removal	through	e.g.	physiological	noise	or	head	movement.	Therefore,	in	the	
HCP	high-resolution	data	with	a	repetition	time	of	0.72	seconds	was	acquired	(Glasser	
et	 al.,	 2016).	 Further,	 spatial	 resolution	 is	 critical	 for	 accurately	 localizing	 BOLD	
signals	 and	distinguishing	between	anatomical	 compartments	 such	as	grey	matter,	
white	 matter,	 and	 CSF.	 Therefore,	 by	 acquiring	 functional	 data	 at	 2	 mm	 isotropic	
resolution,	this	further	enables	a	precise	location	of	the	BOLD	signal	onto	the	cortex	
(Glasser	 et	 al.,	 2013,	 2016).	 Despite	 signi]icant	 technical	 differences	 between	
structural	 and	 functional	 imaging,	 acquired	 fMRI	 data	 can	 only	 be	 processed	 and	
analysed	 precisely	 by	 projecting	 the	 functional	 signals	 onto	 the	 structural	 surface	
reconstruction,	providing	an	anatomically	informed	framework	for	analyses.	

	

3.2.2.1 Resting-state and task-based FC 

While	 the	 BOLD	 contrast	 is	 considered	 a	 proxy	 for	 neuronal	 activation,	 functional	
connectivity	(FC)	 identi]ies	correlations	of	activity	between	multiple	regions	of	 the	
brain.	FC	refers	to	the	temporal	(statistic)	correlation	of	signal	]luctuations	between	
spatially	distant	regions,	revealing	distinct	brain	regions	functioning	in	accordance,	
re]lecting	the	functional	integration	of	brain	regions.		
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Since	 the	brain	 is	 constantly	 active,	 the	 interactions	between	brain	 regions	 can	be	
measured	in	the	absence	of	tasks,	hence	during	rest	(resting-state	FC),	or	during	the	
performance	of	speci]ic	tasks	(task-based	FC).	Resting-state	FC	captures	BOLD	signal	
]luctuations	 that	 occur	 in	 the	 absence	 of	 explicit	 tasks.	 It	 captures	 the	 intrinsic	
network	structure	of	the	brain,	which	have	been	shown	to	be	stable	and	reproducible	
over	 time	 (Biswal	 et	 al.,	 1995).	 Commonly	 observed	 networks	 include	 the	 default	
mode	 network,	 frontoparietal	 network,	 dorsal	 attention	 network,	 and	 salience	
network	(Biswal	et	al.,	1995;	Yeo	et	al.,	2011).	Resting-state	FC	is	suggested	to	reveal	
baseline	or	“trait-like”	properties	of	brain	organization	(Finn	et	al.,	2015).	

Task-based	FC	assesses	 connectivity	patterns	of	 functional	 coupling	between	brain	
regions	in	response	to	speci]ic	cognitive,	emotional,	or	sensory	tasks	performed	in	the	
scanner.	Task-based	FC	re]lects	context-	or	state-dependent	networks,	by	task-evoked	
modulation	of	functional	connectivity	through	increased	coupling.	While	resting-state	
and	task-based	FC	share	common	network	architectures,	task-based	FC	shows	altered	
functional	coupling	in	response	to	task	demands	(Cole	et	al.,	2014;	Shine	et	al.,	2016).		

Particularly	resting-state	fMRI	(rs-fMRI)	has	gained	popularity	in	recent	years,	due	to	
its	convenient	application.	It	can	be	assessed	quickly	and	easily	for	all	parties	involved.	
The	low	level	of	compliance	simpli]ies	measurement,	making	it	especially	popular	in	
clinical	 populations,	while	 additionally	 reducing	 costs.	 This	 lead	 to	 a	 high	 focus	 of	
research	 on	 resting	 state	 fMRI.	 As	 mentioned	 above,	 while	 there	 seems	 to	 be	 an	
overlap	 between	 resting-state	 and	 task-based	 activation,	 and	 even	 structural	
morphology,	 some	 resting-state	 fMRI	 research	 reveals	 rather	 low	 brain–behaviour	
relationships.	However,	both	resting-state	and	task-based	FC	patterns	are	unique	and	
can	 therefore	 be	 used	 to	 research	 inter-individual	 differences.	 Therefore,	 in	 my	
dissertation	I	compare	and	investigate	different	“states”	(resting-state	and	different	
task-states)	and	their	effect	on	predictability	of	individual	behaviour.		

FC	can	be	assessed	with	seed-based	correlation	analysis	or	data-driven	methods,	such	
as	 independent	 component	 analysis	 (ICA)	 or	 graph-theoretical	 approaches.	 While	
each	of	these	methods	have	their	speci]ic	uses	and	advantages,	data-driven	methods	
pose	the	dif]iculty	of	interpretability,	while	also	often	being	data-set	speci]ic.	Thus,	in	
my	dissertation,	I	used	seed-based	correlation	analysis.	By	using	a	priori	regions	of	
interest	(ROIs),	or	seeds,	it	can	be	assumed,	that	the	selected	regions	activate	during	
certain	 tasks.	A	 priori	 ROIs	 can	 be	 de]ined	 in	 a	multitude	 of	ways.	Here,	 I	 de]ined	
specialised	networks	based	on	activation	likelihood	estimation	(ALE)	meta-analyses,	
and	further	used	a	data-driven	approach,	by	delineating	networks	using	general	linear	
modelling	(GLM)	re]lecting	brain	activation	in	the	large	HCP	data	sample	during	the	
tasks	 of	 interest.	 However,	 the	 question	 is	 whether	 it	 has	 to	 be	 exactly	 the	 task	
network	that	is	related	to	a	speci]ic	behaviour	or	whether	interactions	within	other	
networks	are	also	associated	with	behaviour.		
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3.2.3 Neural correlates of cognition and affect 

While	cognition	is	multifaceted,	a	consistent	set	of	brain	regions	have	been	identi]ied	
quite	early	due	to	lesion	studies:	the	prefrontal	and	parietal	cortices	(Damasio	et	al.,	
1996;	Rosenbaum	et	al.,	2005;	Scoville	&	Milner,	1957;	Stuss	et	al.,	2001).	Damage	to	
these	 regions	 lead	 to	 impaired	 executive	 functions.	 Then,	 Haier	 and	 colleagues	
showed	 a	 correlation	 between	 intelligence	 and	 gray	 matter	 volume	 in	 frontal,	
temporal,	parietal,	and	occipital	regions	using	voxel	based	morphometry	(Haier	et	al.,	
2004),	which	has	been	supported	in	functional	studies	as	well.	In	a	large	meta-analysis	
Basten	et	al.	 found	supporting	evidence	of	brain	activation	 in	 the	 lateral	prefrontal	
cortex,	 the	 medial	 frontal	 cortex,	 as	 well	 as	 the	 parietal	 and	 temporal	 cortex	 in	
intelligence.	More	speci]ically,	they	found	the	inferior	frontal	sulcus	and	gyrus,	middle	
frontal	 and	 temporal	 gyrus,	 superior	 parietal	 lobule,	 and	 the	 pre-supplementary	
motor	area	to	be	consistently	activated	during	tasks	associated	with	cognition	(Basten	
et	al.,	2015).	Other	meta-analyses	focussing	on	working	memory	found,	in	addition	to	
some	of	the	aforementioned	regions,	 the	thalamus	and	basal	ganglia	to	be	involved	
(Rottschy	et	al.,	2012).	

A	similar	trajectory	can	be	seen	in	how	we	came	to	understand	which	brain	regions	
are	 critical	 for	 trait	 affect.	 Early	 lesion	 studies	 highlighted	 the	 importance	 of	 the	
amygdala,	ventromedial	prefrontal	cortex	(vmPFC),	and	insula	in	emotion	processing	
and	regulation,	emotional	experience,	and	decision-making	involving	affective	valence	
(Adolphs	et	al.,	1995,	1996;	Bechara	et	al.,	1999;	Calder	et	al.,	2000;	Damasio	et	al.,	
1994).	 However,	 also	 frontal,	 temporal	 and	 parietal	 brain	 regions,	 as	 well	 as	 the	
anterior	cingulate	cortex,	have	been	shown	to	be	involved	(Barbey	et	al.,	2014;	Hornak	
et	al.,	2003).	The	lesion-based	evidence	is	also	supported	by	structural	und	functional	
studies	 (Lindquist	 et	 al.,	 2012;	 Schmaal	 et	 al.,	 2017),	 which	 further	 found	 the	
prefrontal	cortex,	the	thalamus	and	the	periaqueducal	gray	to	be	involved	(Kober	et	
al.,	 2008;	 Lindquist	 et	 al.,	 2012).	 In	 particular	 relevant	 for	 emotion	processing	 (or	
emotional	face	processing)	are	the	already	mentioned	amygdala	and	insula.	However,	
further	active	regions	found	in	the	limbic	areas	include	the	parahippocampal	gyrus	
and	 the	 posterior	 cingulate	 cortex,	 and	 in	 the	 temporoparietal	 areas	 the	 parietal	
lobule	and	the	middle	temporal	gyrus.	Further	involved	are	visual	areas,	such	as	the	
fusiform	and	lingual	gyrus,	the	medial	frontal	gyrus,	the	putamen	and	the	cerebellum	
(Fusar-Poli et al., 2009; Müller et al., 2018).		

In	sum,	key	brain	regions	in	cognition	are	covered	mainly	by	the	multiple-demand	and	
the	cognitive	control	network.	The	multiple	demand	network	includes	the	(posterior-
medial)	 frontal	 cortex,	 insula,	 intraparietal	 sulcus,	 and	 inferior	 frontal	 sulcus.	 The	
cognitive	control	network	includes	the	anterior	cingulate	cortex/pre-supplementary	
motor	 area,	 dorsolateral	 prefrontal	 cortex,	 inferior	 frontal	 junction,	 and	 posterior	
parietal	cortex.	In	affect,	the	limbic	system,	including	in	particular	the	amygdala,	with	
extensions	to	the	prefrontal	cortex,	cingulate	gyrus,	thalamus,	and	hippocampus,	have	
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been	associated.	These	regions	have	been	mainly	based	on	lesion	studies	and	group	
effect	 between	 task	 conditions.	 They	 therefore	 show,	 that	 these	 regions	 are	
consistently	involved	in	these	processes.	However,	to	what	extent	they	are	associated	
with	individual	behavior	is	incompletely	understood.		

	

3.3 Influencing Factors on Brain–Behaviour Relationships 

One	of	the	main	goals	in	behavioural	neuroscience	is	to	understand	how	the	human	
brain	works	and	how	individual	variability	is	driven.	Several	approaches	can	applied	
to	 try	 to	 elucidate	 this	 quest:	 heritability	 analyses	 can	 help	 explain	 how	much	 of	
individual	variability	in	brain	structure	or	function	is	in]luenced	by	genes.	Prediction	
can	 help	 us	 move	 beyond	 group	 averages.	 Finally,	 multivariate	 and	 multimodal	
analyses	 tie	 all	 modalities	 together	 and	 try	 to	 approach	 the	 brain	 as	 it	 is:	 an	
interconnected	system.	

	

3.3.1 Heritability 

Heritability	is	a	statistical	estimate	explaining	what	proportion	of	the	variation	in	a	
given	trait	in	a	population	is	due	to	genetic	variation.	The	variance	(V)	of	a	phenotype	
(P)	within	a	population	is	composed	of	genotypic	(G)	and	environmental	(E)	variance.	
Narrow-sense	heritability	(h²),	calculable	with	twin	studies,	refers	to	the	proportion	
of	phenotypic	variance	that	 is	attributable	to	additive	genetic	variance	V(A),	and	is	
estimated	 as	 h²	 =	 V(A)	 /	 V(P)	 (Bruell,	 1970;	 Nes	 &	 Roysamb,	 2015).	 Research	 of	
genetic	in]luences	provides	insights	into	the	biological	basis	and	possible	in]luences	
in	 both	 healthy	 and	diseased	people.	 It	 helps	 us	 further	 understand	 the	 biological	
(genetic)	 constrains,	 while	 empowering	 us	 with	 the	 knowledge	 about	 potential	
environmental	in]luence.	This	pertains	to	both	the	brain,	as	well	as	behavioural	traits.		

Thanks	to	heritability	analyses	based	on	twin	studies,	it	has	been	analysed,	that	the	
majority	of	the	human	brain	morphology	is	highly	heritable	(Jansen	et	al.,	2015),	but	
also,	 individually	 both	 cortical	 thickness	 and	 surface	 area	 revealed	 to	 be	 highly	
heritable	in	humans	(Panizzon	et	al.,	2009).	Further,	behavioural	traits	are	heritable.	
Ranking	at	the	top	is	cognition,	which	has	been	shown	to	be	highly	heritable	(Krapohl	
et	al.,	2014;	Plomin	&	Deary,	2015).	In	contrast,	since	affective	traits	are	much	more	
elusive	 and	 a	 clear	 delineation	 still	 of	 debate	 (Desmet,	 2018;	 Gross,	 2015),	 the	
research	of	heritability	in	these	traits	is	much	less	consistent.	Nevertheless,	affective	
traits	have	been	 identi]ied	as	heritable	 to	some	extent	 (Bouchard	&	Loehlin,	2001;	
Lykken	&	Tellegen,	 1996),	while	 some	diseases	 associated	with	 affective	disorders	
show	high	heritability	(Fernandez-Pujals	et	al.,	2015;	Kendall	et	al.,	2021).	Further,	
cognitive	empathy	or	social	cognition	has	also	been	shown	to	be	heritable	(Warrier	et	
al.,	2018).		
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Therefore,	in	the	]irst	study,	I	not	only	investigate	the	phenotypic	association	between	
cognition,	affect	and	local	brain	anatomy,	but	also	investigate	the	shared	brain	basis	
between	cognition	and	trait	affect	and	their	genetic	correlation.	This	enables	me	to	
investigate	heritability	as	an	 in]luencing	factor	on	brain–behaviour	relationships	 in	
cognition	and	affect.	

	

3.3.2 Prediction 

For	the	most	time,	and	laid	out	in	the	previous	section,	neuroscience	relied	on	very	
speci]ied	lesion	patients	or	large	samples	to	establish	brain–behaviour	relationships.	
Through	 new	 insights	 this	 locationist	 approach	 is	 being	 challenged	 by	 the	
constructionist	 approach,	 which	 suggests	 an	 interaction	 between	 brain	 functional	
networks,	 instead	of	one	speci]ic	 location	to	be	responsible	for	a	speci]ied	function	
(Lindquist	 et	 al.,	 2012).	 In	 addition,	 we	 now	 have	 more	 (brain)	 data	 available,	
including	 large	densely	 sampled	datasets,	 such	as	 the	Human	Connectome	Project.	
Prediction	with	machine	learning	allows	us	to	go	beyond	conventional	statistics	and	
make	use	of	 the	 large,	 complex	and	high-dimensional	datasets.	While	conventional	
statistical	approaches	help	us	understand	relationships	between	variables,	they	often	
rely	 on	 simplifying	 assumptions—such	 as	 independence,	 linearity,	 and	 low	
dimensionality—that	 may	 not	 re]lect	 the	 true	 complexity	 of	 brain–behaviour	
relationships.		

In	 contrast,	 predictive	 modelling	 and	 machine	 learning	 are	 able	 to	 handle	 high-
dimensional,	 complex,	 and	 often	 nonlinear	 data,	 enabling	 the	 analysis	 and	
identi]ication	of	distributed	patterns	across	the	brain	that	are	informative	at	the	level	
of	individual	behaviour.	Therefore,	the	application	of	prediction	in	neuroscience	offers	
the	potential	to	further	knowledge	and	the	development	of	brain-based	biomarkers	
for	personalized	medicine	to	inform	diagnosis,	prognosis,	and	intervention	strategies	
on	an	individual	level.	

However,	 statistics	 allow	 an	 interpretable	 hypothesis	 driven	 approach	 to	 brain–
behaviour	 relationships,	 while	 machine	 learning	 functions	 largely	 within	 a	 “black	
box”.	While	the	ability	to	handle	complex	data	and	potentially	discover	patterns	with	
machine	learning	is	a	major	strength,	the	models	often	lack	interpretability,	making	it	
dif]icult	to	infer	the	underlying	biological	mechanisms	driving	the	observed	patterns.		

Therefore,	in	my	dissertation,	I	applied	statistical	models	to	achieve	an	interpretable	
and	reduced	feature	space	of	brain	data	before	applying	different	machine	learning	
algorithms.	 Instead	 of	 relying	 on	whole-brain	 data—and	 therefore	 omit	 biological	
interpretability—I	 yielded	 functional	 networks	 through	 different	 approaches:	 1)	
Meta-analyses	 of	 networks	 activated	 through	 speci]ic	 tasks,	 and	 2)	 De]inition	 of	
networks	from	high-powered	and	diversi]ied	task-fMRI	studies.	I	then	computed	the	
functional	 connectivity	 within	 these	 network	 based	 on	 different	 task	 states	 and	
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analysed	their	predictability	with	regards	to	corresponding	behaviour.	By	comparing	
FC	derived	from	resting-state	and	task-based	fMRI,	and	applying	predictive	modelling	
techniques,	I	can	assess	whether	FC	from	behaviourally	related	states	(e.g.	FC	from	
WM	predicting	WM)	offer	better	predictive	power	than	unrelated	states	(e.g.	FC	from	
WM	predicting	EMO).		

This	 integrated	 approach	 allows	 not	 only	 to	 identify	 associations	 between	 brain	
regions	 and	 behaviour	 (statistical	 analysis),	 but	 also	 to	 determine	 whether	 these	
associations	are	genetically	 in]luenced	 (heritability	analysis)	and	whether	 they	are	
informative	for	predicting	individual	differences	in	behaviour	(predictive	modelling).	

	

3.4 Aim of the studies 

One	main	goal	of	neuroscience	is	to	understand	and	gain	deeper	insights	into	brain	
function	and	organisation	and	to	link	it	to	behaviour.	Many	studies	investigated	how	
experience	 and	 behaviour	 is	 linked	 to	 brain	 structure	 and	 function,	 and	 also	 how	
much	 in]luence	 can	 be	 attributed	 to	 our	 genetic	 makeup.	 While	 there	 are	 many	
converging	studies	investigating	cognition,	there	are	inconclusive	]indings	for	affect,	
as	well	as	their	interplay.	Further,	little	is	known	about	how	behavioural	domains	are	
subject	to	different	in]luencing	factors	of	inter-individual	differences	of	the	brain.	In	
particular,	how	overlapping	genetic	 in]luences	exhibit	 in	brain	structure	and	which	
in]luence	different	functional	task	states	drive	predictability	of	individual	behaviour.		

Therefore,	 the	 ]irst	 study	 focused	on	 identifying	 a	 shared	behavioural	basis	 across	
cognition	and	affect	and	examined	whether	this	convergence	is	mirrored	in	local	brain	
structure.	 Here,	 I	 focused	 on	 structural	 morphometry	 such	 as	 cortical	 thickness,	
surface	area,	and	subcortical	volume.	Finally,	by	analysing	the	heritability,	I	investigate	
if	 cognition	 and	 affect	 have	 shared	 genetic	 effects	 within	 behaviour	 and	 in	 brain	
morphology.	

In	 the	 second	 study	 I	move	 from	structural	 anatomy	 to	 functional	brain	networks.	
Here,	 I	 investigate	 if	 individual	 differences	 in	 cognition	 (represented	 by	 working	
memory),	emotion,	and	social	cognition	can	be	predicted	from	potential	patters	of	FC.	
By	comparing	the	predictability	of	FC	derived	from	resting-state	and	task-based	fMRI	
in	 different	a	 priori	 networks,	 I	 can	 assess	 the	 in]luencing	 factor	 of	 task	 state	 and	
network	 speci]icity	 on	 brain–behaviour	 relationships.	 Further,	 by	 using	 a	 priori	
de]ined	 networks	 based	 on	 meta-analyses	 and	 large	 samples,	 I	 aim	 to	 improve	
interpretability	of	machine	learning	models.	

With	this	dissertation	I	aim	to	investigate	how	inter-individual	differences	in	cognitive	
and	socio-affective	processes	are	related	to	structural	brain	anatomy	and	functional	
connectivity.	Further,	 I	assess	phenotypic	and	morphological	heritability,	as	well	as	
the	predictability	of	task	states	and	network	speci]icity	as	in]luencing	factors	of	brain	
variability.		 	
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a . / & % a ( & 
Cognitive abilities and affective experience are key human traits that are interrelated in behavior and brain. 
Individual variation of cognitive and affective traits, as well as brain structure, has been shown to partly under- 
lie genetic effects. However, to what extent affect and cognition have a shared genetic relationship with local 
brain structure is incompletely understood. Here we studied phenotypic and genetic correlations of cognitive and 
affective traits in behavior and brain structure (cortical thickness, surface area and subcortical volumes) in the 
pedigree-based Human Connectome Project sample ( N = 1091). Both cognitive and affective trait scores were 
highly heritable and showed significant phenotypic correlation on the behavioral level. Cortical thickness in the 
left superior frontal cortex showed a phenotypic association with both affect and cognition. Decomposing the phe- 
notypic correlations into genetic and environmental components showed that the associations were accounted for 
by shared genetic effects between the traits. Quantitative functional decoding of the left superior frontal cortex 
further indicated that this region is associated with cognitive and emotional functioning. This study provides a 
multi-level approach to study the association between affect and cognition and suggests a convergence of both 
in superior frontal cortical thickness. 

1. Introduction 
The human cerebral cortex is implicated in multiple aspects of psy- 

chological functions, including cognitive abilities and affective experi- 
ences. Psychological traits and neuropsychiatric disorders have been re- 
liably associated with interindividual variation in cortical macrostruc- 
ture ( Thompson et al., 2020 ). Moreover, variation in macroscale grey 
matter structure, such as in cortical thickness and surface area, is 
strongly driven by heritable and polygenetic in0uences ( Grasby et al., 
2020 ; Panizzon et al., 2009 ; Winkler et al., 2010 ). Affective and cogni- 
tive traits have also been shown to underlie genetic effects ( Davies et al., 
2011 ; Okbay et al., 2016 ; Zheng et al., 2016 ). However, to which de- 
gree trait affect, cognition, and brain structure share a genetic basis is 
incompletely understood. 

∗ Corresponding authors at: Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany. 
E-mail addresses: schaare@cbs.mpg.de (H.L. Schaare), s.valk@fz-juelich.de (S.L. Valk). 

1 These authors contributed equally to this work. 

Behavioral genetic studies have previously been conducted to as- 
sess heritability of habitual (i.e. trait) cognitive and affective processes. 
Using pedigree-based designs allows the assessment of genetic effects 
on a given phenotype by comparing monozygotic twins with other 
sibships and unrelated individuals ( Almasy et al., 1997 ; Almasy and 
Blangero, 1998 ). Twin-based studies showed that cognitive abilities are 
largely in0uenced by genetic effects ( Bartels et al., 2002 ; Davies et al., 
2011 ; Kan et al., 2013 ; van Soelen et al., 2011 ; Wainwright et al., 
2005 ). Affective traits have been investigated in genetic studies by 
using measures of positive and negative affect, as well as subjective 
well-being ( Diener and Emmons, 1984 ; Lykken and Tellegen, 1996 ; 
Russell and Carroll, 1999 ; Salsman et al., 2013 ; Watson and Telle- 
gen, 1985 ). These studies repeatedly found trait negative affect to be 
heritable, while trait positive affect was not related to genetic effects 
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( Baker et al., 1992 ; Zheng et al., 2016 ). Conversely, Lykken and Telle- 
gen (1996) showed that individual differences in subjective well-being 
were partly explained by genetic variation in several thousand middle- 
aged twins. Along this line, Genome-Wide Association Studies (GWAS) 
reported various loci associated with subjective well-being ( Okbay et al., 
2016 ). These results emphasize a genetic basis of the variation in both 
cognition and some affective experiences. 

Human brain structure also underlies genetic in0uences, as brain vol- 
ume, cortical surface area and thickness have been found to be strongly 
heritable and to show a polygenetic architecture ( Brouwer et al., 2014 ; 
Grasby et al., 2020 ; Panizzon et al., 2009 ; Winkler et al., 2010 ). Neu- 
roimaging genetics studies demonstrated that associations between cog- 
nition and cortical thickness can be explained by shared genetic ef- 
fects ( Brans et al., 2010 ; Desrivières et al., 2015 ; Joshi et al., 2011 ; 
Shaw et al., 2006 ). Gene enrichment studies have further associated sub- 
jective well-being with differential gene expression in the hippocampal 
subiculum and with GABAergic interneurons, suggesting a genetic link 
between brain structure and affective traits ( Baselmans et al., 2019 ). 
Moreover, shared genetic effects have been found to drive the associa- 
tion between neuroticism – a personality trait closely linked to negative 
affect – and surface area in the right medial frontal cortex ( Valk et al., 
2020 ). 

Classically considered to be distinct entities, most neuroimaging 
studies to date investigated neural correlates of cognition and affect 
as separate constructs yielding inconclusive results. There is a multi- 
tude of evidence which suggests that general cognitive abilities are pos- 
itively correlated with greater brain volume across the human lifes- 
pan ( Oschwald et al., 2019 ). Using surface-based measures, individ- 
ual differences in cognition have been related to prefrontal and pari- 
etal cortical thickness, though often with contradictory outcomes: Both 
positive correlations between cortical thickness and cognitive abilities 
( Karama et al., 2009 ; Narr et al., 2006 ; Shaw et al., 2006 , Bajaj et al., 
2018 , Hanford et al., 2019 ), as well as negative correlations ( Goh et al., 
2011 ; Salat et al., 2002 ; Sowell et al., 2001 ; Van Petten et al., 2004 ) 
have been reported. 

With respect to affective traits, neuroimaging studies have repeat- 
edly shown that state and trait emotional processes correlate with ac- 
tivity, connectivity and anatomy of the brain ( Atkinson et al., 2007 ; 
Brierley et al., 2004 ; LaBar et al., 1995 ; Lindquist et al., 2012 ; Rohr et al., 
2015 ; Tsuchiya et al., 2009 ). 

Recent theories emphasize the interplay and shared mechanisms 
of emotions and cognition in the human brain ( Barrett, 2016 ; 
Pessoa, 2008 ): Emotions can both facilitate and impede cognitive func- 
tion, depending on the context ( Dolcos and Denkova, 2014 ; Okon- 
Singer et al., 2015 ). At the same time, cognitive processes are inherent 
in most aspects of emotional experience and regulation ( Ochsner and 
Gross, 2005 ; Pessoa, 2008 ). This behavioral association is mirrored by 
overlapping brain networks associated with emotions ( Barrett, 2016 ; 
Khalsa et al., 2018 ) and cognitive control ( Langner et al., 2018 ; 
Pessoa, 2008 ). Thus, affective experience and cognitive abilities are in- 
herently coupled in the human brain ( Barrett, 2016 ; Pessoa, 2008 ). Yet, 
it remains unclear if this coupling re0ects in neuroanatomical correlates 
and if cognition and affect share a genetic basis. 

In sum, (1) cognitive abilities and their relation with brain structure 
are highly heritable; (2) affective experience is associated with brain 
function and structure and may also be driven by genetic factors, de- 
pending on the affect measurement; (3) there is a complex interrelation 
between affect and cognition in behavior and brain. However, whether 
cognition and trait affect have a shared genetic relation to brain struc- 
ture is not known to date. We studied the relationship of cognition and 
affect in behavior and local brain structure and evaluated whether cog- 
nitive abilities and trait affective self-reports can be accounted for by 
shared genetic effects between behavior and brain. First, we evaluated 
the relation of cognition and trait affect on the behavioral level by con- 
ducting phenotypic correlation, as well as heritability analyses and ge- 
netic correlation in a large sample of healthy twins. Next, we assessed 

cognition and affective traits in relation to cortical thickness, subcorti- 
cal volumes and cortical surface area, to evaluate whether cognition and 
affect yield phenotypic and genetic correlations with local brain struc- 
ture. We expected to observe that phenotypic associations of cognition 
and affect with brain structure can be explained by genetic correlations. 
2. Materials and methods 
2.1. Participants 

The Human Connectome Project (HCP) is a publicly available data 
base. In this study, the Young Adult Pool was used, which comprised 
1206 healthy individuals (656 women, mean age = 28.8 years, stan- 
dard deviation (SD) = 3.7, range = 22–37 years). In total, there were 
292 monozygotic (MZ) twins, 323 dizygotic (DZ) twins, and 586 single- 
tons (additionally 5 missing values in zygosity information). After exclu- 
sion of individuals without brain structural ( N = 93) or behavioral data 
( N = 20) relevant to this study, and participants with corrupted brain 
data ( N = 4), our final sample comprised 1091 individuals, of which 592 
were women. This sample included 274 MZ twins, 288 DZ twins, and 
525 singletons (additionally 4 missing values in zygosity information). 
Its mean age, standard deviation and range remained the same as for 
the total HCP sample. 
2.2. Ethics statement 

Analysis of the HCP data has been approved through the local ethics 
committee of the University of Düsseldorf, Germany. 
2.3. Data/code availability statement 

To ensure reproducibility of this study using unrestricted 
and restricted data of the publicly available HCP dataset 
( www.humanconnectome.org ), the code that has been used in our anal- 
yses can be found here: https://github.com/CNG-LAB/affect _ cognition . 
As specified in the HCP Restricted Data Use Terms , investigator- 
assigned IDs of included participants will be shared upon publication 
of the study. 
2.4. Behavioral measures 

The cognitive and affective measures used in this study were selected 
in the data base of the HCP and derived from the National Institute of 
Health (NIH) toolbox for Assessment of Neurological and Behavioral 
Function® ( neuroscienceblueprint.nih.gov ). Composite scores from the 
cognition and emotion categories were used, while one category com- 
prised several sub-domains ( Table 1 ). 
2.4.1. Cognition 

The cognitive function composite score (total cognition) was as- 
sessed by averaging the 0uid cognition composite score (0uid cognition) 
and the crystallized cognition composite score (crystallized cognition). 
As illustrated in Table 1 , the 0uid cognition score was obtained by av- 
eraging the scores of the Dimensional Change Card Sort Test, Flanker, 
Picture Sequence Memory, List Sorting, and Pattern Comparison mea- 
sures. That is, 0uid cognition is the combination of scores of executive 
function, inhibition and attention, episodic memory, working memory, 
and processing speed ( Akshoomoff et al., 2013 ). The crystallized cogni- 
tion score was obtained by averaging the scores of Picture Vocabulary 
and Oral Reading Recognition measures. That is, crystallized cognition 
consists of language in the sense of translation of thought into symbols 
and deriving meaning from text, as a re0ection of past learning experi- 
ences ( Akshoomoff et al., 2013 ; Gershon et al., 2013 ). 

As cognition can be both conceived as a general factor (G), but at 
the same time crystallized and 0uid cognition are differentiable, we in- 
vestigated the general cognitive score (total cognition), as well as 0uid 
and crystallized cognition. 
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Table 1 
Behavioral scores. Overview of composition of behavioral variables. 
Category Domain Sub-domain Test 
Cognition Fluid cognition Executive function – cognitive 0exibility Dimensional Change Card Sorting (DCCS) 

Executive function – Inhibition and attention Flanker 
Episodic memory Picture Sequence Memory 
Processing speed Pattern Comparison 
Working memory List Sorting 

Crystallized cognition Language Picture Vocabulary 
Reading Recognition 

Affect Positive affect/psychological well-being Life satisfaction Self-report 
Meaning and purpose 
Positive affect 

Negative affect Anger-affect Self-report 
Anger-hostility 
Fear-affect 
Perceived stress 
Sadness 

Table 2 
Behavioral variables. Mean, standard deviation, as well as minimum and maxi- 
mum of each variable included in our analyses. 
Variables Mean SD Min Max 
Total Cognition 121.8 14.6 84.6 153.4 
Fluid Cognition 115.0 11.6 84.5 145.2 
Crystallized Cognition 117.7 9.9 90.4 154.0 
Positive Affect 52.1 7.2 27.1 72.6 
Negative Affect 48.7 6.8 30.9 78.8 
Mean Affect 1.7 6.2 -19.6 20.8 

2.4.2. Affect 
To examine trait affect in this study, a composite measure of general 

affect was used, consisting of both positive and negative affect. Trait af- 
fect can be sub-divided into positive and negative traits, which are sep- 
arable constructs that may be represented as one bipolar scale or two 
unipolar scales ( Diener and Emmons, 1984 ; Russell and Carroll, 1999 ; 
Salsman et al., 2013 ; Watson and Tellegen, 1985 ). Positive affect, also 
known as psychological well-being, is characterized by the experience 
of pleasant feelings, such as happiness, serenity and cognitive engage- 
ment ( Diener and Emmons, 1984 ; Salsman et al., 2014 , 2013 ). We com- 
posed the construct of positive affect by averaging the scores from the 
sub-domains of life satisfaction, meaning and purpose, and positive af- 
fect ( Tables 1 and 2 ). Negative affect comprises three principal negative 
emotions: anger, fear, and sadness ( Pilkonis et al., 2013 ; Salsman et al., 
2013 ). It was composed by the average of anger (anger-affect, hostility), 
sadness, fear-affect, and perceived stress ( Table 1 and 2 ). All affective 
domains were obtained using the NIH toolbox with a written self-report 
( Pilkonis et al., 2013 ; Salsman et al., 2014 , 2013 ). 

As the positive and negative affect scores used in this study showed 
high intercorrelations (R = -0.6, see Fig. 1 C and Supplementary Fig. 1), 
we created a composite score of mean affect by reversing the negative 
affect score and averaging it with the positive affect score. This enabled 
us to investigate positive and negative affect as separate entities, on the 
one hand, as well as a general estimate of mean affect that integrates 
both negative and positive emotions, on the other hand. 
2.5. Structural imaging processing 

MRI protocols of HCP were previously described in detail 
( Glasser et al., 2013 ; Van Essen et al., 2013 ). In short, MRI data used 
in the study was acquired on the HCP’s custom 3T Siemens Skyra scan- 
ner equipped with a 32-channel head coil. Two T1-weighted (T1w) im- 
ages with identical parameters were acquired using a 3D-MPRAGE se- 
quence (0.7 mm isotropic voxels, matrix = 320 × 320, 256 sagittal slices, 
TR = 2,400 ms, TE = 2.14 ms, TI = 1,000 ms, 0ip angle = 8°, iPAT = 2). 
Two T2w images were acquired using a 3D T2-SPACE sequence with 

identical geometry (TR = 3,200 ms, TE = 565 ms, variable 0ip angle, 
iPAT = 2). T1w and T2w scans were acquired on the same day. The 
pipeline used to obtain the FreeSurfer segmentation is described in de- 
tail in a previous article ( Glasser et al., 2013 ) and is recommended for 
the HCP-data. The pre-processing steps included co-registration of T1w 
and T2w scans, B1 (bias field) correction, and segmentation and sur- 
face reconstruction using FreeSurfer version 5.3-HCP to estimate brain 
volumes, cortical thickness and surface area. We also derived eight 
bilateral subcortical volumes (thalamus, caudate, putamen, pallidum, 
hippocampus, amygdala, accumbens area, ventral diencephalon) from 
FreeSurfer’s automatic subcortical segmentation ( Fischl et al., 2002 ) to 
evaluate their phenotypic and genetic correlation with behavioral traits. 
2.6. Cortical morphological measures 

For analyses including local cortical structure, we summarized 
surface-based morphological measures (i.e. cortical thickness and sur- 
face area) as parcels covering the entire cortical mantle to study 
their compressed features on a local topological scale ( Betzel and Bas- 
sett, 2017 ). We applied a parcellation scheme on the cortical surface 
mesh, which is based on the combination of local gradient and global 
similarity approaches using a gradient-weighted Markov Random Field 
model ( Schaefer et al., 2018 ). Using compressed features of structural 
MRI has been suggested to both improve signal-to-noise of brain mea- 
sures (cf. Eickhoff et al., 2018 ; Genon et al., 2018 ) and optimize analy- 
sis scalability. The Schaefer parcellation has been extensively evaluated 
with regards to stability and convergence with histological mapping and 
alternative parcellations ( Schaefer et al., 2018 ). In the context of the 
current study, we focused on the granularity of 200 parcels from the 7- 
network solution. In order to improve signal-to-noise ratio and analysis 
speed, we opted to average unsmoothed structural data within each par- 
cel. Thus, cortical thickness of each parcel was estimated as the trimmed 
mean (10 % trim) of vertex-wise cortical thickness and parcel-wise sur- 
face area was computed as the sum of vertex-wise area per parcel. The 
parcel-wise measures were used in all subsequent cortical analyses. 
2.7. Phenotypic correlation analyses 

Phenotypic correlations between cognitive and affective traits were 
assessed by cross-correlating the normalized behavioral measures, con- 
trolling for effects of age, sex and their interaction, using multiple linear 
regression models. 

Phenotypic analyses between behavioral traits and local brain struc- 
ture were carried out per parcel of cortical thickness and surface area, 
as well as per volume of subcortical structures. Each brain modality 
was predicted by cognition and affect, respectively, using multiple lin- 
ear regression models while controlling for age, sex, age × sex inter- 
action, age 2 , age 2 × sex interaction, as well as global thickness (mean 
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Fig. 1. Phenotypic and genetic relation of cognition and affect. (A) Distribution of cognitive and affective variables; (B) Their heritability (h 2 ); (C) bottom triangle: 
phenotypic correlation (standardized beta values, FDRq < 0.05) and upper triangle: genetic correlation (rho values, FDRq < 0.05) of the cognitive and affective scores; 
(D) Scatter plot showing the phenotypic correlation between mean affect and total cognition. 
cortical thickness) effects when investigating cortical thickness and in- 
tracranial volume (ICV) when assessing surface area and subcortical vol- 
umes. As in previous work ( Bernhardt et al., 2014 ; Valk et al., 2016a , 
2016b ), we used SurfStat for Matlab [R2020a, The Mathworks, Natick, 
MA] ( Worsley et al., 2009 ) to conduct the statistical comparisons. 

Results of all phenotypic correlations were corrected for mul- 
tiple comparisons using Benjamini-Hochberg false discovery rate 
(FDRq < 0.05) ( Benjamini and Hochberg, 1995 ). We displayed signifi- 
cant brain associations on the cortical surface. 
2.8. Heritability and genetic correlation analyses 

Using the pedigree-based design of HCP, we conducted analyses to 
estimate heritability and genetic correlation of cognitive and affective 
trait scores and brain structure. All genetic analyses were performed us- 
ing the software package Sequential Oligogenic Linkage Analysis Rou- 
tines (SOLAR, http://www.solar-eclipse-genetics.org ), which employs 
a maximum likelihood variance-decomposition approach optimized to 
perform genetic analyses in pedigrees of arbitrary size and complexity 
( Almasy and Blangero, 1998 ; Kochunov et al., 2019 ). SOLAR models 
genetic proximity by covariance between family members ( Almasy and 
Blangero, 1998 ; Kochunov et al., 2019 ). 

Heritability (i.e. narrow-sense heritability h 2 ) is defined as the pro- 
portion of the phenotypic variance ( !2 " ) in a trait that is attributable to 
the additive effects of genes ( !2 # ), i.e. ℎ 2 = !2 # ∕ !2 " . SOLAR estimates her- 
itability by comparing the observed phenotypic covariance matrix with 
the covariance matrix predicted by kinship ( Almasy and Blangero, 1998 ; 
Kochunov et al., 2019 ). Significance of the heritability estimate was 

tested using a likelihood ratio test where the likelihood of a restricted 
model (with !2 # constrained to zero) is compared with the likelihood of 
the estimated model. Twice the difference between the log likelihoods 
of these models yields a test statistic, which is asymptotically distributed 
as a 50:50 mixture of a X 2 variable with 1 degree-of-freedom and a point 
mass at zero ( Almasy and Blangero, 1998 ; Kochunov et al., 2019 ). 

To determine if variations in cognition or affect and brain struc- 
ture were in0uenced by the same genetic factors, genetic correla- 
tion analyses were conducted. Genetic correlations indicate the pro- 
portion of variance that determines the extent to which genetic in- 
0uences on one trait are shared with genetic in0uences on another 
trait (e.g. pleiotropy). In SOLAR, the phenotypic correlation ( %" ) was 
decomposed through bivariate polygenic analyses to estimate genetic 
( %# ) and environmental ( %& ) correlations using the following formula: 
%" = %# √( ℎ 2 1 ℎ 2 2 ) + %& √ 

[( 1 − ℎ 2 1 )( 1 − ℎ 2 2 )] , where h 2 1 and h 2 2 are the her- 
itability estimates of the behavioral trait and the respective brain struc- 
tural measure ( Almasy et al., 1997 ; Glahn et al., 2010 ). To test for the 
significance of shared genetic effects, likelihood ratio tests were con- 
ducted (similar to heritability analyses) comparing models in which 
%g was estimated with models in which %# was constrained to zero 
(no shared genetic effect) and constrained to 1 (complete pleiotropy) 
( Almasy et al., 1997 ). 

Significance of both the heritability and genetic correlation esti- 
mates was corrected for multiple comparisons by Benjamini-Hochberg 
FDRq < 0.05 ( Benjamini and Hochberg, 1995 ). 

Heritability and genetic correlation analyses were conducted with 
simultaneous estimation for the effects of potential covariates. We thus 
included the same covariates as in our phenotypic analyses including 
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age, sex, age × sex interaction, age 2 , age 2 × sex interaction, as well as 
global thickness when investigating cortical thickness and ICV when as- 
sessing surface area and subcortical volumes. To ensure that our traits 
conform to the assumptions of normality, an inverse normal transforma- 
tion was applied to all behavioral as well as brain structural traits prior 
to genetic analyses ( Glahn et al., 2010 ). 
2.9. Functional decoding 

Parcels that were significantly correlated with both cognition and 
affect and shared genetic variance, were functionally characterized 
using the Behavioral Domain meta-data from the BrainMap meta- 
analysis database ( http://www.brainmap.org , Laird et al., 2011 , 2009 ). 
The BrainMap database enables the decoding of functions associated 
with specific brain regions. To investigate potential functional pro- 
cesses associated with parcels linked to both affect and cognition, 
we used the volumetric counterparts of the surface-based parcels as 
defined by Schaefer et al and available online ( Schaefer et al., 2018 , 
https://github.com/ThomasYeoLab/CBIG/tree/master/stable _ projects/ 
brain _ parcellation/Schaefer2018 _ LocalGlobal/Parcellations ). Thus, 
although our empirical analysis focused on surface-based cortical data, 
functional decoding could be performed in volume space. In particular, 
we identified those meta-data labels (describing the computed contrast 
[behavioral domain as well as paradigm]) that were significantly more 
likely than chance to result in activation of a given parcel ( Fox et al., 
2014 ; Genon et al., 2018 ; Nostro et al., 2017 ). That is, functions were 
attributed to the parcels by quantitatively determining which types of 
experiments were associated with activation in the respective parcel 
region. Of note, we assessed associations of the parcels of interest with 
functional activations and included only tasks involving healthy adults. 
Significance was established using a binomial test (q < 0.05, corrected 
for multiple comparisons using FDR) and we report results of both 
forward and reverse inference analyses. 
3. Results 
3.1. Heritability, phenotypic and genetic correlation of cognition and affect 
( Fig. 1 ) 

First, we evaluated the phenotypic associations between cognitive 
test scores and affective self-report scores ( Fig. 1 , Supplementary Fig. 1). 
Both composite scores (total cognition and mean affect), as well as their 
sub-domains (0uid cognition, crystallized cognition, positive affect, and 
negative affect), were normally distributed ( Fig. 1 A). We observed high 
phenotypic interrelationships between the respective sub-tests of both 
cognitive and affective domains (Supplementary Fig. 1), supporting the 
use of the composite scores total cognition and mean affect as prox- 
ies for the constructs of cognition and affect, respectively. As expected, 
cognitive scores were all positively associated among each other, while 
positive affect correlated positively, and negative affect correlated neg- 
atively to mean affect. We observed that mean affect had a positive 
phenotypic relationship with total cognition ( ' = 0.09, FDRq < 0.05). 
Similarly, positive affect was positively associated with total ( ' = 0.08) 
and 0uid ( ' = 0.10) cognitive abilities, whereas negative affect was neg- 
atively associated with total ( ' = -0.08) and 0uid ( ' = -0.10) cognitive 
abilities (all FDRq < 0.05; Fig. 1 C, lower triangle). 

The heritability analysis revealed that all observed construct scores 
were heritable: total cognition ( h 2 = 0.75, p < 0.001), which is a com- 
bination of 0uid ( h 2 = 0.58, p < 0.001) and crystallized ( h 2 = 0.83, p < 
0.001) cognition, as well as mean affect ( h 2 = 0.31, p < 0.001), which is 
the signed average of positive ( h 2 = 0.27, p < 0.001) and negative (h 2 = 
0.36, p < 0.001) affect ( Fig. 1 B). 

Next, we evaluated the genetic correlation between cognitive and 
affective scores. A strong positive genetic correlation between 0uid 
and crystallized cognition ( %g = 0.47, FDRq < 0.05) and a negative ge- 
netic correlation between positive and negative affect ( %g = -0.62, 

FDRq < 0.05) was found ( Fig. 1 C, upper triangle), suggesting that both 
sub-domain-sets re0ect partly overlapping genetic mechanisms. We did 
not observe a significant genetic correlation between total cognition and 
mean affect (FDRq > 0.05). At trend level, we observed genetic correla- 
tions between 0uid cognition and mean affect ( %g = 0.23, p < 0.03), and 
between 0uid cognition and positive affect ( %g = 0.28, p < 0.02). In the 
following, we focus on reporting the results for the composite scores of 
total cognition and mean affect which su1ciently capture phenotypic 
and genetic variance of the constructs of cognition and affect. To addi- 
tionally allow for more detailed assessment, we report associations with 
the sub-domain measures in the supplementary materials. 
3.2. Phenotypic association between cognition and local brain anatomy 
( Fig. 2 ) 

To evaluate the phenotypic association of cognition and affect with 
brain anatomy, we first evaluated the correlation between cognition and 
local cortical thickness, while controlling for global thickness. We ob- 
served positive associations between thickness and total cognition in bi- 
lateral insula, bilateral cuneus, bilateral sensorimotor regions, left mid- 
dle temporal gyrus, and right middle cingulate; whereas bilateral frontal 
regions and left parietal showed a negative relation with total cognitive 
score ( Fig. 2 A). Conversely, surface area showed only positive, but not 
negative, associations with cognitive scores. Total cognition was associ- 
ated with local surface area in bilateral occipital areas, temporal poles, 
sensorimotor cortices, and lateral and orbital frontal cortices, as well as 
left anterior cingulate and right posterior-mid cingulate cortex ( Fig. 2 B). 
With regards to subcortical volumes, we observed a significant positive 
effect between total cognition and left hippocampal volume ( Fig. 2 C). 
Fluid and crystallized cognition sub-scores showed similar associations 
with local brain structure and volume (Supplementary Tables 1–3, 7–
12). 
3.3. Phenotypic association between affect and local brain anatomy 
( Fig. 2 ) 

Next, we evaluated the association between affect and local brain 
structure. We found that affect measures showed significant associations 
with local cortical thickness and subcortical volumes, but not with local 
surface area. Mean affect was associated with cortical thickness nega- 
tively in left superior frontal cortex and positively in left occipital cortex, 
as well as right parietal cortex ( Fig. 2 A, Supplementary Table 4). In ad- 
dition, bilateral caudate volume was significantly associated with mean 
affect ( Fig. 2 C, Supplementary Table 13). 
3.4. Genetic correlation of cognition and affect with local brain structure 
( Fig. 3 ) 

To assess if the phenotypic correlation between cognitive and af- 
fective traits on the one hand and local brain structure on the other is 
accounted for by shared genetic effects, we performed genetic corre- 
lation analyses through bivariate polygenic analyses. Both local thick- 
ness and surface area were heritable in our sample (cortical thickness 
h 2 = mean ± sd: 0.35 ± 0.11 and surface area: h 2 = 0.42 ± 0.13), as were sub- 
cortical volumes ( h 2 = 0.68 ± 0.10, Supplementary Figure 4, Supplemen- 
tary Tables 21-23). 

There was a strong overlap between phenotypic correlations and ge- 
netic correlations. 34 out of 37 phenotypic correlations between total 
cognition and local cortical thickness could be attributed to shared ge- 
netic effects (FDRq < 0.05, Fig. 3 A, Supplementary Table 16) and genetic 
correlation patterns largely mirrored phenotypic associations between 
cognitive scores and local cortical thickness (see also Supplementary 
Fig. 5 and Supplementary Table 18). Similarly, the phenotypic associ- 
ations between cognitive scores and subcortical volumes were mainly 
attributable to genetic correlations (Supplementary Table 20). Further- 
more, the associations between local surface area and cognitive scores 
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Fig. 2. Associations between cognition, affect and local brain structure. (A) Correlation between total cognition and local cortical thickness; Second row: Correlation 
between mean affect and local cortical thickness. (B) Correlation between total cognition and local surface area. Associations between surface area and affect were 
not significant. (C) Correlations between cognition / affect and sub-cortical regions volumes. Red indicates a positive association, and blue a negative association 
between cognition / affect and local brain structure. Only FDRq < 0.05 corrected findings are depicted (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.). 
were largely associated with shared genetic factors. Here, 29 out of 42 
phenotypic associations between total cognition and local surface area 
were accounted for by shared genetic factors ( Fig. 3 B, Supplementary 
Table 17; Supplementary Figure 6 and Supplementary Table 19 for sub- 
score results). Among the associations with mean affect, thickness of 
left superior frontal cortex ( %g = -0.480, p = 0.000, Fig. 3 A, Supplemen- 
tary Table 16) and bilateral caudate volumes (left: %g = -0.28, p = 0.001, 

right: %g = -0.28, p = 0.001, Supplementary Table 20) were also related 
to shared genetic effects. 
3.5. Shared brain basis between cognitive and affective tendencies ( Fig. 4 ) 

Last, we evaluated whether cognitive and affective traits also showed 
an overlapping relationship to local brain structure. Both cognition and 
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Fig. 3. Whole-brain genetic correlation between local cortical structure and cognition or affect. (A) Results for cortical thickness. (B) Results for surface area. Positive 
correlation is depicted in red, negative in blue. Only FDRq < 0.05 corrected findings are depicted (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.). 
affect scores had an association (FDRq < 0.05) with thickness in the left 
superior frontal cortex. In both measures, these effects were accounted 
for by genetic correlations (Supplementary Tables 16 and 17). We per- 
formed functional decoding to further quantify the functional processes 
associated with this region and found this region to be involved in cog- 
nitive and socio-cognitive processes, as well as emotional processes (va- 
lence and negative emotions) and action inhibition ( Fig. 4 , for uncor- 
rected results see Supplementary Figure 7). These behavioral domains 
were mirrored by activation related to Theory of Mind, Emotional In- 
duction, Semantic monitor, and Go/No-go tasks (reverse inference only, 
Fig. 4 ). 
4. Discussion 

We evaluated shared behavioral, heritable and brain structural fac- 
tors of cognitive and affective traits. We found that both cognitive and 
affective traits were heritable and observed significant genetic correla- 
tion between 0uid cognition (but not total cognition) and trait affect. 
Following, we assessed the phenotypic correlation between cognitive 
and affective traits on the one hand, and macroscale brain anatomy on 
the other. Whereas cognition had widespread associations with local 
cortical thickness and surface area, trait affect showed only sparse as- 
sociations. We found that most phenotypic behavior-brain associations 
were attributable to shared genetic effects, as indicated by significant 
genetic correlations. Finally, we evaluated whether total cognition and 
mean affect were embedded in a common brain structural correlate and 
found that both measures showed a shared phenotypic and genetic as- 
sociation with cortical thickness of left superior frontal cortex. Quanti- 
tative functional decoding further indicated that this region is involved 
in both cognitive and emotional functioning. 

4.1. Heritability and genetic correlations of cognition, affect and brain 
structure 

Complementing previous studies on affect, cognition, and 
macroscale brain anatomy, we interrogated the shared genetic basis of 
cognition and affect using pedigree-based approaches. We observed a 
moderate to strong heritability of cognitive scores ( h 2 = 0.6-0.8), which 
is in line with previous work: In childhood and adolescence-depending 
on measurement and cohort - 70 to 80 % of the variance in cognitive 
ability is estimated to be accounted for by genetic factors ( Bartels et al., 
2002 ; van Soelen et al., 2011 ; Wainwright et al., 2005 ). Using GWAS of 
adult samples, Davies et al. (2011) observed that 40% of the variation 
in crystallized-type intelligence and 51% of the variation in 0uid-type 
intelligence between individuals is accounted for by genetic variants. 
Notably, crystallized cognition was observed to be more heritable 
than 0uid cognition in the current sample. These findings are in line 
with a large meta-analysis assessing the heritability of cognitive traits 
based on their cultural load, where traits with higher cultural load 
were shown to be more heritable ( Kan et al., 2013 ). Traits that we 
summarized as crystallized cognition were attributed a higher cultural 
load in Kan et al.’s study. This indicates that the known cultural and 
educational homogeneity of the HCP sample may have led to a high 
estimated heritability of crystallized cognition. 

However, our findings on the heritability of affective self-reports 
were less strong. Previous work in a twin sample by Baker et al. 
revealed a strong heritability for negative affect, but none for posi- 
tive affect ( Baker et al., 1992 ), which was conceptually replicated by 
Zheng et al. (2016) . In addition, angry temperament has been associated 
with genetic processes involved in memory and learning ( Mick et al., 
2014 ). Another twin study by Lykken and Tellegen (1996) found the 
heritability for subjective well-being to be 44–52%, which appears to 
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Fig. 4. Quantitative functional decoding of region showing association with 
both cognition and affect. Both forward inference and reverse inference of 
activation-domain and paradigm-domain contrasts are reported for the left su- 
perior frontal cortex which showed evidence of shared phenotypic and genetic 
association for cognition and affect. 
be higher than the heritability scores we observed for affect measures. 
However, few studies to date have assessed the heritability of both cog- 
nitive and affective traits in the same cohort. Our observations suggest 
that inter-individual variance in cognition is more robustly explained by 
heritable factors, than in affect. This could be related to the challenge 
to quantify individual difference of affective traits in self-reports, which 
show weaker convergent validity, as opposed to tests for cognitive as- 
sessments ( Heaton et al., 2014 ; Salsman et al., 2013 ). 

Moreover, we replicated previous results that showed heritability of 
surface area and cortical thickness, which further indicated that phe- 

notypic variance in cortical thickness and surface area is partly driven 
by additive genetic effects ( Brouwer et al., 2014 ; Grasby et al., 2020 ; 
Panizzon et al., 2009 ; Winkler et al., 2010 ). 

Extending previous work, we also observed strong genetic correla- 
tions between total cognition and local cortical structure which indi- 
cates that the majority of phenotypic associations between total cogni- 
tion and cortical thickness and surface area, respectively, could be asso- 
ciated with shared genetic factors ( Brouwer et al., 2014 ; Grasby et al., 
2020 ; Toga and Thompson, 2005 ). 

Affect was phenotypically correlated with superior frontal thickness 
and genetic correlation analyses yielded that this association was at- 
tributable to shared genetic effects. These results are in line with recent 
work implicating various genetic loci with well-being which showed 
significant enrichment for GABAergic interneurons sampled from hip- 
pocampus and prefrontal cortex ( Baselmans et al., 2019 ; Okbay et al., 
2016 ). However, we did not observe genetic associations between af- 
fect and hippocampal volumes in this sample. Moreover, affect was ge- 
netically correlated with bilateral caudate volume, a region which has 
been shown to share a genetic basis with neuropsychiatric health traits 
( Satizabal et al., 2019 ; Zhao et al., 2019 ). 
4.2. Shared basis of cognition and affect in behavior, genetics and superior 
frontal cortex thickness 

We combined behavioral and brain imaging approaches to study the 
association between cognition and trait affect. Scores for mean total 
cognition and affect showed a positive association at the behavioral 
level, highlighting the synergy of cognitive and affective traits. Previ- 
ous work has suggested positive affect might have a motivating role in 
enhancing cognitive 0exibility ( Ashby et al., 1999 ; Fredrickson, 2001 ; 
Liu and Wang, 2014 ). In turn, cognitive control is a core feature of suc- 
cessful emotion regulation ( Engen and Anderson, 2018 ; Ochsner and 
Gross, 2005 ) and contributes to psychological well-being over the lifes- 
pan ( Mather and Carstensen, 2005 ). 

Recent work indicated a shared genetic basis between local brain 
structure and complex behavioral traits ( Grasby et al., 2020 ; Zhao et al., 
2019 ). In line with this work, our study demonstrated that cogni- 
tion and trait affect have a shared phenotypic and genetic relation- 
ship with cortical thickness in left superior frontal cortex. The supe- 
rior frontal gyrus — which includes the dorsolateral prefrontal cor- 
tex — has been classically considered a core region for higher cogni- 
tive functions, including attention, working memory and cognitive con- 
trol ( Boisgueheneuc et al., 2006 ; Corbetta and Shulman, 2002 ). Yet, 
a growing body of research has highlighted its involvement in socio- 
emotional processes, such as motivated behavior and emotion regula- 
tion ( Engen and Anderson, 2018 ; Frank et al., 2014 ; Okon-Singer et al., 
2015 ). Left superior frontal gyrus has also been implicated in self- 
awareness and introspection ( Goldberg et al., 2006 ), as well as in psy- 
chiatric disorders of self-awareness, such as schizophrenia ( Lee et al., 
2016 ). Indeed, left superior frontal thickness has been shown to be 
modulated by schizophrenia-associated genetic variants, suggesting a 
shared genetic basis of schizophrenia-associated brain regions and the 
neurocognitive symptoms characterizing the disease ( Lee et al., 2016 ). 
On a network level, the superior frontal cortex is situated at the inter- 
section of the default mode network, the dorsal attention network and 
the frontoparietal control network ( Li et al., 2013 ; Schaefer et al., 2018 ; 
Yeo et al., 2011 ). This particular network embedding suggests an inte- 
grating role of superior frontal cortex connectivity to broader associa- 
tive, self-re0ective processes, as well as controlling operations across the 
cortex ( Andrews-Hanna et al., 2014 ; Li et al., 2013 ; Spreng et al., 2013 ). 
Our observation of an inter-relationship of cognition and affect in supe- 
rior frontal cortex is further in line with a meta-analysis showing that in- 
teractions between emotion and cognition were associated with this re- 
gion, next to medial prefrontal cortex and basal ganglia ( Cromheeke and 
Mueller, 2014 ). In addition, the results we obtained from our functional 
decoding analysis are in line with the variety of cognitive and emotional 
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functions that previous studies have allocated to this region, such as ac- 
tivation related to social cognition, emotional valence and action inhi- 
bition ( Bzdok et al., 2012 ; Cromheeke and Mueller, 2014 ; Hung et al., 
2018 ). Interestingly, functional decoding only included a selection of 
cognitive and emotional labels. Labels involving positive emotion, im- 
plicit and working memory, attention, language processes, and spatial 
cognition, amongst others, did not load to this region. This may indicate 
that the overlap observed between the association of cognition and af- 
fect with cortical thickness of superior frontal cortex could be related to 
a rather specific set of functional processes relevant for both trait affect 
and cognition, possibly associated with emotional and cognitive control 
( Li et al., 2013 ; Song et al., 2017 ). Our results thus extend previous evi- 
dence of cognitive and affective behavior integration in superior frontal 
cortex by showing a macrostructural overlap of cognition and affect in 
superior frontal cortex that is based on shared genetic effects. 
4.3. Dissociations of affect and cognition in brain structure 

Both individual differences in cognitive and affective traits could be 
linked to local brain structure. Total cognition was associated with lower 
thickness in frontal regions which is in line with some studies ( Goh et al., 
2011 ; Salat et al., 2002 ; Sowell et al., 2001 ; Van Petten et al., 2004 ), but 
contradicting others ( Fjell et al., 2006 ; Karama et al., 2009 ; Narr et al., 
2006 ). At the same time, there is some congruency with previous stud- 
ies involving the location of regions critical for cognition, including 
mostly frontal and parietal regions ( Jung and Haier, 2007 ), but also 
anterior and posterior temporal, and occipital regions ( Goh et al., 2011 ; 
Menary et al., 2013 ). Notably, we also observed associations between 
cognition and various regions within the insular cortices, functionally 
implicated in both cognitive, but also emotional processes ( Kelly et al., 
2012 ; Lindquist et al., 2012 ). In addition, we found wide-spread asso- 
ciations in temporal, frontal and occipital lobes between local surface 
area and cognitive ability, but not with affective traits. Mean affect was, 
however, phenotypically correlated with cortical thickness in left su- 
perior frontal cortex, left lateral occipital cortex and bilateral caudate 
volume. It is noteworthy that affective traits showed less strong and 
wide-spread associations to local thickness relative to cognitive scores. 
This observation is in line with reports suggesting inter-regional in- 
teractions, rather than local anatomy, may encode emotional experi- 
ence ( Kragel and LaBar, 2016 ; Langner et al., 2018 ; Pessoa, 2008 ). In 
fact, meta-analyses of functional neuroimaging studies did not find evi- 
dence for independent brain systems that specifically relate to positive 
and negative valence ( Lindquist et al., 2016 , 2012 ). This suggests that 
the neural representation of affect is characterized by dynamic interac- 
tions between brain regions and networks rather than functional spe- 
cializations of distinct locations in the brain ( Kragel and LaBar, 2016 ; 
Langner et al., 2018 ; Pessoa, 2008 ). Moreover, dissociable patterns of 
cortical thickness and surface area in relation to behavior might also un- 
derlie genetic in0uences. As such, individual variation in surface area 
has been associated with genes expressed pre-birth, whereas cortical 
thickness has been related to adult-specific gene expression and emerg- 
ing genetic associations with cognitive abilities throughout development 
( Brouwer et al., 2014 ; Grasby et al., 2020 ; Panizzon et al., 2009 ). 
5. Limitations and conclusions 

We observed converging evidence for a heritable basis of inter- 
individual differences in cognition and affect combining multi-level 
analysis within the HCP dataset and ad-hoc meta-analytical functional 
decoding. At the same time, we observed that correlations within each 
domain were generally stronger than between cognition and affect. Fur- 
ther research might benefit from studying task-based, as well as physio- 
logical measures of cognitive and affective inter-individual variation to 
further evaluate the dynamic relation between cognitive aptitude and 
habitual and transient affective experience. The singular nature of the 

twin-based HCP sample warrants the acquisition of comparable high- 
resolution neuroimaging datasets including deeply phenotyped twins 
and families to test replication of results. Greater insight into the associ- 
ation between affect and cognition may be garnered by inspecting differ- 
ent samples, integrating more fine-grained genetic approaches with var- 
ious indices of cortical anatomy. However, associations observed here 
were weak, and it is of note that the combination of behavioral assess- 
ments and its association with brain structure has been recently chal- 
lenged: For example, Kharabian Masouleh et al. showed in an exten- 
sive study that the association of psychological traits and brain struc- 
ture is rarely statistically significant or even reproducible in indepen- 
dent samples ( Kharabian Masouleh et al., 2019 ). Additionally, Hedge 
and colleagues pointed out, that commonly used measurements of be- 
havior may not be optimal to determine underlying neural correlates, 
due to low between-participant variability within established paradigms 
( Hedge et al., 2018 ). Here we utilized different levels of analysis to cap- 
ture the association between affect and cognition. Follow-up work on 
the biological basis of complex behaviors may take a similar approach 
and integrate behavioral assessments with neuroimaging, behavioral 
and molecular genetics, and functional decoding. To conclude, the cur- 
rent work provides evidence at three levels of enquiry that cognitive 
abilities and affective traits are linked to partially overlapping neurobi- 
ological processes. We anticipate that the increased availability of open 
datasets with rich pheno- and genotyping will enable to outline more 
specific biological mechanisms that help describe the relationship be- 
tween thoughts and feelings. 
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SUPPLEMENTARY RESULTS 
 
Phenotypic association of sub-scores of cognition and affect with local brain anatomy 

We evaluated the phenotypic correlation between cognition and local cortical thickness, while 

controlling for global thickness. We observed that cognitive sub-scores for fluid and 

crystallized cognition showed similar patterns of positive and negative relations to total 

cognition with cortical thickness (Supplementary Figure 2, Supplementary Tables 2-3). Fluid 

cognition was negatively associated with primarily frontal regions and positively associated 

with medial occipital cortex. Crystallized cognition was related to wide-spread effects in 

cortical thickness of frontal and parietal regions (negative associations), as well as temporal, 

sensorimotor and insular thickness (positive associations). 

Fluid cognition was positively related to surface area primarily in bilateral occipital and 

temporal pole regions (Supplementary Figure 3) and crystallized cognition was positively 

related to surface area in bilateral inferior temporal areas, lateral frontal and parietal areas, as 

well as left anterior cingulate cortex (Supplementary Figure 3). See further Supplementary 

Tables 8-9. 

With regards to subcortical volumes, we found that crystallized cognition was positively 

associated with bilateral hippocampal and right amygdalar volume and fluid cognition was 

negatively associated with left pallidum volume (Supplementary Tables 11-12). 

Sub-score analyses of affect yielded that positive affect was negatively associated with cortical 

thickness in left superior frontal cortex, whereas negative affect was negatively associated with 

occipital cortical thickness (Supplementary Figure 2, Supplementary Tables 5-6). Furthermore, 

there were significant phenotypic associations for both positive and negative affect with 

bilateral caudate volumes (Supplementary Tables 14-15). Effects with surface area were not 

significant. 
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Genetic correlation of sub-scores of cognition and affect with local brain anatomy 

To assess if the correlation between cognitive and affective traits on the one hand and local 

brain structure on the other is driven by shared genetic effects, genetic correlation analyses were 

performed through a bivariate polygenetic analysis. In general, there was a strong overlap 

between phenotypic correlations and genetic correlations (Supplementary Figure 5, 

Supplementary Figure 6). 18 out of 21 phenotypic correlations between fluid cognition, and 36 

out of 42 phenotypic correlations for crystallized cognition and local cortical thickness could 

be attributed to genetic effects (Supplementary Table 18). 

Regarding associations with surface area, we found 11 out of 14 related to fluid cognition and 

36 out of 56 related to crystallized cognition to be attributable to shared genetic effects 

(Supplementary Table 19). 

Fluid cognition was also genetically correlated with volume in the left pallidum (rg=-0.230, 

p=0.003) and there was a genetic correlation between crystallized cognition and bilateral 

hippocampal volume (left: rg=0.159, p=0.004; right: rg=0.098, p=0.026; Supplementary Table 

20).  

Genetic correlations with affective sub-scores yielded that only the phenotypic association of 

positive affect with superior frontal cortex was driven by shared genetic effects (Supplementary 

Figure 5, Supplementary Table 18). We also found that the associations of positive, as well as 

negative affect with bilateral caudate volumes were driven by genetic correlations 

(Supplementary Tables 20).  
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SUPPLEMENTARY FIGURES 

 

 
Supplementary Figure 1. Phenotypic correlations between cognitive and affective sub-scores. 
Abbreviations: Card sort.: Dimensional Change Card Sorting, Picture seq.: Picture Sequence Memory, 
List sort.: List Sorting, PMAT: Penn Matrix Test pattern comparison test, Picture vocab.: Picture 
Vocabulary, Anger-hostil.: Anger sub-scale Hostility, Perc. stress: Perceived stress. 
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Supplementary Figure 2. Whole-brain phenotypic correlation of cortical thickness with cognitive 
and affective sub-scores. Positive correlation is depicted in red, negative in blue. Only correlations 
at FDRq<0.05 are depicted 

 
 

 

Supplementary Figure 3. Whole-brain phenotypic correlation between surface area and cognitive 
sub-scores. Positive correlation is depicted in red, negative in blue. Only correlations at FDRq<0.05 
are depicted. Associations with affective sub-scores were not significant. 
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Supplementary Figure 4. Heritability of local cortical thickness, surface area and subcortical 
volumes. Heritability of local cortical thickness, surface area and subcortical volumes. A) Heritability 
of local cortical thickness per parcel (200 parcel solution Schaefer, 2018); B) Heritability of local 
surface area per parcel. C) Heritability of subcortical volumes per FreeSurfer-segmented region. 
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Supplementary Figure 5. Whole-brain genetic correlation of cortical thickness with cognitive and affective 
sub-scores. Positive correlation is depicted in red, negative in blue. Only correlations at FDRq<0.05 are 
depicted. 

 

 
Supplementary Figure 6. Whole-brain genetic correlation between surface area and cognitive sub-scores. 
Positive correlation is depicted in red, negative in blue. Only correlations at FDRq<0.05 are depicted. 
Associations with affective sub-scores were not significant. 
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Supplementary Figure 7. Uncorrected meta-analytical functional decoding results of left superior 
frontal cortex cluster using Brainmap (p<0.05).



Convergence of affect and cognition | Kraljevic, Schaare et al. 

 
 

SUPPLEMENTARY TABLES  
 
Supplementary Table 1. Total cognition and local cortical thickness. 

 Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect 

 β SD p β SD p β SD p β SD p β SD p β SD p 
7Networks_LH_Vis_1 0.095 0.026 0.000 0.043 0.027 0.051 0.132 0.026 0.000 -0.005 0.026 0.424 0.035 0.026 0.089 -0.022 0.026 0.200 

7Networks_LH_Vis_4 0.110 0.029 0.000 0.072 0.029 0.006 0.121 0.029 0.000 0.010 0.029 0.367 -0.019 0.029 0.258 0.016 0.029 0.292 

7Networks_LH_Vis_9 0.074 0.025 0.002 0.081 0.026 0.001 0.046 0.026 0.036 0.062 0.025 0.007 -0.049 0.025 0.027 0.062 0.025 0.007 

7Networks_LH_Vis_10 0.087 0.027 0.001 0.096 0.027 0.000 0.048 0.027 0.039 0.005 0.027 0.423 -0.023 0.027 0.196 0.015 0.027 0.282 

7Networks_LH_SomMot_3 0.094 0.024 0.000 0.061 0.024 0.006 0.103 0.024 0.000 0.010 0.024 0.336 -0.030 0.024 0.106 0.022 0.024 0.179 

7Networks_LH_SomMot_10 0.139 0.025 0.000 0.110 0.025 0.000 0.135 0.025 0.000 0.052 0.025 0.019 -0.048 0.025 0.028 0.056 0.025 0.013 

7Networks_LH_DorsAttn_Post_7 -0.073 0.025 0.002 -0.038 0.025 0.060 -0.096 0.025 0.000 -0.049 0.024 0.022 0.019 0.025 0.218 -0.039 0.024 0.057 

7Networks_LH_DorsAttn_Post_10 -0.076 0.025 0.001 -0.077 0.025 0.001 -0.057 0.025 0.011 -0.016 0.025 0.263 -0.006 0.025 0.399 -0.006 0.024 0.411 

7Networks_LH_DorsAttn_FEF_2 -0.071 0.024 0.001 -0.062 0.024 0.005 -0.063 0.024 0.004 -0.065 0.023 0.003 0.052 0.024 0.013 -0.066 0.023 0.003 

7Networks_LH_SalVentAttn_FrOperIns_2 0.084 0.023 0.000 0.067 0.024 0.002 0.081 0.024 0.000 0.014 0.023 0.282 0.016 0.023 0.244 -0.001 0.023 0.483 

7Networks_LH_SalVentAttn_PFCl_1 -0.088 0.023 0.000 -0.070 0.023 0.001 -0.086 0.023 0.000 -0.010 0.023 0.333 0.001 0.023 0.475 -0.006 0.023 0.389 

7Networks_LH_Default_Temp_5 0.069 0.023 0.001 0.055 0.023 0.009 0.056 0.023 0.008 0.013 0.023 0.286 -0.025 0.023 0.136 0.021 0.023 0.179 

7Networks_LH_Default_PFC_4 -0.083 0.025 0.000 -0.073 0.025 0.002 -0.070 0.025 0.002 -0.053 0.025 0.016 0.052 0.025 0.017 -0.058 0.025 0.009 

7Networks_LH_Default_PFC_5 -0.070 0.024 0.002 -0.053 0.024 0.015 -0.066 0.024 0.003 -0.057 0.024 0.009 0.057 0.024 0.009 -0.063 0.024 0.004 

7Networks_LH_Default_PFC_7 -0.114 0.025 0.000 -0.098 0.025 0.000 -0.103 0.025 0.000 -0.046 0.025 0.031 0.036 0.025 0.072 -0.046 0.025 0.031 

7Networks_LH_Default_PFC_9 -0.078 0.024 0.001 -0.077 0.024 0.001 -0.054 0.024 0.013 -0.094 0.024 0.000 0.078 0.024 0.001 -0.096 0.024 0.000 

7Networks_LH_Default_PFC_10 -0.103 0.023 0.000 -0.100 0.024 0.000 -0.081 0.024 0.000 -0.041 0.023 0.042 0.029 0.024 0.113 -0.039 0.023 0.050 

7Networks_LH_Default_PFC_11 -0.157 0.023 0.000 -0.127 0.024 0.000 -0.146 0.024 0.000 -0.055 0.024 0.010 0.031 0.024 0.096 -0.049 0.024 0.020 

7Networks_LH_Default_PFC_13 -0.086 0.024 0.000 -0.089 0.025 0.000 -0.064 0.025 0.005 -0.073 0.024 0.001 0.070 0.024 0.002 -0.079 0.024 0.001 

7Networks_LH_Default_pCunPCC_1 0.098 0.026 0.000 0.079 0.026 0.001 0.091 0.026 0.000 0.012 0.026 0.315 0.002 0.026 0.461 0.006 0.026 0.411 

7Networks_RH_Vis_4 0.086 0.028 0.001 0.017 0.029 0.275 0.143 0.028 0.000 0.022 0.028 0.221 0.007 0.028 0.401 0.009 0.028 0.379 

7Networks_RH_Vis_9 0.083 0.028 0.002 0.100 0.028 0.000 0.038 0.028 0.089 -0.023 0.028 0.207 0.017 0.028 0.270 -0.023 0.028 0.211 

7Networks_RH_Vis_10 0.088 0.027 0.001 0.093 0.027 0.000 0.049 0.027 0.035 0.043 0.027 0.054 -0.050 0.027 0.031 0.052 0.027 0.026 

7Networks_RH_Vis_13 0.088 0.025 0.000 0.083 0.025 0.000 0.067 0.025 0.004 -0.006 0.025 0.404 -0.016 0.025 0.253 0.005 0.025 0.413 
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7Networks_RH_SomMot_1 0.079 0.023 0.000 0.052 0.024 0.015 0.087 0.024 0.000 0.011 0.023 0.316 -0.010 0.023 0.334 0.012 0.023 0.305 

7Networks_RH_SomMot_7 0.073 0.023 0.001 0.052 0.024 0.015 0.071 0.024 0.001 -0.003 0.023 0.448 0.006 0.023 0.397 -0.005 0.023 0.415 

7Networks_RH_SomMot_8 0.092 0.027 0.000 0.055 0.027 0.021 0.100 0.027 0.000 0.066 0.027 0.007 -0.050 0.027 0.030 0.065 0.027 0.007 

7Networks_RH_SomMot_12 0.096 0.026 0.000 0.095 0.027 0.000 0.066 0.027 0.007 0.057 0.026 0.015 -0.036 0.026 0.089 0.052 0.026 0.024 

7Networks_RH_Cont_PFCv_1 0.085 0.027 0.001 0.061 0.027 0.014 0.084 0.027 0.001 0.063 0.027 0.010 -0.002 0.027 0.464 0.038 0.027 0.082 

7Networks_RH_Cont_PFCl_5 -0.072 0.023 0.001 -0.049 0.023 0.018 -0.077 0.023 0.000 -0.025 0.023 0.138 0.030 0.023 0.093 -0.031 0.023 0.090 

7Networks_RH_Cont_PFCl_6 -0.081 0.024 0.000 -0.048 0.024 0.022 -0.101 0.024 0.000 -0.051 0.024 0.016 0.035 0.024 0.073 -0.048 0.024 0.021 

7Networks_RH_Cont_PFCl_7 -0.063 0.022 0.002 -0.051 0.022 0.010 -0.053 0.022 0.008 -0.044 0.021 0.021 0.038 0.022 0.040 -0.045 0.021 0.017 

7Networks_RH_Cont_PFCmp_2 -0.075 0.022 0.000 -0.069 0.023 0.001 -0.062 0.023 0.003 -0.020 0.022 0.183 0.048 0.022 0.015 -0.038 0.022 0.045 

7Networks_RH_Default_PFCdPFCm_4 -0.105 0.024 0.000 -0.076 0.024 0.001 -0.112 0.024 0.000 -0.050 0.024 0.019 0.043 0.024 0.035 -0.052 0.024 0.015 

7Networks_RH_Default_PFCdPFCm_5 -0.123 0.023 0.000 -0.115 0.023 0.000 -0.094 0.023 0.000 -0.059 0.023 0.005 0.083 0.023 0.000 -0.079 0.023 0.000 

7Networks_RH_Default_PFCdPFCm_6 -0.084 0.023 0.000 -0.080 0.024 0.000 -0.065 0.024 0.003 -0.049 0.023 0.017 0.037 0.023 0.056 -0.049 0.023 0.019 

7Networks_RH_Default_pCunPCC_1 0.153 0.026 0.000 0.115 0.026 0.000 0.152 0.026 0.000 0.033 0.026 0.103 -0.041 0.026 0.058 0.041 0.026 0.057 

 
Supplementary Table 2. Fluid cognition and local cortical thickness. 

 Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect 

  β SD p β SD p β SD p β SD p β SD p β SD p 
7Networks_LH_Vis_9 0.074 0.025 0.002 0.081 0.026 0.001 0.046 0.026 0.036 0.062 0.025 0.007 -0.049 0.025 0.027 0.062 0.025 0.007 

7Networks_LH_Vis_10 0.087 0.027 0.001 0.096 0.027 0.000 0.048 0.027 0.039 0.005 0.027 0.423 -0.023 0.027 0.196 0.015 0.027 0.282 

7Networks_LH_Vis_12 0.060 0.026 0.011 0.085 0.026 0.001 0.009 0.027 0.363 -0.002 0.026 0.474 -0.060 0.026 0.012 0.031 0.026 0.116 

7Networks_LH_SomMot_10 0.139 0.025 0.000 0.110 0.025 0.000 0.135 0.025 0.000 0.052 0.025 0.019 -0.048 0.025 0.028 0.056 0.025 0.013 

7Networks_LH_DorsAttn_Post_10 -0.076 0.025 0.001 -0.077 0.025 0.001 -0.057 0.025 0.011 -0.016 0.025 0.263 -0.006 0.025 0.399 -0.006 0.024 0.411 

7Networks_LH_SalVentAttn_PFCl_1 -0.088 0.023 0.000 -0.070 0.023 0.001 -0.086 0.023 0.000 -0.010 0.023 0.333 0.001 0.023 0.475 -0.006 0.023 0.389 

7Networks_LH_Default_PFC_7 -0.114 0.025 0.000 -0.098 0.025 0.000 -0.103 0.025 0.000 -0.046 0.025 0.031 0.036 0.025 0.072 -0.046 0.025 0.031 

7Networks_LH_Default_PFC_9 -0.078 0.024 0.001 -0.077 0.024 0.001 -0.054 0.024 0.013 -0.094 0.024 0.000 0.078 0.024 0.001 -0.096 0.024 0.000 

7Networks_LH_Default_PFC_10 -0.103 0.023 0.000 -0.100 0.024 0.000 -0.081 0.024 0.000 -0.041 0.023 0.042 0.029 0.024 0.113 -0.039 0.023 0.050 

7Networks_LH_Default_PFC_11 -0.157 0.023 0.000 -0.127 0.024 0.000 -0.146 0.024 0.000 -0.055 0.024 0.010 0.031 0.024 0.096 -0.049 0.024 0.020 

7Networks_LH_Default_PFC_13 -0.086 0.024 0.000 -0.089 0.025 0.000 -0.064 0.025 0.005 -0.073 0.024 0.001 0.070 0.024 0.002 -0.079 0.024 0.001 

7Networks_LH_Default_pCunPCC_1 0.098 0.026 0.000 0.079 0.026 0.001 0.091 0.026 0.000 0.012 0.026 0.315 0.002 0.026 0.461 0.006 0.026 0.411 
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7Networks_RH_Vis_9 0.083 0.028 0.002 0.100 0.028 0.000 0.038 0.028 0.089 -0.023 0.028 0.207 0.017 0.028 0.270 -0.023 0.028 0.211 

7Networks_RH_Vis_10 0.088 0.027 0.001 0.093 0.027 0.000 0.049 0.027 0.035 0.043 0.027 0.054 -0.050 0.027 0.031 0.052 0.027 0.026 

7Networks_RH_Vis_13 0.088 0.025 0.000 0.083 0.025 0.000 0.067 0.025 0.004 -0.006 0.025 0.404 -0.016 0.025 0.253 0.005 0.025 0.413 

7Networks_RH_SomMot_12 0.096 0.026 0.000 0.095 0.027 0.000 0.066 0.027 0.007 0.057 0.026 0.015 -0.036 0.026 0.089 0.052 0.026 0.024 

7Networks_RH_Cont_PFCmp_2 -0.075 0.022 0.000 -0.069 0.023 0.001 -0.062 0.023 0.003 -0.020 0.022 0.183 0.048 0.022 0.015 -0.038 0.022 0.045 

7Networks_RH_Default_PFCdPFCm_4 -0.105 0.024 0.000 -0.076 0.024 0.001 -0.112 0.024 0.000 -0.050 0.024 0.019 0.043 0.024 0.035 -0.052 0.024 0.015 

7Networks_RH_Default_PFCdPFCm_5 -0.123 0.023 0.000 -0.115 0.023 0.000 -0.094 0.023 0.000 -0.059 0.023 0.005 0.083 0.023 0.000 -0.079 0.023 0.000 

7Networks_RH_Default_PFCdPFCm_6 -0.084 0.023 0.000 -0.080 0.024 0.000 -0.065 0.024 0.003 -0.049 0.023 0.017 0.037 0.023 0.056 -0.049 0.023 0.019 

7Networks_RH_Default_pCunPCC_1 0.153 0.026 0.000 0.115 0.026 0.000 0.152 0.026 0.000 0.033 0.026 0.103 -0.041 0.026 0.058 0.041 0.026 0.057 

 
Supplementary Table 3. Crystallized cognition and local cortical thickness. 

 Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect 

  β SD p β SD p β SD p β SD p β SD p β SD p 

7Networks_LH_Vis_1 0.095 0.026 0.000 0.043 0.027 0.051 0.132 0.026 0.000 -0.005 0.026 0.424 0.035 0.026 0.089 -0.022 0.026 0.200 

7Networks_LH_Vis_2 0.060 0.024 0.006 0.017 0.024 0.245 0.096 0.024 0.000 0.002 0.024 0.474 0.014 0.024 0.276 -0.007 0.024 0.388 

7Networks_LH_Vis_4 0.110 0.029 0.000 0.072 0.029 0.006 0.121 0.029 0.000 0.010 0.029 0.367 -0.019 0.029 0.258 0.016 0.029 0.292 

7Networks_LH_SomMot_3 0.094 0.024 0.000 0.061 0.024 0.006 0.103 0.024 0.000 0.010 0.024 0.336 -0.030 0.024 0.106 0.022 0.024 0.179 

7Networks_LH_SomMot_8 -0.050 0.024 0.020 -0.022 0.024 0.182 -0.072 0.024 0.001 0.013 0.024 0.287 -0.009 0.024 0.361 0.012 0.024 0.303 

7Networks_LH_SomMot_10 0.139 0.025 0.000 0.110 0.025 0.000 0.135 0.025 0.000 0.052 0.025 0.019 -0.048 0.025 0.028 0.056 0.025 0.013 

7Networks_LH_DorsAttn_Post_1 0.055 0.025 0.013 0.027 0.025 0.139 0.074 0.025 0.001 0.015 0.025 0.266 -0.031 0.025 0.103 0.026 0.024 0.148 

7Networks_LH_DorsAttn_Post_7 -0.073 0.025 0.002 -0.038 0.025 0.060 -0.096 0.025 0.000 -0.049 0.024 0.022 0.019 0.025 0.218 -0.039 0.024 0.057 

7Networks_LH_DorsAttn_Post_9 -0.067 0.026 0.005 -0.042 0.026 0.054 -0.075 0.026 0.002 0.029 0.026 0.134 -0.023 0.026 0.188 0.029 0.026 0.132 

7Networks_LH_SalVentAttn_FrOperIns_2 0.084 0.023 0.000 0.067 0.024 0.002 0.081 0.024 0.000 0.014 0.023 0.282 0.016 0.023 0.244 -0.001 0.023 0.483 

7Networks_LH_SalVentAttn_FrOperIns_3 0.044 0.026 0.042 0.008 0.026 0.372 0.078 0.026 0.001 0.006 0.025 0.404 0.005 0.025 0.416 0.001 0.025 0.490 

7Networks_LH_SalVentAttn_PFCl_1 -0.088 0.023 0.000 -0.070 0.023 0.001 -0.086 0.023 0.000 -0.010 0.023 0.333 0.001 0.023 0.475 -0.006 0.023 0.389 

7Networks_LH_Cont_PFCl_2 -0.060 0.024 0.006 -0.032 0.024 0.091 -0.068 0.024 0.002 -0.032 0.024 0.087 0.004 0.024 0.432 -0.021 0.024 0.191 

7Networks_LH_Cont_PFCl_3 -0.052 0.022 0.008 -0.024 0.022 0.138 -0.072 0.022 0.001 -0.037 0.022 0.043 0.059 0.022 0.003 -0.053 0.022 0.007 

7Networks_LH_Default_Par_4 -0.033 0.022 0.069 0.000 0.023 0.493 -0.069 0.023 0.001 0.056 0.022 0.006 -0.030 0.022 0.090 0.048 0.022 0.015 

7Networks_LH_Default_PFC_4 -0.083 0.025 0.000 -0.073 0.025 0.002 -0.070 0.025 0.002 -0.053 0.025 0.016 0.052 0.025 0.017 -0.058 0.025 0.009 
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7Networks_LH_Default_PFC_6 -0.068 0.026 0.005 -0.045 0.026 0.043 -0.076 0.026 0.002 -0.045 0.026 0.040 0.000 0.026 0.499 -0.026 0.026 0.158 

7Networks_LH_Default_PFC_7 -0.114 0.025 0.000 -0.098 0.025 0.000 -0.103 0.025 0.000 -0.046 0.025 0.031 0.036 0.025 0.072 -0.046 0.025 0.031 

7Networks_LH_Default_PFC_10 -0.103 0.023 0.000 -0.100 0.024 0.000 -0.081 0.024 0.000 -0.041 0.023 0.042 0.029 0.024 0.113 -0.039 0.023 0.050 

7Networks_LH_Default_PFC_11 -0.157 0.023 0.000 -0.127 0.024 0.000 -0.146 0.024 0.000 -0.055 0.024 0.010 0.031 0.024 0.096 -0.049 0.024 0.020 

7Networks_LH_Default_pCunPCC_1 0.098 0.026 0.000 0.079 0.026 0.001 0.091 0.026 0.000 0.012 0.026 0.315 0.002 0.026 0.461 0.006 0.026 0.411 

7Networks_RH_Vis_3 0.024 0.024 0.153 -0.027 0.024 0.131 0.084 0.024 0.000 0.029 0.023 0.106 0.015 0.024 0.261 0.009 0.023 0.356 

7Networks_RH_Vis_4 0.086 0.028 0.001 0.017 0.029 0.275 0.143 0.028 0.000 0.022 0.028 0.221 0.007 0.028 0.401 0.009 0.028 0.379 

7Networks_RH_Vis_8 0.055 0.023 0.009 0.023 0.023 0.166 0.078 0.023 0.000 0.053 0.023 0.011 -0.024 0.023 0.151 0.043 0.023 0.030 

7Networks_RH_SomMot_1 0.079 0.023 0.000 0.052 0.024 0.015 0.087 0.024 0.000 0.011 0.023 0.316 -0.010 0.023 0.334 0.012 0.023 0.305 

7Networks_RH_SomMot_3 0.051 0.024 0.018 0.027 0.024 0.132 0.073 0.024 0.001 0.040 0.024 0.047 -0.036 0.024 0.069 0.043 0.024 0.039 

7Networks_RH_SomMot_7 0.073 0.023 0.001 0.052 0.024 0.015 0.071 0.024 0.001 -0.003 0.023 0.448 0.006 0.023 0.397 -0.005 0.023 0.415 

7Networks_RH_SomMot_8 0.092 0.027 0.000 0.055 0.027 0.021 0.100 0.027 0.000 0.066 0.027 0.007 -0.050 0.027 0.030 0.065 0.027 0.007 

7Networks_RH_SomMot_10 0.056 0.022 0.006 0.040 0.022 0.036 0.062 0.022 0.003 -0.007 0.022 0.381 -0.013 0.022 0.274 0.003 0.022 0.440 

7Networks_RH_SalVentAttn_TempOccPar_1 0.067 0.025 0.004 0.037 0.025 0.071 0.079 0.025 0.001 0.021 0.025 0.193 -0.028 0.025 0.134 0.027 0.025 0.136 

7Networks_RH_SalVentAttn_FrOperIns_4 0.045 0.024 0.032 0.012 0.025 0.319 0.079 0.024 0.001 0.022 0.024 0.177 -0.005 0.024 0.414 0.016 0.024 0.258 

7Networks_RH_Limbic_TempPole_1 0.064 0.027 0.010 0.024 0.028 0.188 0.090 0.027 0.001 0.008 0.027 0.377 -0.001 0.027 0.487 0.005 0.027 0.422 

7Networks_RH_Cont_PFCv_1 0.085 0.027 0.001 0.061 0.027 0.014 0.084 0.027 0.001 0.063 0.027 0.010 -0.002 0.027 0.464 0.038 0.027 0.082 

7Networks_RH_Cont_PFCl_3 -0.060 0.022 0.003 -0.037 0.022 0.049 -0.068 0.022 0.001 0.010 0.022 0.317 0.012 0.022 0.287 -0.001 0.022 0.488 

7Networks_RH_Cont_PFCl_4 -0.050 0.021 0.009 -0.022 0.021 0.144 -0.064 0.021 0.001 -0.026 0.021 0.105 0.021 0.021 0.152 -0.027 0.021 0.101 

7Networks_RH_Cont_PFCl_5 -0.072 0.023 0.001 -0.049 0.023 0.018 -0.077 0.023 0.000 -0.025 0.023 0.138 0.030 0.023 0.093 -0.031 0.023 0.090 

7Networks_RH_Cont_PFCl_6 -0.081 0.024 0.000 -0.048 0.024 0.022 -0.101 0.024 0.000 -0.051 0.024 0.016 0.035 0.024 0.073 -0.048 0.024 0.021 

7Networks_RH_Default_Par_1 -0.040 0.024 0.048 -0.005 0.024 0.412 -0.069 0.024 0.002 -0.001 0.024 0.491 0.010 0.024 0.336 -0.006 0.024 0.404 

7Networks_RH_Default_Temp_5 0.069 0.025 0.003 0.022 0.025 0.186 0.098 0.025 0.000 0.016 0.025 0.258 -0.015 0.025 0.271 0.017 0.025 0.240 

7Networks_RH_Default_PFCdPFCm_4 -0.105 0.024 0.000 -0.076 0.024 0.001 -0.112 0.024 0.000 -0.050 0.024 0.019 0.043 0.024 0.035 -0.052 0.024 0.015 

7Networks_RH_Default_PFCdPFCm_5 -0.123 0.023 0.000 -0.115 0.023 0.000 -0.094 0.023 0.000 -0.059 0.023 0.005 0.083 0.023 0.000 -0.079 0.023 0.000 

7Networks_RH_Default_pCunPCC_1 0.153 0.026 0.000 0.115 0.026 0.000 0.152 0.026 0.000 0.033 0.026 0.103 -0.041 0.026 0.058 0.041 0.026 0.057 
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Supplementary Table 4. Mean affect and local cortical thickness. 

 Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect 

  β SD p β SD p β SD p β SD p β SD p β SD p 

7Networks_LH_Vis_14 -0.007 0.023 0.382 -0.002 0.024 0.461 -0.012 0.023 0.312 0.068 0.023 0.002 -0.098 0.023 0.000 0.092 0.023 0.000 

7Networks_LH_Default_PFC_9 -0.078 0.024 0.001 -0.077 0.024 0.001 -0.054 0.024 0.013 -0.094 0.024 0.000 0.078 0.024 0.001 -0.096 0.024 0.000 

7Networks_RH_DorsAttn_Post_5 0.012 0.022 0.295 0.023 0.022 0.146 -0.012 0.022 0.296 0.071 0.022 0.001 -0.065 0.022 0.002 0.076 0.022 0.000 
 
Supplementary Table 5. Positive affect and local cortical thickness. 

 Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect 

  β SD p β SD p β SD p β SD p β SD p β SD p 

7Networks_LH_Default_PFC_9 -0.078 0.024 0.001 -0.077 0.024 0.001 -0.054 0.024 0.013 -0.094 0.024 0.000 0.078 0.024 0.001 -0.096 0.024 0.000 
 
Supplementary Table 6. Negative affect and local cortical thickness. 

 Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect 

  β SD p β SD p β SD p β SD p β SD p β SD p 

7Networks_LH_Vis_14 -0.007 0.023 0.382 -0.002 0.024 0.461 -0.012 0.023 0.312 0.068 0.023 0.002 -0.098 0.023 0.000 0.092 0.023 0.000 
 
Supplementary Table 7. Total cognition and local surface area. 

 Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect 

  β SD p β SD p β SD p β SD p β SD p β SD p 

7Networks_LH_Vis_7 0.076 0.028 0.003 0.085 0.027 0.001 0.030 0.028 0.138 0.003 0.027 0.459 -0.040 0.027 0.068 0.023 0.027 0.192 

7Networks_LH_Vis_9 0.073 0.028 0.005 0.073 0.028 0.005 0.028 0.029 0.165 0.008 0.028 0.392 -0.039 0.027 0.080 0.025 0.027 0.179 

7Networks_LH_Vis_10 0.075 0.028 0.004 0.082 0.028 0.002 0.034 0.028 0.118 0.023 0.027 0.198 -0.036 0.027 0.095 0.033 0.027 0.115 

7Networks_LH_Vis_11 0.072 0.026 0.003 0.052 0.026 0.023 0.067 0.026 0.005 0.015 0.025 0.271 -0.048 0.025 0.030 0.035 0.025 0.085 

7Networks_LH_Vis_13 0.112 0.026 0.000 0.113 0.026 0.000 0.061 0.026 0.010 0.050 0.025 0.024 -0.044 0.025 0.042 0.053 0.025 0.019 

7Networks_LH_Vis_14 0.078 0.027 0.002 0.081 0.027 0.001 0.042 0.027 0.064 0.052 0.026 0.024 -0.015 0.026 0.286 0.038 0.026 0.075 

7Networks_LH_SomMot_8 0.079 0.026 0.001 0.057 0.026 0.013 0.076 0.026 0.002 0.044 0.025 0.040 -0.040 0.025 0.054 0.047 0.025 0.030 

7Networks_LH_SomMot_10 0.082 0.027 0.001 0.060 0.027 0.012 0.081 0.027 0.001 -0.021 0.026 0.210 0.012 0.026 0.322 -0.018 0.026 0.238 
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7Networks_LH_SomMot_12 0.083 0.027 0.001 0.077 0.027 0.002 0.061 0.027 0.012 -0.008 0.026 0.375 -0.009 0.026 0.360 0.000 0.026 0.495 

7Networks_LH_SalVentAttn_Med_2 0.075 0.026 0.002 0.076 0.026 0.002 0.047 0.027 0.039 0.027 0.026 0.145 -0.015 0.026 0.273 0.024 0.026 0.175 

7Networks_LH_Limbic_OFC_1 0.076 0.025 0.001 0.089 0.024 0.000 0.035 0.025 0.078 0.036 0.024 0.065 -0.026 0.024 0.141 0.035 0.024 0.073 

7Networks_LH_Limbic_TempPole_1 0.126 0.025 0.000 0.085 0.025 0.000 0.126 0.026 0.000 0.032 0.025 0.096 -0.040 0.025 0.052 0.041 0.025 0.051 

7Networks_LH_Limbic_TempPole_2 0.087 0.027 0.001 0.056 0.027 0.019 0.089 0.027 0.001 0.049 0.026 0.031 -0.040 0.026 0.061 0.050 0.026 0.028 

7Networks_LH_Limbic_TempPole_3 0.113 0.027 0.000 0.075 0.027 0.002 0.119 0.027 0.000 0.027 0.026 0.149 -0.016 0.026 0.273 0.024 0.026 0.178 

7Networks_LH_Limbic_TempPole_4 0.078 0.023 0.000 0.049 0.023 0.017 0.091 0.023 0.000 0.014 0.023 0.268 -0.005 0.023 0.417 0.011 0.022 0.319 

7Networks_LH_Cont_PFCl_2 0.090 0.026 0.000 0.047 0.026 0.033 0.108 0.026 0.000 0.023 0.025 0.180 -0.021 0.025 0.205 0.024 0.025 0.165 

7Networks_LH_Cont_PFCl_5 0.095 0.028 0.000 0.046 0.028 0.051 0.115 0.028 0.000 0.006 0.027 0.411 0.043 0.027 0.056 -0.020 0.027 0.232 

7Networks_LH_Default_Temp_1 0.098 0.025 0.000 0.052 0.025 0.020 0.113 0.025 0.000 0.036 0.025 0.071 -0.025 0.025 0.155 0.034 0.025 0.082 

7Networks_LH_Default_Temp_2 0.116 0.026 0.000 0.070 0.026 0.004 0.121 0.026 0.000 0.034 0.026 0.091 -0.031 0.026 0.114 0.036 0.026 0.078 

7Networks_LH_Default_PFC_1 0.075 0.024 0.001 0.066 0.024 0.003 0.056 0.025 0.011 0.043 0.024 0.034 -0.043 0.024 0.034 0.048 0.024 0.020 

7Networks_LH_Default_PFC_6 0.078 0.023 0.000 0.054 0.023 0.009 0.080 0.023 0.000 0.000 0.022 0.498 -0.014 0.022 0.261 0.008 0.022 0.363 

7Networks_LH_Default_PFC_8 0.068 0.026 0.004 0.047 0.026 0.035 0.070 0.026 0.004 0.000 0.025 0.493 -0.016 0.025 0.266 0.009 0.025 0.363 

7Networks_LH_Default_PFC_11 0.078 0.028 0.002 0.033 0.027 0.113 0.100 0.028 0.000 0.016 0.027 0.272 0.021 0.027 0.211 -0.002 0.027 0.466 

7Networks_RH_Vis_4 0.085 0.027 0.001 0.063 0.027 0.009 0.075 0.027 0.003 0.026 0.026 0.161 -0.012 0.026 0.323 0.021 0.026 0.206 

7Networks_RH_Vis_9 0.108 0.027 0.000 0.108 0.027 0.000 0.061 0.027 0.012 0.022 0.026 0.199 -0.012 0.026 0.328 0.019 0.026 0.234 

7Networks_RH_Vis_12 0.079 0.027 0.002 0.081 0.027 0.001 0.038 0.027 0.081 0.035 0.026 0.094 -0.054 0.026 0.019 0.049 0.026 0.030 

7Networks_RH_Vis_14 0.095 0.026 0.000 0.077 0.026 0.001 0.080 0.026 0.001 0.067 0.025 0.004 -0.055 0.025 0.014 0.068 0.025 0.003 

7Networks_RH_SomMot_10 0.072 0.027 0.004 0.047 0.027 0.039 0.076 0.027 0.003 -0.038 0.026 0.072 0.009 0.026 0.358 -0.027 0.026 0.150 

7Networks_RH_SomMot_12 0.075 0.028 0.004 0.056 0.028 0.024 0.068 0.028 0.008 -0.020 0.027 0.238 0.009 0.027 0.371 -0.016 0.027 0.278 

7Networks_RH_SomMot_14 0.076 0.027 0.003 0.060 0.027 0.012 0.066 0.027 0.008 -0.030 0.026 0.124 0.023 0.026 0.192 -0.030 0.026 0.128 

7Networks_RH_DorsAttn_PrCv_1 0.088 0.027 0.001 0.048 0.027 0.038 0.100 0.027 0.000 0.044 0.027 0.048 0.010 0.027 0.355 0.020 0.027 0.226 

7Networks_RH_SalVentAttn_PrC_1 0.082 0.029 0.002 0.038 0.029 0.094 0.103 0.029 0.000 0.025 0.028 0.190 -0.003 0.028 0.464 0.015 0.028 0.290 

7Networks_RH_SalVentAttn_FrOperIns_2 0.081 0.023 0.000 0.061 0.023 0.004 0.082 0.023 0.000 0.023 0.023 0.158 -0.019 0.023 0.206 0.023 0.023 0.153 

7Networks_RH_Limbic_TempPole_1 0.121 0.027 0.000 0.102 0.027 0.000 0.088 0.027 0.001 0.018 0.026 0.248 -0.048 0.026 0.033 0.036 0.026 0.082 

7Networks_RH_Limbic_TempPole_2 0.093 0.026 0.000 0.078 0.026 0.001 0.070 0.026 0.004 0.043 0.026 0.048 -0.023 0.026 0.184 0.037 0.025 0.074 

7Networks_RH_Limbic_TempPole_3 0.088 0.027 0.001 0.041 0.027 0.067 0.105 0.027 0.000 0.010 0.027 0.349 -0.012 0.026 0.324 0.012 0.026 0.319 

7Networks_RH_Cont_Temp_1 0.069 0.026 0.004 0.035 0.026 0.092 0.084 0.026 0.001 0.028 0.025 0.137 -0.009 0.025 0.363 0.021 0.025 0.207 

7Networks_RH_Cont_PFCl_1 0.074 0.024 0.001 0.053 0.024 0.015 0.072 0.024 0.002 0.022 0.024 0.176 -0.010 0.024 0.340 0.018 0.024 0.224 
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7Networks_RH_Cont_Cing_2 0.073 0.028 0.004 0.072 0.027 0.004 0.045 0.028 0.051 0.025 0.027 0.172 -0.003 0.027 0.455 0.016 0.027 0.272 

7Networks_RH_Default_Temp_1 0.111 0.026 0.000 0.083 0.026 0.001 0.110 0.026 0.000 0.055 0.025 0.016 -0.049 0.025 0.028 0.058 0.025 0.011 

7Networks_RH_Default_Temp_2 0.082 0.025 0.001 0.037 0.025 0.070 0.108 0.025 0.000 0.062 0.025 0.006 -0.019 0.025 0.217 0.046 0.025 0.031 

7Networks_RH_Default_PFCdPFCm_7 0.125 0.029 0.000 0.098 0.029 0.000 0.101 0.029 0.000 0.015 0.028 0.295 -0.009 0.028 0.377 0.013 0.028 0.316 
 
Supplementary Table 8. Fluid cognition and local surface area. 

 Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect 

  β SD p β SD p β SD p β SD p β SD p β SD p 

7Networks_LH_Vis_7 0.076 0.028 0.003 0.085 0.027 0.001 0.030 0.028 0.138 0.003 0.027 0.459 -0.040 0.027 0.068 0.023 0.027 0.192 

7Networks_LH_Vis_10 0.075 0.028 0.004 0.082 0.028 0.002 0.034 0.028 0.118 0.023 0.027 0.198 -0.036 0.027 0.095 0.033 0.027 0.115 

7Networks_LH_Vis_13 0.112 0.026 0.000 0.113 0.026 0.000 0.061 0.026 0.010 0.050 0.025 0.024 -0.044 0.025 0.042 0.053 0.025 0.019 

7Networks_LH_Vis_14 0.078 0.027 0.002 0.081 0.027 0.001 0.042 0.027 0.064 0.052 0.026 0.024 -0.015 0.026 0.286 0.038 0.026 0.075 

7Networks_LH_SomMot_12 0.083 0.027 0.001 0.077 0.027 0.002 0.061 0.027 0.012 -0.008 0.026 0.375 -0.009 0.026 0.360 0.000 0.026 0.495 

7Networks_LH_Limbic_OFC_1 0.076 0.025 0.001 0.089 0.024 0.000 0.035 0.025 0.078 0.036 0.024 0.065 -0.026 0.024 0.141 0.035 0.024 0.073 

7Networks_LH_Limbic_TempPole_1 0.126 0.025 0.000 0.085 0.025 0.000 0.126 0.026 0.000 0.032 0.025 0.096 -0.040 0.025 0.052 0.041 0.025 0.051 

7Networks_RH_Vis_8 0.070 0.028 0.006 0.080 0.027 0.002 0.035 0.028 0.108 0.011 0.027 0.335 -0.025 0.027 0.172 0.020 0.027 0.224 

7Networks_RH_Vis_9 0.108 0.027 0.000 0.108 0.027 0.000 0.061 0.027 0.012 0.022 0.026 0.199 -0.012 0.026 0.328 0.019 0.026 0.234 

7Networks_RH_Vis_12 0.079 0.027 0.002 0.081 0.027 0.001 0.038 0.027 0.081 0.035 0.026 0.094 -0.054 0.026 0.019 0.049 0.026 0.030 

7Networks_RH_Vis_14 0.095 0.026 0.000 0.077 0.026 0.001 0.080 0.026 0.001 0.067 0.025 0.004 -0.055 0.025 0.014 0.068 0.025 0.003 

7Networks_RH_Limbic_TempPole_1 0.121 0.027 0.000 0.102 0.027 0.000 0.088 0.027 0.001 0.018 0.026 0.248 -0.048 0.026 0.033 0.036 0.026 0.082 

7Networks_RH_Limbic_TempPole_2 0.093 0.026 0.000 0.078 0.026 0.001 0.070 0.026 0.004 0.043 0.026 0.048 -0.023 0.026 0.184 0.037 0.025 0.074 

7Networks_RH_Default_Temp_1 0.111 0.026 0.000 0.083 0.026 0.001 0.110 0.026 0.000 0.055 0.025 0.016 -0.049 0.025 0.028 0.058 0.025 0.011 

7Networks_RH_Default_PFCdPFCm_7 0.125 0.029 0.000 0.098 0.029 0.000 0.101 0.029 0.000 0.015 0.028 0.295 -0.009 0.028 0.377 0.013 0.028 0.316 
 
Supplementary Table 9. Crystallized cognition and local surface area. 

 Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect 

  β SD p β SD p β SD p β SD p β SD p β SD p 

7Networks_LH_Vis_8 0.057 0.029 0.024 0.015 0.029 0.299 0.089 0.029 0.001 -0.004 0.028 0.445 -0.009 0.028 0.379 0.002 0.028 0.465 

7Networks_LH_Vis_11 0.072 0.026 0.003 0.052 0.026 0.023 0.067 0.026 0.005 0.015 0.025 0.271 -0.048 0.025 0.030 0.035 0.025 0.085 
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7Networks_LH_SomMot_4 0.037 0.026 0.080 0.002 0.026 0.474 0.067 0.026 0.005 -0.003 0.025 0.451 0.022 0.025 0.195 -0.014 0.025 0.296 

7Networks_LH_SomMot_6 0.045 0.026 0.044 0.009 0.026 0.365 0.073 0.026 0.003 -0.004 0.025 0.438 -0.006 0.025 0.403 0.001 0.025 0.483 

7Networks_LH_SomMot_8 0.079 0.026 0.001 0.057 0.026 0.013 0.076 0.026 0.002 0.044 0.025 0.040 -0.040 0.025 0.054 0.047 0.025 0.030 

7Networks_LH_SomMot_10 0.082 0.027 0.001 0.060 0.027 0.012 0.081 0.027 0.001 -0.021 0.026 0.210 0.012 0.026 0.322 -0.018 0.026 0.238 

7Networks_LH_DorsAttn_Post_1 0.048 0.024 0.022 0.025 0.024 0.141 0.062 0.024 0.005 -0.003 0.023 0.455 0.036 0.023 0.057 -0.021 0.023 0.178 

7Networks_LH_DorsAttn_Post_2 0.031 0.028 0.134 -0.007 0.028 0.408 0.073 0.028 0.005 -0.012 0.027 0.334 0.026 0.027 0.174 -0.021 0.027 0.225 

7Networks_LH_DorsAttn_Post_5 0.034 0.028 0.108 -0.017 0.027 0.261 0.086 0.027 0.001 0.016 0.027 0.276 0.002 0.027 0.469 0.008 0.027 0.382 

7Networks_LH_DorsAttn_PrCv_1 0.060 0.028 0.016 0.024 0.028 0.194 0.081 0.028 0.002 0.040 0.027 0.068 -0.010 0.027 0.353 0.029 0.027 0.144 

7Networks_LH_SalVentAttn_ParOper_1 0.058 0.028 0.020 0.024 0.028 0.194 0.071 0.028 0.006 0.033 0.027 0.113 -0.002 0.027 0.472 0.020 0.027 0.232 

7Networks_LH_SalVentAttn_FrOperIns_1 0.053 0.023 0.011 0.030 0.023 0.095 0.064 0.023 0.003 0.020 0.022 0.190 -0.008 0.022 0.354 0.016 0.022 0.240 

7Networks_LH_SalVentAttn_FrOperIns_3 0.041 0.025 0.049 0.012 0.025 0.314 0.067 0.025 0.004 -0.004 0.024 0.442 0.004 0.024 0.431 -0.004 0.024 0.429 

7Networks_LH_SalVentAttn_FrOperIns_4 0.067 0.027 0.007 0.027 0.027 0.160 0.085 0.027 0.001 0.038 0.026 0.074 -0.004 0.026 0.445 0.024 0.026 0.183 

7Networks_LH_SalVentAttn_PFCl_1 0.066 0.027 0.007 0.015 0.027 0.293 0.103 0.027 0.000 -0.035 0.026 0.089 0.028 0.026 0.142 -0.035 0.026 0.088 

7Networks_LH_Limbic_TempPole_1 0.126 0.025 0.000 0.085 0.025 0.000 0.126 0.026 0.000 0.032 0.025 0.096 -0.040 0.025 0.052 0.041 0.025 0.051 

7Networks_LH_Limbic_TempPole_2 0.087 0.027 0.001 0.056 0.027 0.019 0.089 0.027 0.001 0.049 0.026 0.031 -0.040 0.026 0.061 0.050 0.026 0.028 

7Networks_LH_Limbic_TempPole_3 0.113 0.027 0.000 0.075 0.027 0.002 0.119 0.027 0.000 0.027 0.026 0.149 -0.016 0.026 0.273 0.024 0.026 0.178 

7Networks_LH_Limbic_TempPole_4 0.078 0.023 0.000 0.049 0.023 0.017 0.091 0.023 0.000 0.014 0.023 0.268 -0.005 0.023 0.417 0.011 0.022 0.319 

7Networks_LH_Cont_PFCl_2 0.090 0.026 0.000 0.047 0.026 0.033 0.108 0.026 0.000 0.023 0.025 0.180 -0.021 0.025 0.205 0.024 0.025 0.165 

7Networks_LH_Cont_PFCl_5 0.095 0.028 0.000 0.046 0.028 0.051 0.115 0.028 0.000 0.006 0.027 0.411 0.043 0.027 0.056 -0.020 0.027 0.232 

7Networks_LH_Default_Temp_1 0.098 0.025 0.000 0.052 0.025 0.020 0.113 0.025 0.000 0.036 0.025 0.071 -0.025 0.025 0.155 0.034 0.025 0.082 

7Networks_LH_Default_Temp_2 0.116 0.026 0.000 0.070 0.026 0.004 0.121 0.026 0.000 0.034 0.026 0.091 -0.031 0.026 0.114 0.036 0.026 0.078 

7Networks_LH_Default_PFC_6 0.078 0.023 0.000 0.054 0.023 0.009 0.080 0.023 0.000 0.000 0.022 0.498 -0.014 0.022 0.261 0.008 0.022 0.363 

7Networks_LH_Default_PFC_8 0.068 0.026 0.004 0.047 0.026 0.035 0.070 0.026 0.004 0.000 0.025 0.493 -0.016 0.025 0.266 0.009 0.025 0.363 

7Networks_LH_Default_PFC_11 0.078 0.028 0.002 0.033 0.027 0.113 0.100 0.028 0.000 0.016 0.027 0.272 0.021 0.027 0.211 -0.002 0.027 0.466 

7Networks_RH_Vis_1 0.058 0.025 0.009 0.028 0.025 0.128 0.069 0.025 0.003 0.050 0.024 0.019 -0.023 0.024 0.167 0.041 0.024 0.043 

7Networks_RH_Vis_4 0.085 0.027 0.001 0.063 0.027 0.009 0.075 0.027 0.003 0.026 0.026 0.161 -0.012 0.026 0.323 0.021 0.026 0.206 

7Networks_RH_Vis_5 0.067 0.028 0.008 0.036 0.028 0.100 0.085 0.028 0.001 0.011 0.027 0.345 0.003 0.027 0.460 0.005 0.027 0.431 

7Networks_RH_Vis_14 0.095 0.026 0.000 0.077 0.026 0.001 0.080 0.026 0.001 0.067 0.025 0.004 -0.055 0.025 0.014 0.068 0.025 0.003 

7Networks_RH_SomMot_10 0.072 0.027 0.004 0.047 0.027 0.039 0.076 0.027 0.003 -0.038 0.026 0.072 0.009 0.026 0.358 -0.027 0.026 0.150 

7Networks_RH_SomMot_13 0.068 0.029 0.009 0.023 0.029 0.214 0.091 0.029 0.001 0.035 0.028 0.105 -0.041 0.028 0.071 0.042 0.028 0.064 
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7Networks_RH_SomMot_15 0.056 0.030 0.031 0.014 0.030 0.322 0.079 0.030 0.004 0.046 0.029 0.056 -0.033 0.029 0.125 0.044 0.029 0.062 

7Networks_RH_DorsAttn_Post_1 0.030 0.025 0.110 -0.004 0.025 0.428 0.063 0.025 0.005 0.025 0.024 0.150 0.002 0.024 0.463 0.013 0.024 0.293 

7Networks_RH_DorsAttn_PrCv_1 0.088 0.027 0.001 0.048 0.027 0.038 0.100 0.027 0.000 0.044 0.027 0.048 0.010 0.027 0.355 0.020 0.027 0.226 

7Networks_RH_SalVentAttn_PrC_1 0.082 0.029 0.002 0.038 0.029 0.094 0.103 0.029 0.000 0.025 0.028 0.190 -0.003 0.028 0.464 0.015 0.028 0.290 

7Networks_RH_SalVentAttn_FrOperIns_1 0.057 0.025 0.012 0.028 0.025 0.134 0.080 0.025 0.001 -0.010 0.024 0.341 0.018 0.024 0.226 -0.016 0.024 0.260 

7Networks_RH_SalVentAttn_FrOperIns_2 0.081 0.023 0.000 0.061 0.023 0.004 0.082 0.023 0.000 0.023 0.023 0.158 -0.019 0.023 0.206 0.023 0.023 0.153 

7Networks_RH_Limbic_OFC_3 0.059 0.025 0.009 0.028 0.025 0.126 0.072 0.025 0.002 0.046 0.024 0.029 -0.029 0.024 0.110 0.042 0.024 0.040 

7Networks_RH_Limbic_TempPole_1 0.121 0.027 0.000 0.102 0.027 0.000 0.088 0.027 0.001 0.018 0.026 0.248 -0.048 0.026 0.033 0.036 0.026 0.082 

7Networks_RH_Limbic_TempPole_2 0.093 0.026 0.000 0.078 0.026 0.001 0.070 0.026 0.004 0.043 0.026 0.048 -0.023 0.026 0.184 0.037 0.025 0.074 

7Networks_RH_Limbic_TempPole_3 0.088 0.027 0.001 0.041 0.027 0.067 0.105 0.027 0.000 0.010 0.027 0.349 -0.012 0.026 0.324 0.012 0.026 0.319 

7Networks_RH_Cont_Par_1 0.051 0.029 0.039 0.006 0.029 0.414 0.093 0.029 0.001 0.023 0.028 0.201 -0.022 0.028 0.215 0.025 0.028 0.181 

7Networks_RH_Cont_Par_2 0.031 0.029 0.138 -0.021 0.028 0.230 0.088 0.029 0.001 -0.021 0.028 0.229 -0.012 0.028 0.337 -0.005 0.028 0.422 

7Networks_RH_Cont_Temp_1 0.069 0.026 0.004 0.035 0.026 0.092 0.084 0.026 0.001 0.028 0.025 0.137 -0.009 0.025 0.363 0.021 0.025 0.207 

7Networks_RH_Cont_PFCl_1 0.074 0.024 0.001 0.053 0.024 0.015 0.072 0.024 0.002 0.022 0.024 0.176 -0.010 0.024 0.340 0.018 0.024 0.224 

7Networks_RH_Cont_PFCl_2 0.032 0.027 0.112 -0.007 0.026 0.397 0.074 0.027 0.003 0.033 0.026 0.098 -0.025 0.026 0.161 0.033 0.026 0.100 

7Networks_RH_Cont_PFCl_4 0.053 0.026 0.022 0.032 0.026 0.111 0.068 0.027 0.005 -0.031 0.026 0.116 0.044 0.026 0.044 -0.041 0.026 0.053 

7Networks_RH_Cont_PFCl_5 0.022 0.026 0.208 -0.020 0.026 0.224 0.068 0.026 0.005 0.017 0.026 0.257 -0.005 0.026 0.427 0.012 0.026 0.317 

7Networks_RH_Cont_pCun_1 0.056 0.027 0.019 0.035 0.027 0.100 0.068 0.027 0.006 0.000 0.026 0.497 0.015 0.026 0.288 -0.008 0.026 0.379 

7Networks_RH_Cont_PFCmp_2 0.055 0.025 0.015 0.024 0.025 0.172 0.063 0.025 0.006 0.061 0.024 0.006 -0.037 0.024 0.063 0.055 0.024 0.012 

7Networks_RH_Default_Temp_1 0.111 0.026 0.000 0.083 0.026 0.001 0.110 0.026 0.000 0.055 0.025 0.016 -0.049 0.025 0.028 0.058 0.025 0.011 

7Networks_RH_Default_Temp_2 0.082 0.025 0.001 0.037 0.025 0.070 0.108 0.025 0.000 0.062 0.025 0.006 -0.019 0.025 0.217 0.046 0.025 0.031 

7Networks_RH_Default_Temp_4 0.026 0.027 0.164 -0.025 0.026 0.173 0.093 0.027 0.000 0.032 0.026 0.105 0.008 0.026 0.377 0.014 0.026 0.292 

7Networks_RH_Default_PFCdPFCm_6 0.068 0.027 0.007 0.033 0.027 0.113 0.088 0.027 0.001 0.020 0.026 0.231 -0.010 0.026 0.346 0.017 0.026 0.262 

7Networks_RH_Default_PFCdPFCm_7 0.125 0.029 0.000 0.098 0.029 0.000 0.101 0.029 0.000 0.015 0.028 0.295 -0.009 0.028 0.377 0.013 0.028 0.316 
 
Supplementary Table 10. Total cognition and subcortical volumes. 

 Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect 

  β SD p β SD p β SD p β SD p β SD p β SD p 
hipp_l 0.078 0.025 0.001 0.027 0.025 0.141 0.056 0.012 0.000 -0.023 0.024 0.173 0.050 0.024 0.020 -0.040 0.024 0.049 
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Supplementary Table 11. Fluid cognition and subcortical volumes. 

 Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect 

  β SD p β SD p β SD p β SD p β SD p β SD p 
pall_l -0.076 0.028 0.004 -0.088 0.028 0.001 -0.006 0.007 0.178 -0.013 0.027 0.321 0.039 0.027 0.076 -0.029 0.027 0.148 

 
Supplementary Table 12. Crystallized cognition and subcortical volumes. 

 Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect 

  β SD p β SD p β SD p β SD p β SD p β SD p 
amy_r 0.031 0.023 0.092 -0.001 0.023 0.482 0.014 0.005 0.003 -0.001 0.023 0.491 0.032 0.023 0.081 -0.018 0.023 0.219 

hipp_l 0.078 0.025 0.001 0.027 0.025 0.141 0.056 0.012 0.000 -0.023 0.024 0.173 0.050 0.024 0.020 -0.040 0.024 0.049 

hipp_r 0.063 0.024 0.004 0.020 0.023 0.192 0.044 0.011 0.000 -0.001 0.023 0.477 0.036 0.023 0.056 -0.020 0.023 0.186 

 
Supplementary Table 13. Mean affect and subcortical volumes. 

 Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect 

  β SD p β SD p β SD p β SD p β SD p β SD p 

caud_l 0.002 0.026 0.467 -0.027 0.025 0.147 0.020 0.012 0.056 -0.099 0.025 0.000 0.086 0.025 0.000 -0.104 0.025 0.000 

caud_r 0.002 0.025 0.467 -0.025 0.025 0.161 0.018 0.012 0.067 -0.081 0.024 0.000 0.077 0.024 0.001 -0.088 0.024 0.000 
 
Supplementary Table 14. Positive affect and subcortical volumes. 

 Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect 

 β SD p β SD p β SD p β SD p β SD p β SD p 

caud_l 0.002 0.026 0.467 -0.027 0.025 0.147 0.020 0.012 0.056 -0.099 0.025 0.000 0.086 0.025 0.000 -0.104 0.025 0.000 

caud_r 0.002 0.025 0.467 -0.025 0.025 0.161 0.018 0.012 0.067 -0.081 0.024 0.000 0.077 0.024 0.001 -0.088 0.024 0.000 
 
Supplementary Table 15. Negative affect and subcortical volumes. 

 Total Cognition Fluid Crystallized Positive Affect Negative Affect Mean Affect 

NA β SD p β SD p β SD p β SD p β SD p β SD p 

caud_l 0.002 0.026 0.467 -0.027 0.025 0.147 0.020 0.012 0.056 -0.099 0.025 0.000 0.086 0.025 0.000 -0.104 0.025 0.000 

caud_r 0.002 0.025 0.467 -0.025 0.025 0.161 0.018 0.012 0.067 -0.081 0.024 0.000 0.077 0.024 0.001 -0.088 0.024 0.000 



Convergence of affect and cognition | Kraljevic, Schaare et al. 

 
 

Supplementary Table 16. Genetic correlation of cognition and affect with local cortical thickness. 
Environmental correlation (re) and genetic correlation (rg) per parcel associated with total cognition 
score and mean affect score, respectively (see Figure 3A). 

Total Cognition re p rg p 

7Networks_LH_Vis_1 -0.027 0.697 0.211 0.003 
7Networks_LH_Vis_4 0.000 0.998 0.182 0.004 
7Networks_LH_Vis_9 -0.057 0.412 0.189 0.003 

7Networks_LH_Vis_10 0.029 0.688 0.134 0.020 
7Networks_LH_SomMot_3 0.009 0.905 0.201 0.004 

7Networks_LH_SomMot_10 -0.078 0.265 0.327 0.000 
7Networks_LH_DorsAttn_Post_7 0.144 0.052 -0.235 0.001 
7Networks_LH_DorsAttn_FEF_2 0.043 0.559 -0.214 0.009 

7Networks_LH_SalVentAttn_PFCl_1 0.113 0.096 -0.274 0.000 
7Networks_LH_Default_Temp_5 -0.046 0.528 0.245 0.014 
7Networks_LH_Default_PFC_4 0.018 0.806 -0.177 0.007 
7Networks_LH_Default_PFC_5 0.124 0.084 -0.281 0.001 
7Networks_LH_Default_PFC_7 -0.018 0.802 -0.212 0.001 
7Networks_LH_Default_PFC_9 0.017 0.814 -0.171 0.007 

7Networks_LH_Default_PFC_10 -0.044 0.530 -0.235 0.002 
7Networks_LH_Default_PFC_11 0.124 0.075 -0.432 0.000 
7Networks_LH_Default_PFC_13 0.042 0.567 -0.212 0.003 

7Networks_LH_Default_pCunPCC_1 0.014 0.852 0.187 0.008 
7Networks_RH_Vis_4 -0.119 0.104 0.176 0.004 
7Networks_RH_Vis_9 -0.075 0.310 0.158 0.009 

7Networks_RH_Vis_10 -0.173 0.018 0.256 0.000 
7Networks_RH_Vis_13 -0.091 0.209 0.215 0.001 

7Networks_RH_SomMot_7 -0.023 0.754 0.137 0.035 
7Networks_RH_SomMot_8 -0.053 0.464 0.256 0.003 

7Networks_RH_SomMot_12 -0.060 0.403 0.226 0.001 
7Networks_RH_Cont_PFCv_1 -0.106 0.127 0.313 0.001 
7Networks_RH_Cont_PFCl_5 -0.011 0.875 -0.179 0.015 
7Networks_RH_Cont_PFCl_6 -0.008 0.909 -0.210 0.007 
7Networks_RH_Cont_PFCl_7 0.140 0.049 -0.287 0.001 

7Networks_RH_Cont_PFCmp_2 0.179 0.016 -0.283 0.000 
7Networks_RH_Default_PFCdPFCm_4 0.051 0.482 -0.247 0.000 
7Networks_RH_Default_PFCdPFCm_5 -0.078 0.283 -0.217 0.001 
7Networks_RH_Default_PFCdPFCm_6 0.150 0.036 -0.299 0.000 

7Networks_RH_Default_pCunPCC_1 -0.043 0.563 0.329 0.000 
     

Mean affect re p rg p 

7Networks_LH_Default_PFC_9 0.120 0.071 -0.480 0.000 
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Supplementary Table 17. Genetic correlation between cognition and local surface area. 
Environmental correlation (re) and genetic correlation (rg) per parcel associated with total cognition 
score (see Figure 3B). 

Total Cognition re p rg p 

7Networks_LH_Vis_7 0.025 0.742 0.118 0.042 
7Networks_LH_Vis_10 -0.063 0.411 0.101 0.039 
7Networks_LH_Vis_13 -0.128 0.085 0.239 0.000 
7Networks_LH_Vis_14 0.022 0.770 0.150 0.034 

7Networks_LH_SomMot_8 0.000 0.997 0.151 0.024 
7Networks_LH_SomMot_10 0.039 0.564 0.172 0.024 
7Networks_LH_SomMot_12 0.003 0.966 0.182 0.006 

7Networks_LH_SalVentAttn_Med_2 -0.074 0.303 0.206 0.004 
7Networks_LH_Limbic_TempPole_1 0.008 0.911 0.213 0.001 
7Networks_LH_Limbic_TempPole_3 0.050 0.474 0.174 0.015 
7Networks_LH_Limbic_TempPole_4 -0.030 0.682 0.167 0.006 

7Networks_LH_Cont_PFCl_2 -0.064 0.387 0.242 0.001 
7Networks_LH_Cont_PFCl_5 0.055 0.421 0.205 0.037 

7Networks_LH_Default_Temp_1 -0.111 0.141 0.199 0.001 
7Networks_LH_Default_Temp_2 -0.044 0.536 0.293 0.000 
7Networks_LH_Default_PFC_6 -0.017 0.823 0.154 0.011 
7Networks_LH_Default_PFC_8 -0.068 0.350 0.179 0.012 

7Networks_RH_Vis_4 0.009 0.904 0.135 0.037 
7Networks_RH_Vis_9 -0.068 0.390 0.176 0.001 

7Networks_RH_Vis_12 -0.004 0.954 0.147 0.017 
7Networks_RH_Vis_14 -0.070 0.323 0.257 0.001 

7Networks_RH_Limbic_TempPole_1 -0.204 0.004 0.322 0.000 
7Networks_RH_Limbic_TempPole_2 -0.119 0.094 0.231 0.001 
7Networks_RH_Limbic_TempPole_3 -0.076 0.290 0.202 0.004 

7Networks_RH_Cont_PFCl_1 -0.017 0.805 0.163 0.009 
7Networks_RH_Cont_Cing_2 -0.103 0.153 0.210 0.006 

7Networks_RH_Default_Temp_1 0.073 0.291 0.173 0.008 
7Networks_RH_Default_Temp_2 -0.042 0.549 0.193 0.009 

7Networks_RH_Default_PFCdPFCm_7 0.030 0.666 0.228 0.008 
 
 
Supplementary Table 18. Genetic correlation of cognitive and affective sub-scores and local 
cortical thickness. 

Fluid Cognition re p rg p 

7Networks_LH_Vis_9 -0.058 0.388 0.240 0.002 
7Networks_LH_Vis_10 0.048 0.498 0.146 0.039 

7Networks_LH_SomMot_10 -0.069 0.300 0.319 0.000 
7Networks_LH_SalVentAttn_PFCl_1 0.131 0.043 -0.315 0.000 

7Networks_LH_Default_PFC_7 0.043 0.525 -0.258 0.002 
7Networks_LH_Default_PFC_9 0.066 0.343 -0.240 0.002 

7Networks_LH_Default_PFC_10 0.056 0.401 -0.355 0.000 
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7Networks_LH_Default_PFC_11 0.145 0.026 -0.479 0.000 
7Networks_LH_Default_PFC_13 0.049 0.471 -0.271 0.002 

7Networks_RH_Vis_9 -0.133 0.060 0.270 0.000 
7Networks_RH_Vis_10 -0.177 0.011 0.333 0.000 
7Networks_RH_Vis_13 -0.127 0.066 0.287 0.000 

7Networks_RH_SomMot_12 -0.089 0.191 0.298 0.001 
7Networks_RH_Cont_PFCmp_2 0.195 0.005 -0.362 0.000 

7Networks_RH_Default_PFCdPFCm_4 0.060 0.389 -0.231 0.005 
7Networks_RH_Default_PFCdPFCm_5 -0.022 0.751 -0.260 0.001 
7Networks_RH_Default_PFCdPFCm_6 0.166 0.015 -0.380 0.000 

7Networks_RH_Default_pCunPCC_1 -0.044 0.531 0.308 0.001 
  

    

Crystallized Cognition re p rg p 

7Networks_LH_Vis_1 0.038 0.609 0.220 0.001 
7Networks_LH_Vis_2 0.053 0.471 0.178 0.007 
7Networks_LH_Vis_4 -0.009 0.896 0.184 0.001 

7Networks_LH_SomMot_3 -0.001 0.987 0.205 0.001 
7Networks_LH_SomMot_10 -0.097 0.185 0.287 0.000 

7Networks_LH_DorsAttn_Post_1 -0.084 0.291 0.204 0.004 
7Networks_LH_DorsAttn_Post_7 0.087 0.270 -0.213 0.001 
7Networks_LH_DorsAttn_Post_9 0.015 0.839 -0.135 0.021 

7Networks_LH_SalVentAttn_FrOperIns_2 0.050 0.509 0.131 0.045 
7Networks_LH_SalVentAttn_FrOperIns_3 -0.044 0.566 0.173 0.010 

7Networks_LH_SalVentAttn_PFCl_1 0.096 0.177 -0.219 0.000 
7Networks_LH_Cont_PFCl_2 0.082 0.274 -0.189 0.003 
7Networks_LH_Cont_PFCl_3 -0.011 0.885 -0.194 0.013 

7Networks_LH_Default_PFC_4 0.018 0.816 -0.137 0.020 
7Networks_LH_Default_PFC_7 -0.048 0.523 -0.160 0.007 

7Networks_LH_Default_PFC_11 0.069 0.353 -0.312 0.000 
7Networks_LH_Default_pCunPCC_1 -0.039 0.607 0.177 0.006 

7Networks_RH_Vis_3 -0.084 0.273 0.204 0.001 
7Networks_RH_Vis_4 -0.067 0.380 0.220 0.000 
7Networks_RH_Vis_8 -0.007 0.926 0.162 0.006 

7Networks_RH_SomMot_1 0.053 0.492 0.144 0.020 
7Networks_RH_SomMot_3 -0.049 0.535 0.188 0.007 
7Networks_RH_SomMot_8 0.011 0.884 0.214 0.006 

7Networks_RH_SomMot_10 -0.027 0.724 0.205 0.029 
7Networks_RH_SalVentAttn_TempOccPar_1 -0.018 0.814 0.188 0.016 

7Networks_RH_SalVentAttn_FrOperIns_4 0.008 0.917 0.193 0.024 
7Networks_RH_Limbic_TempPole_1 -0.011 0.883 0.210 0.011 

7Networks_RH_Cont_PFCv_1 -0.085 0.250 0.249 0.003 
7Networks_RH_Cont_PFCl_3 -0.035 0.646 -0.149 0.025 
7Networks_RH_Cont_PFCl_5 0.030 0.681 -0.186 0.005 
7Networks_RH_Cont_PFCl_6 -0.112 0.117 -0.167 0.016 

7Networks_RH_Default_Par_1 0.040 0.610 -0.251 0.009 
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7Networks_RH_Default_Temp_5 -0.035 0.643 0.299 0.001 
7Networks_RH_Default_PFCdPFCm_4 0.017 0.830 -0.208 0.001 
7Networks_RH_Default_PFCdPFCm_5 -0.094 0.213 -0.135 0.020 

7Networks_RH_Default_pCunPCC_1 -0.030 0.706 0.280 0.000 
     

Positive affect re p rg p 

7Networks_LH_Default_PFC_9 0.129 0.044 -0.540 0.000 
     

Negative affect re p rg p 

7Networks_LH_Vis_14 -0.211 0.002 0.011 0.925 
 
 
Supplementary Table 19. Genetic correlation of cognitive sub-scores and local surface area. 

Fluid Cognition re p rg p 

7Networks_LH_Vis_7 0.006 0.937 0.158 0.028 
7Networks_LH_Vis_10 -0.085 0.268 0.158 0.009 
7Networks_LH_Vis_13 -0.109 0.132 0.290 0.000 

7Networks_LH_SomMot_12 0.032 0.631 0.165 0.042 
7Networks_LH_Limbic_TempPole_1 -0.018 0.796 0.182 0.023 

7Networks_RH_Vis_9 -0.082 0.296 0.222 0.000 
7Networks_RH_Vis_12 -0.005 0.944 0.182 0.018 
7Networks_RH_Vis_14 -0.083 0.215 0.284 0.002 

7Networks_RH_Limbic_TempPole_1 -0.179 0.008 0.361 0.000 
7Networks_RH_Limbic_TempPole_2 -0.156 0.020 0.311 0.000 

7Networks_RH_Default_Temp_1 0.001 0.985 0.179 0.028 
     

Crystallized Cognition re p rg p 

7Networks_LH_SomMot_4 -0.058 0.433 0.168 0.022 
7Networks_LH_SomMot_6 -0.041 0.577 0.147 0.011 

7Networks_LH_DorsAttn_Post_1 -0.121 0.124 0.197 0.003 
7Networks_LH_DorsAttn_Post_2 -0.068 0.378 0.175 0.008 
7Networks_LH_DorsAttn_Post_5 -0.014 0.852 0.221 0.010 

7Networks_LH_DorsAttn_PrCv_1 0.003 0.972 0.176 0.016 
7Networks_LH_SalVentAttn_PFCl_1 -0.172 0.035 0.324 0.000 
7Networks_LH_Limbic_TempPole_1 0.024 0.757 0.203 0.000 
7Networks_LH_Limbic_TempPole_2 0.019 0.797 0.136 0.026 
7Networks_LH_Limbic_TempPole_3 0.060 0.409 0.180 0.005 
7Networks_LH_Limbic_TempPole_4 -0.058 0.451 0.190 0.000 

7Networks_LH_Cont_PFCl_2 -0.069 0.379 0.255 0.000 
7Networks_LH_Cont_PFCl_5 0.089 0.220 0.223 0.010 

7Networks_LH_Default_Temp_1 0.016 0.837 0.155 0.002 
7Networks_LH_Default_Temp_2 -0.052 0.493 0.282 0.000 
7Networks_LH_Default_PFC_6 0.066 0.394 0.108 0.043 

7Networks_RH_Vis_1 -0.083 0.258 0.145 0.010 
7Networks_RH_Vis_5 -0.136 0.066 0.298 0.001 
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7Networks_RH_Vis_14 -0.002 0.977 0.161 0.015 
7Networks_RH_SomMot_13 -0.048 0.538 0.200 0.005 

7Networks_RH_DorsAttn_Post_1 -0.034 0.657 0.117 0.045 
7Networks_RH_DorsAttn_PrCv_1 0.011 0.882 0.221 0.002 

7Networks_RH_SalVentAttn_PrC_1 0.054 0.472 0.202 0.008 
7Networks_RH_Limbic_OFC_3 0.000 0.996 0.137 0.032 

7Networks_RH_Limbic_TempPole_1 -0.118 0.106 0.183 0.001 
7Networks_RH_Limbic_TempPole_3 -0.069 0.358 0.204 0.001 

7Networks_RH_Cont_Par_2 0.006 0.938 0.200 0.026 
7Networks_RH_Cont_Temp_1 -0.025 0.756 0.180 0.012 
7Networks_RH_Cont_PFCl_1 0.042 0.568 0.117 0.035 
7Networks_RH_Cont_PFCl_2 -0.056 0.473 0.174 0.019 

7Networks_RH_Cont_PFCmp_2 -0.108 0.146 0.180 0.004 
7Networks_RH_Default_Temp_1 0.135 0.059 0.153 0.008 
7Networks_RH_Default_Temp_2 0.115 0.112 0.150 0.019 
7Networks_RH_Default_Temp_4 0.023 0.749 0.167 0.013 

7Networks_RH_Default_PFCdPFCm_6 -0.092 0.213 0.195 0.003 
7Networks_RH_Default_PFCdPFCm_7 -0.134 0.072 0.269 0.000 

 
 
Supplementary Table 20. Genetic correlation of cognitive and affective scores and subcortical 
volumes. 

Total Cognition re p rg p 

hipp_l 0.175 0.015 0.057 0.349 
  

    

Fluid Cognition re p rg p 

pall_l 0.089 0.212 -0.230 0.003 
  

    

Crystallized Cognition re p rg p 

amy_r 0.042 0.621 0.075 0.138 
hipp_l 0.124 0.093 0.159 0.004 
hipp_r 0.214 0.008 0.098 0.026 

  
    

Mean affect re p rg p 

caud_l 0.041 0.603 -0.280 0.001 
caud_r 0.084 0.297 -0.283 0.001 

  
    

Positive affect re p rg p 

caud_l 0.018 0.820 -0.275 0.002 
caud_r 0.083 0.284 -0.287 0.001 

  
    

Negative affect re p rg p 

caud_l -0.055 0.499 0.224 0.003 
caud_r -0.052 0.526 0.217 0.005 
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Supplementary Table 21. Heritability of local 
cortical thickness. 

Parcel h2 p 
7Networks_LH_Vis_1 0.411 0.000 
7Networks_LH_Vis_2 0.387 0.000 
7Networks_LH_Vis_3 0.168 0.002 
7Networks_LH_Vis_4 0.476 0.000 
7Networks_LH_Vis_5 0.512 0.000 
7Networks_LH_Vis_6 0.437 0.000 
7Networks_LH_Vis_7 0.509 0.000 
7Networks_LH_Vis_8 0.237 0.000 
7Networks_LH_Vis_9 0.472 0.000 
7Networks_LH_Vis_10 0.600 0.000 
7Networks_LH_Vis_11 0.400 0.000 
7Networks_LH_Vis_12 0.464 0.000 
7Networks_LH_Vis_13 0.557 0.000 
7Networks_LH_Vis_14 0.454 0.000 
7Networks_LH_SomMot_1 0.445 0.000 
7Networks_LH_SomMot_2 0.260 0.000 
7Networks_LH_SomMot_3 0.439 0.000 
7Networks_LH_SomMot_4 0.416 0.000 
7Networks_LH_SomMot_5 0.274 0.000 
7Networks_LH_SomMot_6 0.511 0.000 
7Networks_LH_SomMot_7 0.330 0.000 
7Networks_LH_SomMot_8 0.269 0.000 
7Networks_LH_SomMot_9 0.305 0.000 
7Networks_LH_SomMot_10 0.460 0.000 
7Networks_LH_SomMot_11 0.199 0.000 
7Networks_LH_SomMot_12 0.423 0.000 
7Networks_LH_SomMot_13 0.367 0.000 
7Networks_LH_SomMot_14 0.332 0.000 
7Networks_LH_SomMot_15 0.531 0.000 
7Networks_LH_SomMot_16 0.348 0.000 
7Networks_LH_DorsAttn_Post_1 0.364 0.000 
7Networks_LH_DorsAttn_Post_2 0.240 0.000 
7Networks_LH_DorsAttn_Post_3 0.349 0.000 
7Networks_LH_DorsAttn_Post_4 0.298 0.000 
7Networks_LH_DorsAttn_Post_5 0.142 0.004 
7Networks_LH_DorsAttn_Post_6 0.225 0.000 
7Networks_LH_DorsAttn_Post_7 0.460 0.000 
7Networks_LH_DorsAttn_Post_8 0.278 0.000 
7Networks_LH_DorsAttn_Post_9 0.486 0.000 
7Networks_LH_DorsAttn_Post_10 0.479 0.000 
7Networks_LH_DorsAttn_FEF_1 0.307 0.000 
7Networks_LH_DorsAttn_FEF_2 0.337 0.000 

7Networks_LH_DorsAttn_PrCv_1 0.272 0.000 
7Networks_LH_SalVentAttn_ParOper
_1 

0.102 0.043 

7Networks_LH_SalVentAttn_ParOper
_2 

0.311 0.000 

7Networks_LH_SalVentAttn_ParOper
_3 

0.255 0.000 

7Networks_LH_SalVentAttn_FrOperI
ns_1 

0.309 0.000 

7Networks_LH_SalVentAttn_FrOperI
ns_2 

0.404 0.000 

7Networks_LH_SalVentAttn_FrOperI
ns_3 

0.392 0.000 

7Networks_LH_SalVentAttn_FrOperI
ns_4 

0.225 0.000 

7Networks_LH_SalVentAttn_PFCl_1 0.434 0.000 
7Networks_LH_SalVentAttn_Med_1 0.343 0.000 
7Networks_LH_SalVentAttn_Med_2 0.351 0.000 
7Networks_LH_SalVentAttn_Med_3 0.288 0.000 
7Networks_LH_Limbic_OFC_1 0.306 0.000 
7Networks_LH_Limbic_OFC_2 0.423 0.000 
7Networks_LH_Limbic_TempPole_1 0.479 0.000 
7Networks_LH_Limbic_TempPole_2 0.356 0.000 
7Networks_LH_Limbic_TempPole_3 0.241 0.000 
7Networks_LH_Limbic_TempPole_4 0.430 0.000 
7Networks_LH_Cont_Par_1 0.257 0.000 
7Networks_LH_Cont_Par_2 0.288 0.000 
7Networks_LH_Cont_Par_3 0.113 0.022 
7Networks_LH_Cont_Temp_1 0.203 0.000 
7Networks_LH_Cont_OFC_1 0.348 0.000 
7Networks_LH_Cont_PFCl_1 0.280 0.000 
7Networks_LH_Cont_PFCl_2 0.404 0.000 
7Networks_LH_Cont_PFCl_3 0.274 0.000 
7Networks_LH_Cont_PFCl_4 0.373 0.000 
7Networks_LH_Cont_PFCl_5 0.234 0.000 
7Networks_LH_Cont_pCun_1 0.387 0.000 
7Networks_LH_Cont_Cing_1 0.558 0.000 
7Networks_LH_Cont_Cing_2 0.427 0.000 
7Networks_LH_Default_Temp_1 0.250 0.000 
7Networks_LH_Default_Temp_2 0.290 0.000 
7Networks_LH_Default_Temp_3 0.350 0.000 
7Networks_LH_Default_Temp_4 0.226 0.000 
7Networks_LH_Default_Temp_5 0.238 0.000 
7Networks_LH_Default_Par_1 0.330 0.000 
7Networks_LH_Default_Par_2 0.328 0.000 
7Networks_LH_Default_Par_3 0.240 0.000 
7Networks_LH_Default_Par_4 0.255 0.000 
7Networks_LH_Default_PFC_1 0.355 0.000 
7Networks_LH_Default_PFC_2 0.323 0.000 
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7Networks_LH_Default_PFC_3 0.168 0.001 
7Networks_LH_Default_PFC_4 0.488 0.000 
7Networks_LH_Default_PFC_5 0.322 0.000 
7Networks_LH_Default_PFC_6 0.489 0.000 
7Networks_LH_Default_PFC_7 0.483 0.000 
7Networks_LH_Default_PFC_8 0.340 0.000 
7Networks_LH_Default_PFC_9 0.517 0.000 
7Networks_LH_Default_PFC_10 0.359 0.000 
7Networks_LH_Default_PFC_11 0.443 0.000 
7Networks_LH_Default_PFC_12 0.471 0.000 
7Networks_LH_Default_PFC_13 0.429 0.000 
7Networks_LH_Default_pCunPCC_1 0.434 0.000 
7Networks_LH_Default_pCunPCC_2 0.240 0.000 
7Networks_LH_Default_pCunPCC_3 0.458 0.000 
7Networks_LH_Default_pCunPCC_4 0.362 0.000 
7Networks_LH_Default_PHC_1 0.484 0.000 
7Networks_RH_Vis_1 0.379 0.000 
7Networks_RH_Vis_2 0.437 0.000 
7Networks_RH_Vis_3 0.436 0.000 
7Networks_RH_Vis_4 0.580 0.000 
7Networks_RH_Vis_5 0.336 0.000 
7Networks_RH_Vis_6 0.544 0.000 
7Networks_RH_Vis_7 0.523 0.000 
7Networks_RH_Vis_8 0.505 0.000 
7Networks_RH_Vis_9 0.585 0.000 
7Networks_RH_Vis_10 0.514 0.000 
7Networks_RH_Vis_11 0.277 0.000 
7Networks_RH_Vis_12 0.544 0.000 
7Networks_RH_Vis_13 0.520 0.000 
7Networks_RH_Vis_14 0.345 0.000 
7Networks_RH_Vis_15 0.342 0.000 
7Networks_RH_SomMot_1 0.452 0.000 
7Networks_RH_SomMot_2 0.286 0.000 
7Networks_RH_SomMot_3 0.374 0.000 
7Networks_RH_SomMot_4 0.316 0.000 
7Networks_RH_SomMot_5 0.224 0.000 
7Networks_RH_SomMot_6 0.319 0.000 
7Networks_RH_SomMot_7 0.517 0.000 
7Networks_RH_SomMot_8 0.287 0.000 
7Networks_RH_SomMot_9 0.348 0.000 
7Networks_RH_SomMot_10 0.202 0.000 
7Networks_RH_SomMot_11 0.316 0.000 
7Networks_RH_SomMot_12 0.440 0.000 
7Networks_RH_SomMot_13 0.279 0.000 
7Networks_RH_SomMot_14 0.480 0.000 

7Networks_RH_SomMot_15 0.378 0.000 
7Networks_RH_SomMot_16 0.233 0.000 
7Networks_RH_SomMot_17 0.481 0.000 
7Networks_RH_SomMot_18 0.400 0.000 
7Networks_RH_SomMot_19 0.369 0.000 
7Networks_RH_DorsAttn_Post_1 0.273 0.000 
7Networks_RH_DorsAttn_Post_2 0.192 0.000 
7Networks_RH_DorsAttn_Post_3 0.274 0.000 
7Networks_RH_DorsAttn_Post_4 0.189 0.001 
7Networks_RH_DorsAttn_Post_5 0.226 0.000 
7Networks_RH_DorsAttn_Post_6 0.395 0.000 
7Networks_RH_DorsAttn_Post_7 0.208 0.000 
7Networks_RH_DorsAttn_Post_8 0.397 0.000 
7Networks_RH_DorsAttn_Post_9 0.359 0.000 
7Networks_RH_DorsAttn_Post_10 0.378 0.000 
7Networks_RH_DorsAttn_FEF_1 0.306 0.000 
7Networks_RH_DorsAttn_FEF_2 0.269 0.000 
7Networks_RH_DorsAttn_PrCv_1 0.283 0.000 
7Networks_RH_SalVentAttn_TempOc
cPar_1 

0.299 0.000 

7Networks_RH_SalVentAttn_TempOc
cPar_2 

0.240 0.000 

7Networks_RH_SalVentAttn_TempOc
cPar_3 

0.303 0.000 

7Networks_RH_SalVentAttn_PrC_1 0.168 0.003 
7Networks_RH_SalVentAttn_FrOperI
ns_1 

0.381 0.000 

7Networks_RH_SalVentAttn_FrOperI
ns_2 

0.459 0.000 

7Networks_RH_SalVentAttn_FrOperI
ns_3 

0.308 0.000 

7Networks_RH_SalVentAttn_FrOperI
ns_4 

0.238 0.000 

7Networks_RH_SalVentAttn_Med_1 0.211 0.000 
7Networks_RH_SalVentAttn_Med_2 0.487 0.000 
7Networks_RH_SalVentAttn_Med_3 0.381 0.000 
7Networks_RH_Limbic_OFC_1 0.434 0.000 
7Networks_RH_Limbic_OFC_2 0.335 0.000 
7Networks_RH_Limbic_OFC_3 0.423 0.000 
7Networks_RH_Limbic_TempPole_1 0.263 0.000 
7Networks_RH_Limbic_TempPole_2 0.353 0.000 
7Networks_RH_Limbic_TempPole_3 0.462 0.000 
7Networks_RH_Cont_Par_1 0.196 0.000 
7Networks_RH_Cont_Par_2 0.159 0.002 
7Networks_RH_Cont_Par_3 0.198 0.000 
7Networks_RH_Cont_Temp_1 0.246 0.000 
7Networks_RH_Cont_PFCv_1 0.259 0.000 
7Networks_RH_Cont_PFCl_1 0.276 0.000 
7Networks_RH_Cont_PFCl_2 0.324 0.000 
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7Networks_RH_Cont_PFCl_3 0.385 0.000 
7Networks_RH_Cont_PFCl_4 0.427 0.000 
7Networks_RH_Cont_PFCl_5 0.382 0.000 
7Networks_RH_Cont_PFCl_6 0.336 0.000 
7Networks_RH_Cont_PFCl_7 0.318 0.000 
7Networks_RH_Cont_pCun_1 0.279 0.000 
7Networks_RH_Cont_Cing_1 0.525 0.000 
7Networks_RH_Cont_Cing_2 0.394 0.000 
7Networks_RH_Cont_PFCmp_1 0.289 0.000 
7Networks_RH_Cont_PFCmp_2 0.460 0.000 
7Networks_RH_Default_Par_1 0.196 0.001 
7Networks_RH_Default_Par_2 0.201 0.000 
7Networks_RH_Default_Par_3 0.173 0.001 
7Networks_RH_Default_Temp_1 0.331 0.000 
7Networks_RH_Default_Temp_2 0.377 0.000 
7Networks_RH_Default_Temp_3 0.463 0.000 
7Networks_RH_Default_Temp_4 0.275 0.000 

7Networks_RH_Default_Temp_5 0.214 0.000 
7Networks_RH_Default_PFCv_1 0.403 0.000 
7Networks_RH_Default_PFCdPFCm_
1 

0.349 0.000 

7Networks_RH_Default_PFCdPFCm_
2 

0.331 0.000 

7Networks_RH_Default_PFCdPFCm_
3 

0.361 0.000 

7Networks_RH_Default_PFCdPFCm_
4 

0.481 0.000 

7Networks_RH_Default_PFCdPFCm_
5 

0.498 0.000 

7Networks_RH_Default_PFCdPFCm_
6 

0.402 0.000 

7Networks_RH_Default_PFCdPFCm_
7 

0.280 0.000 

7Networks_RH_Default_pCunPCC_1 0.432 0.000 
7Networks_RH_Default_pCunPCC_2 0.435 0.000 
7Networks_RH_Default_pCunPCC_3 0.254 0.000 

 
Supplementary Table 22. Heritability of local 
surface area. 

Parcel h2 p 
   
7Networks_LH_Vis_1 0.610 0.000 
7Networks_LH_Vis_2 0.554 0.000 
7Networks_LH_Vis_3 0.399 0.000 
7Networks_LH_Vis_4 0.406 0.000 
7Networks_LH_Vis_5 0.331 0.000 
7Networks_LH_Vis_6 0.619 0.000 
7Networks_LH_Vis_7 0.645 0.000 
7Networks_LH_Vis_8 0.398 0.000 
7Networks_LH_Vis_9 0.472 0.000 
7Networks_LH_Vis_10 0.795 0.000 
7Networks_LH_Vis_11 0.447 0.000 
7Networks_LH_Vis_12 0.591 0.000 
7Networks_LH_Vis_13 0.644 0.000 
7Networks_LH_Vis_14 0.462 0.000 
7Networks_LH_SomMot_1 0.463 0.000 
7Networks_LH_SomMot_2 0.509 0.000 
7Networks_LH_SomMot_3 0.416 0.000 
7Networks_LH_SomMot_4 0.345 0.000 
7Networks_LH_SomMot_5 0.434 0.000 
7Networks_LH_SomMot_6 0.498 0.000 
7Networks_LH_SomMot_7 0.288 0.000 
7Networks_LH_SomMot_8 0.477 0.000 
7Networks_LH_SomMot_9 0.222 0.000 

7Networks_LH_SomMot_10 0.363 0.000 
7Networks_LH_SomMot_11 0.416 0.000 
7Networks_LH_SomMot_12 0.479 0.000 
7Networks_LH_SomMot_13 0.440 0.000 
7Networks_LH_SomMot_14 0.291 0.000 
7Networks_LH_SomMot_15 0.475 0.000 
7Networks_LH_SomMot_16 0.380 0.000 
7Networks_LH_DorsAttn_Post_1 0.407 0.000 
7Networks_LH_DorsAttn_Post_2 0.405 0.000 
7Networks_LH_DorsAttn_Post_3 0.483 0.000 
7Networks_LH_DorsAttn_Post_4 0.390 0.000 
7Networks_LH_DorsAttn_Post_5 0.246 0.000 
7Networks_LH_DorsAttn_Post_6 0.213 0.000 
7Networks_LH_DorsAttn_Post_7 0.354 0.000 
7Networks_LH_DorsAttn_Post_8 0.322 0.000 
7Networks_LH_DorsAttn_Post_9 0.417 0.000 
7Networks_LH_DorsAttn_Post_10 0.364 0.000 
7Networks_LH_DorsAttn_FEF_1 0.279 0.000 
7Networks_LH_DorsAttn_FEF_2 0.244 0.000 
7Networks_LH_DorsAttn_PrCv_1 0.330 0.000 
7Networks_LH_SalVentAttn_ParOper
_1 

0.408 0.000 

7Networks_LH_SalVentAttn_ParOper
_2 

0.470 0.000 

7Networks_LH_SalVentAttn_ParOper
_3 

0.327 0.000 

7Networks_LH_SalVentAttn_FrOperI
ns_1 

0.619 0.000 

7Networks_LH_SalVentAttn_FrOperI
ns_2 

0.570 0.000 
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7Networks_LH_SalVentAttn_FrOperI
ns_3 

0.528 0.000 

7Networks_LH_SalVentAttn_FrOperI
ns_4 

0.370 0.000 

7Networks_LH_SalVentAttn_PFCl_1 0.314 0.000 
7Networks_LH_SalVentAttn_Med_1 0.587 0.000 
7Networks_LH_SalVentAttn_Med_2 0.435 0.000 
7Networks_LH_SalVentAttn_Med_3 0.353 0.000 
7Networks_LH_Limbic_OFC_1 0.586 0.000 
7Networks_LH_Limbic_OFC_2 0.590 0.000 
7Networks_LH_Limbic_TempPole_1 0.548 0.000 
7Networks_LH_Limbic_TempPole_2 0.459 0.000 
7Networks_LH_Limbic_TempPole_3 0.423 0.000 
7Networks_LH_Limbic_TempPole_4 0.603 0.000 
7Networks_LH_Cont_Par_1 0.236 0.000 
7Networks_LH_Cont_Par_2 0.246 0.000 
7Networks_LH_Cont_Par_3 0.208 0.000 
7Networks_LH_Cont_Temp_1 0.341 0.000 
7Networks_LH_Cont_OFC_1 0.449 0.000 
7Networks_LH_Cont_PFCl_1 0.446 0.000 
7Networks_LH_Cont_PFCl_2 0.408 0.000 
7Networks_LH_Cont_PFCl_3 0.386 0.000 
7Networks_LH_Cont_PFCl_4 0.330 0.000 
7Networks_LH_Cont_PFCl_5 0.226 0.000 
7Networks_LH_Cont_pCun_1 0.506 0.000 
7Networks_LH_Cont_Cing_1 0.516 0.000 
7Networks_LH_Cont_Cing_2 0.303 0.000 
7Networks_LH_Default_Temp_1 0.659 0.000 
7Networks_LH_Default_Temp_2 0.363 0.000 
7Networks_LH_Default_Temp_3 0.392 0.000 
7Networks_LH_Default_Temp_4 0.503 0.000 
7Networks_LH_Default_Temp_5 0.354 0.000 
7Networks_LH_Default_Par_1 0.336 0.000 
7Networks_LH_Default_Par_2 0.278 0.000 
7Networks_LH_Default_Par_3 0.160 0.002 
7Networks_LH_Default_Par_4 0.353 0.000 
7Networks_LH_Default_PFC_1 0.478 0.000 
7Networks_LH_Default_PFC_2 0.591 0.000 
7Networks_LH_Default_PFC_3 0.449 0.000 
7Networks_LH_Default_PFC_4 0.562 0.000 
7Networks_LH_Default_PFC_5 0.414 0.000 
7Networks_LH_Default_PFC_6 0.597 0.000 
7Networks_LH_Default_PFC_7 0.402 0.000 
7Networks_LH_Default_PFC_8 0.446 0.000 
7Networks_LH_Default_PFC_9 0.393 0.000 
7Networks_LH_Default_PFC_10 0.447 0.000 

7Networks_LH_Default_PFC_11 0.352 0.000 
7Networks_LH_Default_PFC_12 0.333 0.000 
7Networks_LH_Default_PFC_13 0.324 0.000 
7Networks_LH_Default_pCunPCC_1 0.700 0.000 
7Networks_LH_Default_pCunPCC_2 0.494 0.000 
7Networks_LH_Default_pCunPCC_3 0.372 0.000 
7Networks_LH_Default_pCunPCC_4 0.435 0.000 
7Networks_LH_Default_PHC_1 0.602 0.000 
7Networks_RH_Vis_1 0.523 0.000 
7Networks_RH_Vis_2 0.492 0.000 
7Networks_RH_Vis_3 0.459 0.000 
7Networks_RH_Vis_4 0.519 0.000 
7Networks_RH_Vis_5 0.238 0.000 
7Networks_RH_Vis_6 0.646 0.000 
7Networks_RH_Vis_7 0.631 0.000 
7Networks_RH_Vis_8 0.369 0.000 
7Networks_RH_Vis_9 0.774 0.000 
7Networks_RH_Vis_10 0.760 0.000 
7Networks_RH_Vis_11 0.267 0.000 
7Networks_RH_Vis_12 0.578 0.000 
7Networks_RH_Vis_13 0.553 0.000 
7Networks_RH_Vis_14 0.401 0.000 
7Networks_RH_Vis_15 0.308 0.000 
7Networks_RH_SomMot_1 0.652 0.000 
7Networks_RH_SomMot_2 0.568 0.000 
7Networks_RH_SomMot_3 0.510 0.000 
7Networks_RH_SomMot_4 0.513 0.000 
7Networks_RH_SomMot_5 0.317 0.000 
7Networks_RH_SomMot_6 0.508 0.000 
7Networks_RH_SomMot_7 0.428 0.000 
7Networks_RH_SomMot_8 0.314 0.000 
7Networks_RH_SomMot_9 0.213 0.000 
7Networks_RH_SomMot_10 0.315 0.000 
7Networks_RH_SomMot_11 0.520 0.000 
7Networks_RH_SomMot_12 0.380 0.000 
7Networks_RH_SomMot_13 0.368 0.000 
7Networks_RH_SomMot_14 0.460 0.000 
7Networks_RH_SomMot_15 0.204 0.000 
7Networks_RH_SomMot_16 0.302 0.000 
7Networks_RH_SomMot_17 0.160 0.003 
7Networks_RH_SomMot_18 0.475 0.000 
7Networks_RH_SomMot_19 0.444 0.000 
7Networks_RH_DorsAttn_Post_1 0.510 0.000 
7Networks_RH_DorsAttn_Post_2 0.339 0.000 
7Networks_RH_DorsAttn_Post_3 0.402 0.000 
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7Networks_RH_DorsAttn_Post_4 0.232 0.000 
7Networks_RH_DorsAttn_Post_5 0.267 0.000 
7Networks_RH_DorsAttn_Post_6 0.247 0.000 
7Networks_RH_DorsAttn_Post_7 0.192 0.001 
7Networks_RH_DorsAttn_Post_8 0.227 0.000 
7Networks_RH_DorsAttn_Post_9 0.451 0.000 
7Networks_RH_DorsAttn_Post_10 0.393 0.000 
7Networks_RH_DorsAttn_FEF_1 0.216 0.000 
7Networks_RH_DorsAttn_FEF_2 0.586 0.000 
7Networks_RH_DorsAttn_PrCv_1 0.337 0.000 
7Networks_RH_SalVentAttn_TempOc
cPar_1 

0.335 0.000 

7Networks_RH_SalVentAttn_TempOc
cPar_2 

0.222 0.000 

7Networks_RH_SalVentAttn_TempOc
cPar_3 

0.419 0.000 

7Networks_RH_SalVentAttn_PrC_1 0.315 0.000 
7Networks_RH_SalVentAttn_FrOperI
ns_1 

0.584 0.000 

7Networks_RH_SalVentAttn_FrOperI
ns_2 

0.547 0.000 

7Networks_RH_SalVentAttn_FrOperI
ns_3 

0.435 0.000 

7Networks_RH_SalVentAttn_FrOperI
ns_4 

0.488 0.000 

7Networks_RH_SalVentAttn_Med_1 0.577 0.000 
7Networks_RH_SalVentAttn_Med_2 0.527 0.000 
7Networks_RH_SalVentAttn_Med_3 0.488 0.000 
7Networks_RH_Limbic_OFC_1 0.532 0.000 
7Networks_RH_Limbic_OFC_2 0.516 0.000 
7Networks_RH_Limbic_OFC_3 0.461 0.000 
7Networks_RH_Limbic_TempPole_1 0.509 0.000 
7Networks_RH_Limbic_TempPole_2 0.493 0.000 
7Networks_RH_Limbic_TempPole_3 0.455 0.000 
7Networks_RH_Cont_Par_1 0.283 0.000 
7Networks_RH_Cont_Par_2 0.228 0.000 
7Networks_RH_Cont_Par_3 0.225 0.000 
7Networks_RH_Cont_Temp_1 0.370 0.000 
7Networks_RH_Cont_PFCv_1 0.358 0.000 

7Networks_RH_Cont_PFCl_1 0.527 0.000 
7Networks_RH_Cont_PFCl_2 0.346 0.000 
7Networks_RH_Cont_PFCl_3 0.396 0.000 
7Networks_RH_Cont_PFCl_4 0.415 0.000 
7Networks_RH_Cont_PFCl_5 0.327 0.000 
7Networks_RH_Cont_PFCl_6 0.272 0.000 
7Networks_RH_Cont_PFCl_7 0.418 0.000 
7Networks_RH_Cont_pCun_1 0.416 0.000 
7Networks_RH_Cont_Cing_1 0.469 0.000 
7Networks_RH_Cont_Cing_2 0.379 0.000 
7Networks_RH_Cont_PFCmp_1 0.569 0.000 
7Networks_RH_Cont_PFCmp_2 0.425 0.000 
7Networks_RH_Default_Par_1 0.314 0.000 
7Networks_RH_Default_Par_2 0.206 0.000 
7Networks_RH_Default_Par_3 0.198 0.000 
7Networks_RH_Default_Temp_1 0.490 0.000 
7Networks_RH_Default_Temp_2 0.416 0.000 
7Networks_RH_Default_Temp_3 0.408 0.000 
7Networks_RH_Default_Temp_4 0.374 0.000 
7Networks_RH_Default_Temp_5 0.453 0.000 
7Networks_RH_Default_PFCv_1 0.367 0.000 
7Networks_RH_Default_PFCdPFCm_
1 

0.574 0.000 

7Networks_RH_Default_PFCdPFCm_
2 

0.493 0.000 

7Networks_RH_Default_PFCdPFCm_
3 

0.188 0.001 

7Networks_RH_Default_PFCdPFCm_
4 

0.592 0.000 

7Networks_RH_Default_PFCdPFCm_
5 

0.381 0.000 

7Networks_RH_Default_PFCdPFCm_
6 

0.400 0.000 

7Networks_RH_Default_PFCdPFCm_
7 

0.307 0.000 

7Networks_RH_Default_pCunPCC_1 0.666 0.000 
7Networks_RH_Default_pCunPCC_2 0.401 0.000 
7Networks_RH_Default_pCunPCC_3 0.319 0.000 

 

Supplementary Table 23. Heritability of subcortical volumes. 

Volume h2 p 
accumb_l 0.535 0.000 
accumb_r 0.571 0.000 

amy_l 0.621 0.000 
amy_r 0.698 0.000 
caud_l 0.837 0.000 
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caud_r 0.835 0.000 
hipp_l 0.556 0.000 
hipp_r 0.812 0.000 
spall_l 0.571 0.000 
pall_r 0.666 0.000 
put_l 0.709 0.000 
put_r 0.848 0.000 
thal_l 0.584 0.000 
thal_r 0.667 0.000 

ventDC_l 0.704 0.000 
ventDC_r 0.718 0.000 
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Abstract

Predicting individual behavior from brain functional connectivity (FC) patterns can

contribute to our understanding of human brain functioning. This may apply in partic-

ular if predictions are based on features derived from circumscribed, a priori defined

functional networks, which improves interpretability. Furthermore, some evidence

suggests that task-based FC data may yield more successful predictions of behavior

than resting-state FC data. Here, we comprehensively examined to what extent the

correspondence of functional network priors and task states with behavioral target

domains influences the predictability of individual performance in cognitive, social,

and affective tasks. To this end, we used data from the Human Connectome Project

for large-scale out-of-sample predictions of individual abilities in working memory

(WM), theory-of-mind cognition (SOCIAL), and emotion processing (EMO) from FC of

corresponding and non-corresponding states (WM/SOCIAL/EMO/resting-state) and

networks (WM/SOCIAL/EMO/whole-brain connectome). Using root mean squared

error and coefficient of determination to evaluate model fit revealed that predictive

performance was rather poor overall. Predictions from whole-brain FC were slightly

better than those from FC in task-specific networks, and a slight benefit of predic-

tions based on FC from task versus resting state was observed for performance in

the WM domain. Beyond that, we did not find any significant effects of a correspon-

dence of network, task state, and performance domains. Together, these results sug-

gest that multivariate FC patterns during both task and resting states contain rather

little information on individual performance levels, calling for a reconsideration of

how the brain mediates individual differences in mental abilities.
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interindividual differences, machine learning
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Practitioner Points
• Better prediction of behavior from task versus resting-state functional connectivity (FC) only

in a cognitive domain.

• Little evidence for specificity of state, network, or task similarity.

• Predicting complex behavior based on FC remains a significant challenge.

• We extend research on brain-based behavior prediction beyond the cognitive domain.

1 | INTRODUCTION

No two individuals are alike in perception, affect, thought, and behav-

ior, but also brain structure and function. A major goal of neuroscience

is uncovering the relationships between these dimensions by investi-

gating individual differences. An approach that has recently become

popular is predicting individual behavior, affective characteristics or

cognitive abilities from brain data (Gao et al., 2019; Greene

et al., 2018; Kong et al., 2019; Larabi et al., 2021; Nostro et al., 2018;

Ooi et al., 2022; Rosenberg et al., 2020; Sasse et al., 2023; Shen

et al., 2017). Such predictive modeling is thought to yield important

insights about generalizable brain–behavior relationships and is con-

sidered a crucial step toward personalized medicine (Mueller

et al., 2013; D. Wang et al., 2015).

A number of studies in this area have shown that, for example,

regional gray-matter volume and structural connectivity significantly

predict age (Cole et al., 2017; Franke et al., 2012; More et al., 2023),

reading comprehension (Cui et al., 2018), inhibitory control (N. He

et al., 2020), or fear of pain (X. Wang et al., 2019). Similarly, functional

neuroimaging data has also been reported to predict different behav-

iors or traits, ranging from personality (Dubois, Galdi, Han,

et al., 2018; Nostro et al., 2018) or life satisfaction (Itahashi

et al., 2021) to cognitive abilities such as creative thinking (Zhuang

et al., 2021), cognitive flexibility (Chén et al., 2019), or working mem-

ory (WM) capacity (Stark et al., 2021).

While a variety of different brain characteristics have been

employed as features to predict behavior, one of the most widely

used measures (Yeung et al., 2022) is resting-state (in the following

also “rest” or “REST”) functional connectivity (FC) obtained from

functional magnetic resonance imaging (fMRI). Some recent studies,

however, suggest that behavior prediction may benefit from the use

of task-based FC, as compared to resting-state data (Avery

et al., 2020; Greene et al., 2018; Jiang et al., 2020; Rosenberg

et al., 2016, 2016; Stark et al., 2021). For example, Sripada and col-

leagues found that the correlation between predicted and observed

scores of a general cognitive ability factor improved when using FC

from the 2-back WM-task state (r = .50), as compared to using

resting-state FC (r = .26; Sripada et al., 2019, 2020). A similar pattern

has been reported for the prediction of different measures of atten-

tion (Yoo et al., 2018) as well as for the prediction of intelligence

based on FC from tasks taxing executive functioning (L. He

et al., 2021) or attention (Rosenberg et al., 2016).

Importantly, all the studies mentioned above showed an improve-

ment in prediction performance for task-fMRI data derived from the

same domain as the predicted measure (i.e., prediction of stop-signal

task performance based on FC derived from stop-signal task-fMRI

data). However, there is not only resting versus task states but rather

different task states depending on which task is performed during

fMRI data acquisition. That is, every task performed in the scanner

can be thought of as eliciting a specific state. Interestingly, it has been

shown that in predicting intelligence, using almost any other task state

(i.e., fMRI acquired during a WM task as well as an emotion task) or

task–rest combinations outperforms using resting-state FC only (Gao

et al., 2019; Greene et al., 2018, 2020; Sripada et al., 2020).

Based on the concept of convergent and discriminant validity

(Campbell & Fiske, 1959; Schumann et al., 2022), it would be

expected, however, that connectivity patterns observed during the

same or a similar task, hence coming from the same domain as the

predicted target behavior (i.e., representing the same state; conver-

gent validity), lead to better prediction performance than do patterns

observed during a task state from an unrelated domain (discriminant

validity). In line with this idea, recent studies reported better accura-

cies for predicting general cognitive ability (Sripada et al., 2020) and

fluid intelligence (Gao et al., 2019) from FC during task states involv-

ing executive functions (“same-domain”), as compared to prediction

from unrelated task or resting states (“other-domain”). This improve-

ment was particularly pronounced when FC data of the cognitively

demanding WM task was used, as compared to task states from other

domains (although the authors did not test for the statistical signifi-

cance of the observed numerical differences between prediction accu-

racies). These examples suggest the possibility of state specificity

when predicting behavior from corresponding FC patterns.

While most studies predicted task performance from states of the

same domain (i.e., prediction of intelligence from FC of a WM task

state), others predicted task performance from FC observed during

the exact same task. Avery et al. (2020), for example, predicted indi-

vidual performance accuracy in an n-back WM task based on FC

derived from fMRI data obtained while the n-back task was per-

formed, which showed an increase in accuracy when using this task's

fMRI data, as compared to rest data (Avery et al., 2020). Building on

this, Stark and colleagues investigated the difference in prediction

accuracy between predictions of performance in different working

and episodic memory tasks from FC obtained while performing an

n-back WM task. Importantly, the highest prediction accuracy

(r = .36) was achieved when n-back task performance was predicted

using FC during the very same task (i.e., n-back performance mea-

sured in the MR scanner), followed by the prediction of performance

in a different WM task (list sorting; r = .24), followed by predictions
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of episodic memory performance scores (r = .05–.11) (Stark

et al., 2021). These results suggest a specificity benefit of the state

used for calculating FC, which goes beyond the prediction of ability in

a given broadly defined cognitive domain (i.e., WM) and narrows it

down to specific tasks (i.e., n-back versus list sorting). That is, beyond

the effect of state specificity (i.e., domain congruence benefits for pre-

diction accuracy), a state–target similarity effect (i.e., task congruence

benefits for prediction accuracy) should manifest in even better pre-

diction accuracies for the performance in tasks during which FC data

were acquired, as compared to the performance in other tasks of the

same domain.

The literature to date is inconclusive regarding the effects of state

specificity and state–target similarity on FC-based predictions of men-

tal abilities and psychological traits. In particular, the majority of stud-

ies investigating such prediction models have focused on cognitive

targets such as intelligence or attention (Yeung et al., 2022). Thus,

clear evidence for state specificity and state–target similarity is still

lacking, especially in domains like emotion processing and social

cognition.

The studies above mainly used whole-brain FC for behavior pre-

diction. Sometimes, post hoc examination of the most predictive fea-

tures from the whole-brain feature space are used for better

interpretability (e.g., Chén et al., 2019; Dubois, Galdi, Paul, &

Adolphs, 2018; Itahashi et al., 2021; Jiang et al., 2020; Pläschke

et al., 2020). However, such post hoc analyses come with their own

limitations, as feature weights are context-dependent, their reliability

is rather low, and the results can be highly specific to the given

dataset (Tian & Zalesky, 2021). Besides predicting behavior from

whole-brain FC, several studies reported on predictions using particu-

lar functional networks as priors (J. Chen et al., 2021; Heckner

et al., 2023; Nostro et al., 2018). That is, prediction models in these

investigations exclusively rely on FC between regions that show acti-

vation during a given task. It is argued that this aides and constrains

the functional interpretability of any observed associations (e.g., most

predictive features), since such models are based on brain regions for

which the association between brain and mental function has already

been established independently.

Therefore, network-based prediction has the advantage of better

interpretability of the results due to the a priori knowledge about the

mental function a given network subserves (Nostro et al., 2018;

Pläschke et al., 2017). Similar to state specificity, FC within networks

associated with functions that are more closely related to the target

behavior (e.g., predicting WM performance from WM network fea-

tures) should also be more informative than networks that are associ-

ated with very different functions (e.g., predicting WM performance

from pain network features). Few studies have investigated this net-

work specificity, with some suggesting some network specificity with

regard to personality (Nostro et al., 2018), but others showing a lack

of specificity (Heckner et al., 2023; Pläschke et al., 2020).

The current project, therefore, aimed to investigate the influence

of brain state (same- vs. other-domain), similarity of target behavior to

the features within one domain (same vs. similar task from same

domain), and functional network priors (same- vs. other-domain

network) on the predictability of individual behavior. This included the

specific question of whether FC from same-domain states and in

same-domain networks can predict individual behavior better than FC

from other-domain states or networks. Hence, we tested the follow-

ing three hypotheses: (1) State specificity: behavior should be better

predicted based on FC patterns observed in the same domain, hence

during the state corresponding to the behavior to be predicted, as

compared to FC patterns observed in other (non-corresponding)

domains. (2) State–target similarity: task performance should be better

predicted based on FC patterns observed during the exact same task,

as compared to another similar task from the same domain. (3) Net-

work specificity: behavior should be better predicted based on FC

patterns observed in the networks corresponding to the predicted

behavior, as compared to FC patterns in other (non-corresponding)

networks.

2 | METHODS

To investigate whether there is state specificity, state–target similarity

and/or network specificity in brain–behavior prediction, we used the

Human Connectome Project (HCP) Young Adult dataset. We divided

it into two samples: in the first sample, we defined networks, and in

the second sample, we computed FC in predefined networks from the

first sample during different task states. Using FC within each network

as features, we predicted six different target variables, matching the

selected states and networks. We included the following three pheno-

typic domains: WM, theory of mind/social cognition (SOCIAL), and

emotion processing (EMO).

2.1 | Samples

Data were obtained from the Young Adult S1200 release of the

publicly available database provided by the HCP (Van Essen

et al., 2013), which comprised data from 1206 healthy individuals.

We only included participants for whom all the data required for

our analyses were available. That is, (a) all four resting-state fMRI

scans; (b) fMRI data of the WM, SOCIAL, and EMO tasks; and

(c) the performance measures (accuracy and reaction time) of these

three tasks performed in the scanner, as well as (d) all the perfor-

mance measures we aimed to predict for tasks that were performed

outside the scanner for each domain. Hence, every subject was

required to have both (in-scanner and out-of-scanner) tasks per

domain (three domains, six tasks in total). Of the 1206 individuals,

180 participants were excluded due to missing imaging data and

71 due to data quality issues. We further excluded subjects with

accuracy below 50% in the six tasks of interest (n = 77). Perfor-

mance accuracy was measured as the percentage of correct trials.

We chose to include only subjects producing more than 50% correct

trials, to ensure that only participants were included who were

attentive during the task and hence present the given states we

aimed to investigate. From the remaining sample of 878 subjects,
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two nonoverlapping subsamples were randomly generated: one for

independently delineating task-based networks via general linear

modeling (GLM; sample 1) and one for brain–behavior prediction

within those (and other) networks (sample 2). Thus, the first sample

can be thought of as the sample for “network extraction” and the

second sample for “feature extraction and prediction.” We carefully

accounted for the family structure and resulting dependencies in

this dataset by ensuring that (i) sample 1 contained only one individ-

ual per family, (ii) there was no kinship between the two samples,

and (iii) a leave-n-family-out cross-validation (CV) scheme for pre-

diction analyses within sample 2 was used (Poldrack et al., 2020).

For an overview of the sample selection, see Figure 1.

Sample 1, used for delineating task networks, consisted of

250 unrelated subjects (138 females; age mean = 28.6 years, stan-

dard deviation [SD] = 3.8, range = 22–36 years). Sample 2, used for

prediction, consisted of all the remaining individuals with no siblings

in the first sample. Further, we removed individuals that scored

higher/lower than 4 SDs from the mean in any of the six target scores

of interest, leaving us with 467 participants (252 females, mean

age = 28.8 years, SD = 3.7, range = 22–36 years) for sample 2. Note

that this sample contains siblings, which was accounted for in the pre-

diction pipeline through family subsampling in the CV (Poldrack

et al., 2020). From sample 2 we further randomly selected a holdout

sample (47 subjects), which was not used in any of the CVs. There-

fore, sample 2 consisted of 420 individuals that were used for CV and

final training, while n = 47 participants were held back for subse-

quently testing generalizability.

The analyses of the HCP data were approved by the ethics com-

mittee of the Medical Faculty at the Heinrich Heine University

Düsseldorf.

2.2 | Network delineation

Two different approaches were employed for delineating task-specific

networks: (i) networks reflecting brain activation in a large sample of

participants during the tasks of interest using the task fMRI data

of sample 1, and (ii) activation likelihood estimation (ALE) meta-

analyses across previously published neuroimaging results of the same

tasks. For brevity, we here only report the methods and results of the

first approach to network delineation. Further details on the results of

the second, meta-analytic, approach can be found in the supplemen-

tary material.

2.2.1 | Delineation of task-networks in sample 1

Ultimately, our network extraction approach aimed to delineate net-

works that were as closely as possible related to the states we aimed

to predict in the second sample. For this, we included strictly only the

task of interest for network delineation in both approaches—the single

study and the meta-analyses. To cover a variety of domains, we chose

three very different tasks performed in the scanner: n-back for the

WM domain, emotion recognition/face processing for the EMO

domain, and social cognition/theory of mind for the SOCIAL domain.

For details on the tasks, see Barch et al. (2013). Briefly, an n-back task

was used for WM, presenting a sequence of different stimuli with the

instruction to either decide whether the current stimulus is the same

as the one used two trials ago (2-back) or to recognize a specific tar-

get (0-back). EMO was a face-matching task in which angry or fearful

faces had to be matched (EMO condition), in contrast to matching

shapes (neutral condition). In the SOCIAL task, animated moving

F IGURE 1 Overview of the sampling procedure.
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shapes were shown in either interacting or random manner and had

to be labeled subsequently as interacting or randomly moving.

For the delineation of the task-specific networks revealing nodes

that are activated in our task of interest, we used the minimally pre-

processed volumetric task fMRI data of participants of sample 1. The

preprocessing included artifact removal, motion correction, and regis-

tration to the MNI standard volume space. More details regarding the

preprocessing pipeline can be found in Glasser et al., 2013. The mini-

mally preprocessed data were input for the GLM, performed using

FSL (Version 5.0.9) (Jenkinson et al., 2012; Smith et al., 2004;

Woolrich et al., 2009). For the subject-level GLM we modified the

scripts provided by the HCP (Barch et al., 2013; https://github.com/

Washington-University/HCPpipelines), which are based on the FSL

FEAT module (Woolrich et al., 2001, 2004), for use of

volumetric data.

The subject-level GLM included for either run (two different

phase encoding directions) temporal high-pass filtering (200 s cutoff),

spatial smoothing (8 mm FWHM Gaussian kernel), and the GLM fit-

ting. The respective stimuli in each task were modeled as blocked pre-

dictors, temporal derivatives of each predictor, 6 movement

parameters and their derivatives as regressors of no interest. For each

task, linear contrasts between conditions were computed:

2-back > 0-back for WM; interaction > random for SOCIAL; and

faces > shapes for EMO, respectively. Data across both phase encod-

ing directions were then combined with a fixed-effects GLM analysis.

For the group-level GLM, we modified an FSL workflow devel-

oped by (Esteban et al., 2019), which estimated the group effects

using FSL FMRIB's Local Analysis of Mixed Effects by performing a

one-sample t test across subjects. Group-level activation maps were

thresholded at cluster-level p < .05 (FWE-corrected for multiple com-

parisons) with a cluster-forming threshold of p < .001. The resulting

activation maps can be seen in the Supplemental Figures S1–S3. From

these clusters, we extracted only the peak coordinates from gray mat-

ter with a minimum distance of 15 mm. This resulted in three net-

works: WM-NW, SOCIAL-NW, and EMO-NW. For an overview of

the workflow, please see Figure 2. For comparison with the task-

specific networks, we used FC between the Power nodes (Power

et al., 2011) as a functionally defined, spatially distributed, whole-

brain representation of the connectome. The Power nodes represent

a combination of resting-state FC ROIs and task-based meta-analytic

ROIs, yielding 264 nonoverlapping independent ROIs.

2.3 | Prediction in sample 2

2.3.1 | Targets: Behavioral measures

To assess state specificity and state–target similarity, we selected

behavioral performance during different tasks: First, we used perfor-

mance collected in the scanner for our three domains of interest

(WM, SOCIAL, EMO à “same task”/in-scanner task). Second, we

selected scores of tasks/questionnaires that measured behavior not

exactly in the same state but still in the same behavioral domains

(“similar task”/out-of-scanner task). The two levels of tasks (“same”
and “similar”) from the same domain enable us to advance insights

beyond state specificity, into state–target similarity.

For “same task” scores (in-scanner task), reaction time and accu-

racy of task performance were used. These two scores were com-

bined by calculating the Inverse Efficiency Score (IES; Townsend &

Ashby, 1983), which is defined as the mean response time across cor-

rect trials of the condition of interest divided by its accuracy. This was

employed to address the issue of ceiling effects in the accuracy

scores. Hence, for WM (subsequently called “n-back”), IES was calcu-

lated using mean response time and accuracy of the 2-back blocks.

For EMO, we used response time and accuracy in the face-block of

the emotional face-matching task (subsequently called “matching” or

“EMO matching”). For SOCIAL, since the accuracy in both interaction

and random trials involved theory-of-mind cognition (Castelli

et al., 2000), we averaged response time and accuracy of both interac-

tion and random trials before creating the IES (subsequently called

“Social Cognition”).
For “similar task” scores (out-of-scanner task or questionnaire

scores) in the WM domain, we selected the unadjusted list sorting

score from the NIH Toolbox List Sorting Working Memory Test (sub-

sequently called “List Sorting”). For SOCIAL, we computed a social

satisfaction compound score (Babakhanyan et al., 2018) across five

different scales (friendship, loneliness, emotional support, instrumen-

tal support, and perceived rejection) of the self-report Emotion Bat-

tery of the NIH Toolbox (Salsman et al., 2013) (subsequently called

“Social Satisfaction” or “Satisfaction”). For EMO, we computed the

IES using reaction time and accuracy of the Penn Emotion Recognition

Test (Gur et al., 2001, 2010) (subsequently called “Emotion Recogni-

tion” or “Recognition”). See supplementary Table S1 for an overview

of all targets included.

2.3.2 | Features: FC

Resting-state fMRI and the three sets of task fMRI data (WM,

SOCIAL, EMO) from sample 2 were used for calculating FC within

each network of interest (WM, SOCIAL, EMO, and Power). The net-

work extraction is explained in detail in the section “Delineation of

task-networks in Sample 1”; for an illustration of the methods applied,

please see Figure 2. For all four states we used all runs available (four

runs for REST and two runs each for the tasks) and their full duration

per run. MRI protocols of HCP were previously described in detail

(Glasser et al., 2013; Van Essen et al., 2013). For the task-fMRI data,

we used the minimally preprocessed version provided by the HCP,

which includes removal of spatial distortions, volume realignment, reg-

istration to the anatomical image, bias field reduction, normalization

to the global mean, and masking the data with the final brain mask

(Glasser et al., 2013). The approach to treat task fMRI comparable to

resting state fMRI data has been suggested by (Greene et al., 2020).

For the resting-state fMRI data, we used the ICA-FIX denoised data

provided by the HCP, which uses the minimally preprocessed fMRI

data (processed in the same way as task fMRI data) as input and
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denoises it through classification of ICA components. This classifier

identifies “good” and “bad” components and automatically removes

artifactual or “bad” components. For further details, see Griffanti et al.

(2014), Salimi-Khorshidi et al. (2014), and Smith et al. (2013).

Additional processing as well as the FC analysis for both resting-

state and task-fMRI data were performed using SPM12 (www.fil.ion.

ucl.ac.uk/spm/software/spm12/) and MATLAB 2020a (The Math-

Works, Natick, MA). Nuisance regression was done to control for

mean white matter and cerebrospinal-fluid signals, mean global signal,

within-scanner motion using the 6 movement parameters and their

derivatives stored in the Movement_Regressors_dt.txt file provided

by the HCP. Further, we applied band-pass filtering [0.01–0.1 Hz] and

detrended the time series. We opted for the band-pass filter, as this

has been shown to be successful in filtering out movement and physi-

ological artifacts, without leading to information loss (Ciric

et al., 2017; Satterthwaite et al., 2013). Using the network coordinates

obtained from sample 1 (depicted in Figure 2 and in the supplemental

material in Figures S7–S13 and Tables S2–S7), for each network, we

F IGURE 2 Overview of the applied methods. Yellow blocks depict the network extraction from sample 1. Violet blocks depict the network-
based prediction in sample 2, together with the feature extraction (functional connectivities) from the networks delineated in the first step and
sample. The upper heatmap under “FC-Features” shows the FC from the different states in the WM-network. GLM: General linear modeling, PE:
Phase encoding; FC: Functional connectivity; Soc. Cog., Social cognition task (in-scanner task); Soc. Satisf., Social Satisfaction Questionnaire (out-
of-scanner score); Emo. Match., Emotional Face-Matching task (in-scanner task); Emo. Recog., Emotional Face Recognition task (out-of-scanner
score).
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modeled a 5-mm sphere around each node's coordinate. The sphere

size was the same for all coordinates to ensure the same number of

voxels within each node. However, as we extracted multiple peak

coordinates from larger clusters of task-activation in sample 1, larger

activated regions are represented by multiple spheres. From each

sphere, we extracted the mean time series. We then calculated the

Pearson's correlations between all pairs of nodes of each respective

network, before applying Fisher's Z-transformation. These steps were

done for each run separately (four runs for REST and two runs each

for the tasks) and for each state (REST, WM, SOCIAL, and EMO). The

z-scored FC values were finally averaged across all runs of each state.

This was done for all four networks as well as for each of the four

states. Connectivity matrices for the WM network can be seen in

Figure 2, all other networks averaged across all subjects can be found

in the supplemental material (Figures S14–S20).

To ensure that any effects were not due to the different lengths

of the tasks performed in the scanner, we trimmed all time series to

the length of the shortest scan duration (EMO: 2:16 min) for a control

analysis. These results are reported in the supplemental material

(Figure S22).

2.3.3 | Network-based prediction of individual
behavior

We predicted the task performance/characteristics for each domain

from resting- and task-state FC (four states: REST, WM, EMO,

SOCIAL; to investigate state specificity) and task of interest (same and

similar tasks in WM, EMO, SOCIAL; to further investigate state–target

similarity) of the delineated networks (four networks: whole-brain

Power nodes and three task networks [WM, SOCIAL, EMO from sam-

ple 1; to investigate network specificity]).

For the main analysis, we used partial least squares (PLS) as the

prediction model. PLS is a form of supervised learning which uses lin-

ear regression fitting, but it can handle violation of the assumption of

no multicollinearity by reducing the dimensionality of correlated vari-

ables. However, to confirm our results and to cover models that have

been used in the past for behavioral prediction, we additionally per-

formed analyses using other algorithms: Kernel ridge regression,

which, like PLS, is a linear parametric model. As well as support vector

regression (with both linear and nonlinear RBF kernel) and random

forest as nonparametric models, where both can capture nonlinear

relationships. Finally, we used PLS and kernel ridge also with

connectivity-based prediction modeling (CBPM; Finn et al., 2015;

Shen et al., 2017) as a popular feature reduction. CBPM correlates the

features to the target variable, retaining only the features showing a

significant relation to the target for the model to learn. Note that all

models were trained using the same set of FC features and target var-

iables. All results from the additional analyses are presented in the

supplemental material (Figures S21–S28).

Separate prediction analyses were conducted for each combina-

tion of network, state, and behavioral score, resulting in a total of

4 states ! 4 networks ! 6 targets = 96 predictions. The FC pattern

of the respective network and state constituted the given feature

space, and the respective behavioral scores were the targets. All

algorithms were used as implemented in JuLearn (Hamdan

et al., 2023), which is a toolbox based on scikit-learn (Pedregosa

et al., 2011). It includes hyperparameter tuning, nested-CV, and fea-

ture reduction methods making sure that data leakage is avoided.

For PLS, we tuned the hyperparameters in an inner fivefold CV, with

the number of latent components increasing in steps from 1 to 10.

As having a sibling in the training set could lead to a better predic-

tion of the related participant's score in the validation set, we

applied a 100! leave-30%-families-out CV scheme on 420 subjects

from sample 2 to account for the family structure of the sample

(i.e., individuals from the same family were not split into training or

validation sample but kept in either one of them). This is done to

counter potential nonindependence induced by the family structure

in the HCP dataset (Poldrack et al., 2020). We deconfounded the

features by regressing out age and sex as well as normalizing them

by z-transformation. For comparability of prediction performance

between the different behavioral scores, we additionally normalized

the targets. To avoid data leakage, confound regression and normal-

ization were done within the CV. That is, the confound regression

models and parameters for z-transformation were computed in the

CV on the training set only (70% of the families) and then applied to

the test set (30% of the families) (Poldrack et al., 2020). Prediction

performance was evaluated by the root mean squared error (RMSE)

as well as the coefficient of determination (COD), as a measure of

goodness of model fit, averaged across all CV runs. Additionally, the

mean Pearson correlation across all CV runs between predicted and

observed scores was calculated. After hyperparameter tuning and

CV, we finally applied the model, that has been trained on all the

data provided and with the hyperparameter tuning performed on it,

to the randomly drawn holdout sample (47 subjects from sample 2)

to evaluate the model's generalizability.

The RMSE was used for testing for significant differences of pre-

diction performance between states, networks and, tasks using

machine-learning (ML)-adjusted t tests (Nadeau & Bengio, 1999).

These modified t tests are evaluated and adjusted for comparing ML

algorithms (Bouckaert & Frank, 2004) to account for violating the

independence assumption in a paired Student's t test. This is done by

correcting the variance estimate through considering the training and

sample size. In our case, due to the leave-30%-families-out CV

scheme, the number of data points changed in each fold. Therefore,

we used the mean training sample size across the 100 folds for the

adjustment.

Within each phenotypic domain, we first tested effects of state

and network by averaging prediction performance of the respective

other factors (i.e., averaging across networks and task when testing

for state effects, and across state and task when testing for network

effects). As state–target similarity is an extension of state specificity,

we here only averaged across networks for same and similar tasks,

respectively. Significant effects (Bonferroni corrected for multiple

comparisons) were then further assessed by comparing the respective

individual prediction scores between each other.
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3 | RESULTS

In a first step (upper/yellow part of Figure 2), we compared the result-

ing task-networks from both sample 1 and the meta-analyses to

ensure they covered and showed overlap with frequently observed

regions in previously reported large-scale analyses (WM: Daamen

et al., 2015; Fuentes-Claramonte et al., 2019; Kennedy et al., 2017;

Rottschy et al., 2012; Snoek et al., 2021; https://identifiers.org/

neurovault.collection:7103; SOCIAL: T. Chen et al., 2023; Hennion

et al., 2016; Mossad et al., 2022; Patil et al., 2017; EMO: Chaudhary

et al., 2023; Herrmann et al., 2020; Nord et al., 2017; Snoek

et al., 2021; https://identifiers.org/neurovault.collection:7103). The

resulting WM-NW had 49 nodes, the SOCIAL-NW had 66 nodes, and

EMO-NW had 84 nodes. For an overview of the networks, please see

Figure 2. Please refer to the supplemental material for a comprehen-

sive depiction of the original activation maps resulting from the

group-level (Figures S1–S3) and the activation likelihood maps of

the meta-analyses (Figures S4–S6), extracted networks

(Figures S7–S13) and further details on the exact coordinates, includ-

ing the anatomical labels (supplemental Tables S2–S7).

Following this, we examined the FC of sample 2 within the net-

works derived from sample 1 for each individual state. Averaged

across all subjects, the pattern of FC of all networks looks similar

between different states. However, we see a tighter network coupling

within the WM-NW in the WM state, compared to the other states

(i.e., SOCIAL, EMO, and resting state; see Supplemental Figures S14

and S15). A tendency of higher FC within the congruent network was

also visible in the EMO domain (Supplemental Figures S18 and S19).

However, the picture was more fuzzy within the SOCIAL domain

(Supplemental Figures S16 and S17), where no apparent pattern was

discernable. This further motivated the next step—the application of

ML and its assessment—to investigate whether the algorithms would

be able to pick up complex and subtle signal that we were unable to

observe within the averaged FC matrices.

The main focus of this study, therefore, lies on the prediction ana-

lyses (bottom/violet part of Figure 2). We mainly report on the out-

comes of the prediction analyses using PLS. Predictions using

different algorithms and approaches showed highly similar patterns

and their details can be found in the supplementary material. Further-

more, regarding outcome measures, we here focus on the RMSE from

the CV as well as the COD as a measure of goodness of fit. In the sup-

plementary material, additional results of Pearson's r of the predicted

and observed score from the CV can be found.

Averaged across all CV-folds per prediction, the COD and RMSE

(Figure 3) revealed that the models show a poor fit and prediction accura-

cies are rather low. Note, that COD values below zero indicate that

prediction of individual scores were worse than predicting the mean of

the target. The mean COD showed a positive mean value only for 2 out

of 96 predictions, while all others showed a mean COD of zero or a nega-

tive value. Other models (e.g., kernel ridge regression or SVR) yielded

some more COD values above zero, but no model achieved a mean COD

higher than 0.07. Similarly, the RMSE was quite high for all predictions.

Because these scores indicated a generally poor fit to the data, we

refrained from applying the best model to the holdout sample. The corre-

lations (for details, see the supplementary material) between predicted

and observed values ranged from "0.11 to 0.32 with a mean prediction

accuracy of 0.08 (SD: 0.09) and only one mean correlation from the

96 predictions reaching a medium effect size.

3.1 | State specificity in network-based prediction

To answer the question if the correspondence between state and tar-

get (e.g., WM score predicted using FC during WM state) improves

predictions, and whether there even is state specificity (e.g., WM

scores predicted significantly better from FC during WM state than

from FC during other states: REST, SOCIAL, or EMO), we examined

the differences in prediction accuracy between states.

No significant differences were found for the SOCIAL and EMO

domain (Figure 4b,c). For the WM domain, the ML-adjusted t test

(Bonferroni corrected for multiple comparisons) showed a significant

benefit for all task states compared to the resting state (see Figure 4a;

see Table 1 for mean RMSE and significant t test statistics). However,

non-WM domain states (i.e., SOCIAL and EMO) only showed a signifi-

cant difference to the WM state at an uncorrected threshold (not

shown in Table 1). This difference was also significant when using

other algorithms and feature selection approaches (PLS with CBPM,

random forest, and SVR with the RBF kernel). At an uncorrected

threshold, the difference was also significant for all other models (ker-

nel ridge regression, SVR with linear kernel, and CBPM with ridge

regression), as well as when using only the trimmed time-series.

To asses which effect was driving the significant differences, we

compared prediction performance between states using post hoc ML-

adjusted t tests, while keeping network and task constant. That is, we

only compared predictions between same-domain networks and tasks

(e.g., comparing the prediction performance of “same” WM task score

based on FC between Power nodes in resting state to the prediction

performance of “same” WM task score based on FC between Power

nodes in WM state). Comparing prediction performance between rest

and different states for each network and WM score revealed that

the difference between REST and WM state was driven by the differ-

ence in prediction performance of the n-back task using the Power

F IGURE 3 Prediction performance: Boxplots of the distribution of COD and RMSE from the 100! CV for each phenotypic domain (a—WM,
b—Social, c—EMO domain), state and network. Boxes represent the model fit/COD and RMSE of prediction of a specific score (WM, SOCIAL,
EMO; performed in [darker background] or outside [lighter background] the scanner) based on functional connectivity within a given network
(POWER, WM, SOCIAL, EMO) in a given state (REST, WM, SOCIAL, EMO). Green: WM, blue: SOCIAL, red: EMOTION, yellow: resting state,
white: Power nodes. Darker background: target is the task performed in the scanner; lighter background: target is the task performed outside the
scanner. Soc. Cog., Social cognition task (in-scanner task); Soc. Satisf., Social Satisfaction Questionnaire (out-of-scanner score); Matching:
Emotional Face-Matching task (in-scanner task); Recognition: Emotional Face Recognition task (out-of-scanner score).
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nodes and the EMO network (for mean RMSE and significant t test

statistics, see Table 1). The EMO network additionally showed a dif-

ference between WM and REST state when predicting list sorting.

The difference between REST and EMO state was also driven by

Power nodes and the EMO network when predicting n-back perfor-

mance, and by the EMO network when predicting list sorting. The sig-

nificant difference in REST versus SOCIAL was driven by the Power

nodes in predicting n-back performance.

Overall, state had a significant influence on predicting WM

scores, with better predictions when using task compared to resting

state. This state-specific improvement was, however, not uniformly

observed and mainly driven by predictions based on FC within the

Power nodes and the EMO network.

3.2 | State–target similarity in network-based
prediction

In a next step, we examined differences in predictability between the

“same” and “similar” tasks in a given domain. We were interested in

whether the behavior would be predicted better in the state where

the predicted behavior was measured (“same task”), and whether the

FC-based predictivity could translate to a related task (“similar task”).
An example would be the comparison between the predictability of

n-back task performance (WM task performed during scanning) and

the list sorting task (WM task performed outside of the scanner)

based on FC patterns observed during the WM n-back task.

For this comparison of “same task” with “similar task,” we found

a slight (numerical) benefit in the performance of the “same task.”
However, a direct statistical comparison of RMSE values using ML-

adjusted t tests did not show any significant effects after Bonferroni

correction for multiple comparisons (see Figure 5).

3.3 | Network specificity in network-based
prediction

Finally, we set out to answer the question if predicting task perfor-

mance does benefit from being based on FC within a network known

to be engaged in performing that same task (e.g., n-back task perfor-

mance predicted from FC within the WM-network), as compared to

other task-related networks (e.g., n-back task performance predicted

F IGURE 4 State and network specificity: State (a–c) and network (d–e) specificity for each phenotypic domain (a and d—prediction of WM
scores, b and e—prediction of SOCIAL scores, c and f—prediction of EMO scores). For state specificity, (a–c) RMSE of all networks (POWER, WM,
SOCIAL, EMO) and the two tasks of the respective domain in a given state (REST, WM, SOCIAL, EMO) are averaged. For network specificity, all
states (REST, WM, SOCIAL, EMO) and the two task of the respective domain are averaged in a given network (Power nodes, WM, SOCIAL,
EMO). Green: WM, blue: SOCIAL, red: EMOTION, yellow: resting state. Horizontal bars indicate significance pcorr <.05.
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from FC within a SOCIAL task-based network or the whole-brain con-

nectome). ML-adjusted t tests showed, for all three domains, a benefit

for the whole-brain Power nodes over the task-specific networks (see

Figure 4d–f). In the WM domain, FC between the Power nodes pre-

dicted WM-related targets better than did FC within the n-back WM-

specific network, the SOCIAL-specific network, or the EMO-specific

network (see Figure 4d and Table 2 for mean RMSE and t test statis-

tics). In the SOCIAL domain, the Power nodes predicted SOCIAL-

related targets better than did the WM-specific, SOCIAL-specific, or

EMO-specific networks (see Figure 4e). Finally, in the EMO domain,

the Power nodes again predicted EMO-related targets better than all

three domain-specific networks including the EMO-specific network

derived from an emotional face-matching task (see Figure 4f).

Post hoc tests (see Table 2) indicated that the difference between

the Power and WM networks was driven by the EMO and WM state

when predicting social satisfaction, while there was no specific

state or task driving the effects for the EMO and WM domain. The

priority of Power over the SOCIAL-specific network was in particular

evident when predicting social cognition and social satisfaction in the

EMO state and when predicting emotion recognition in the REST,

SOCIAL, and EMO states. No specific state or task was driving the

effect for the WM domain. The effect of Power versus the

EMO-specific network was driven by the predictions of list sorting

and emotion recognition in the REST state. No specific state or task

was driving the effect in the SOCIAL domain.

TABLE 1 Comparison of prediction accuracies between states.

Domain of predicted
performance State A

RMSE
mean (SD) State B

RMSE
mean (SD) t

p-
Value

Significant main effect of state

WM REST 1.10 (0.06) WM 1.02 (0.05) 5.10 <.001

REST 1.10 (0.06) SOCIAL 1.05 (0.06) 3.49 .013

REST 1.10 (0.06) EMOTION 1.05 (0.06) 3.68 .007

Significant post hoc tests for specific state—task—network combinations

WM REST (n-back, Power nodes) 1.06 (0.09) WM (n-back, Power nodes) 0.95 (0.09) 4.83 <.001

REST (n-back, EMO
network)

1.13 (0.10) WM (n-back, EMO network) 1.00 (0.10) 3.51 .016

REST (List Sorting, EMO
network)

1.19 (0.09) WM (List Sorting, EMO
network)

1.05 (0.09) 4.10 .002

REST (n-back task, Power
nodes)

1.06 (0.09) SOCIAL (n-back task, Power
nodes)

0.98 (0.09) 3.21 .043

REST (n-back task, Power
nodes)

1.06 (0.09) EMOTION (n-back task, Power
nodes)

0.97 (0.09) 3.72 .008

REST (n-back, EMO
network)

1.13 (0.10) EMOTION (n-back, EMO
network)

1.00 (0.10) 3.40 .023

REST (List Sorting, EMO
network)

1.19 (0.09) EMOTION (List Sorting, EMO
network)

1.10 (0.09) 3.32 .030

Note: Machine-learning-adjusted t test to assess state specificity using the averaged 100 RMSE values obtained from 100-fold cross-validation within the
state listed in column “State A” versus the state listed in column “State B.” p-Values are Bonferroni corrected for multiple comparisons. Post hoc t tests
between individual predictions of the task in the network (both noted in brackets) and the state listed in column “State A” versus the state listed in column
“State B.”

F IGURE 5 State–target similarity: Boxplots of the distribution of
RMSE from the 100! CV averaged across all networks (Power nodes,
WM, SOCIAL, EMO network) within a given state (WM, SOCIAL, and
EMO) and task (SAME or SIMILAR). Green: WM, blue: SOCIAL, red:
EMOTION, gray: averaged across networks. Darker background:
target is the “same” task performed in the scanner, lighter
background: target is the “similar” task performed outside the
scanner.
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This superiority of the Power nodes over functional network

definitions in all three domains was not present in other ML algo-

rithms. However, we still saw a similar trend when trimming the

time series to the shortest task (EMO: 2:16 min), as the Power

nodes performed better in all domains and networks, except for the

EMO domain where the EMO network did not perform significantly

worse.

4 | DISCUSSION

Using state-of-the-art fMRI preprocessing and ML approaches, this

study investigated brain–behavior relationships. Specifically, how

brain features from specific states and networks, or the task similarity

within the behavioral domain, affects this relationship. Based on

previous studies, we hypothesized that brain features obtained from

networks and/or states that are corresponding to the target task are

more informative about individual behavior than those obtained from

other (non-corresponding) states or networks. Additionally, we

expected that behavior in the task performed during fMRI data acqui-

sition will be predicted better than similar tasks of the same pheno-

typic domain. Contrary to expectations, we found no significant

differences in predictability (when correcting for multiple compari-

sons) that would indicate specific benefits of state, task, or network

correspondence. Rather, our results show a general benefit of predict-

ing WM scores using (any) task state, relative to rest, and for predict-

ing performance in any domain from whole-brain FC (Power nodes),

relative to predefined functional networks. Importantly, however, pre-

diction accuracies were overall quite low, raising the question to what

extent the observed differences (or their absence) in prediction

TABLE 2 Comparison of prediction accuracies between networks.

Domain of predicted
performance Network A

RMSE
mean (SD) Network B

RMSE
mean (SD) t

p-
Value

Significant main effect of network

WM Power nodes 1.02 (0.06) WM 1.06 (0.06) "3.30 .025

SOCIAL 1.08 (0.06) "4.65 <.001

EMO 1.08 (0.06) "6.03 <.001

SOCIAL Power nodes 1.04 (0.07) WM 1.11 (0.06) "6.37 <.001

SOCIAL 1.11 (0.06) "5.72 <.001

EMO 1.08 (0.07) "4.43 <.001

EMO Power nodes 1.01 (0.06) WM 1.07 (0.07) "5.05 <.001

SOCIAL 1.09 (0.06) "7.10 <.001

EMO 1.05 (0.06) "3.93 .003

Significant post hoc tests for specific network—task—state combinations

WM Power (List Sorting, REST
state)

1.07 (0.09) EMO (List Sorting, REST state) 1.19 (0.09) "4.41 .002

SOCIAL Power (Soc. Cog., EMO state) 1.02 (0.11) SOCIAL (Soc. Cog., EMO
state)

1.14 (0.11) "4.80 <.001

Power (Soc. Satisf., EMO
state)

1.01 (0.08) WM (Soc. Satisf., EMO state) 1.11 (0.08) "3.82 .017

Power (Soc. Satisf., WM state) 1.04 (0.08) WM (Soc. Satisf., WM state) 1.15 (0.08) "3.68 .027

EMO Power (Emo. Recog., REST
state)

1.00 (0.09) SOCIAL (Emo. Recog., REST
state)

1.13 (0.10) "4.05 .008

EMO (Emo. Recog., REST
state)

1.11 (0.09) "4.39 .002

Power (Emo. Recog., WM
state)

0.99 (0.09) SOCIAL (Emo. Recog., WM
state)

1.13 (0.10) "5.18 <.001

Power (Emo. Recog., SOCIAL
state)

1.00 (0.09) SOCIAL (Emo. Recog.,
SOCIAL state)

1.11 (0.09) "4.47 .002

Power (Emo. Recog., EMO
state)

1.01 (0.09) SOCIAL (Emo. Recog., EMO
state)

1.12 (0.09) "4.47 .002

Note: Machine-learning-adjusted t tests to assess network specificity using the averaged 100 RMSE values obtained from 100-fold cross-validation within
the network listed in column “Network A” versus the network listed in column “Network B.” p-Values are Bonferroni corrected for multiple comparisons.
Post hoc t tests between individual predictions of the task in the state (both noted in brackets) and the network listed in column “Network A” versus the
state listed in column “Network B.”
Abbreviations: Emo. Recog., Emotional Face Recognition task (out-of-scanner score).; Soc. Cog., Social cognition task (in-scanner task); Soc. Satisf., Social
Satisfaction Questionnaire (out-of-scanner score).
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performance between state and network conditions, and task similar-

ity can be meaningfully interpreted.

4.1 | Is there state specificity for brain–behavior
prediction?

We expected not only an improvement in predicting behavior based

on FC during task states compared to FC at rest as demonstrated by

(Greene et al., 2018), but especially in predicting behavior based on

FC within corresponding states. However, apart from the overall low

prediction performance, our results, show only weak evidence for the

former, that is, an advantage of task states compared to resting state,

but only for predicting WM scores (see Figure 4a). Previous studies

have already reported that predictions of cognitive scores such as

intelligence or attention improve when using task fMRI data

(vs. resting state) to derive FC patterns (Avery et al., 2020; Greene

et al., 2018; Jiang et al., 2020). But also when combining task and rest

(Jiang et al., 2020), and specifically when using FC within a WM task

state (Avery et al., 2020; Jiang et al., 2020; Sripada et al., 2020; Stark

et al., 2021). Our results extend this work to different states and addi-

tionally show that this benefit of using task-fMRI data cannot be

assumed for behaviors other than WM. Task-fMRI data may lead to

better predictions compared to resting-state data, particularly for WM

performance, possibly because task-based fMRI has a more con-

strained setup which potentially enhances reliability. Resting-state

fMRI has been shown to be less reliable than stimulating (such as

movies or task) fMRI (Noble et al., 2019). Task-based modulations of

brain states may therefore contain more information about individual

differences in brain functioning and behavior (Greene et al., 2018).

This is consistent with a recent emphasis on shifting from solely

focusing on resting-state FC (Finn, 2021; Greene et al., 2018) to accel-

erate progress in human neuroscience. Possibly, predictive perfor-

mance can be improved by using naturalistic stimuli (Finn &

Bandettini, 2021), as such settings are still more constrained than rest

but less constrained than certain laboratory tasks. However, using

movie data would not readily allow testing of state specificity effects,

and therefore would not be a ready-made solution to the current

research question.

4.2 | Is there state–target similarity?

Surprisingly, prediction accuracy was low even when FC was derived

from the exact same task state in which the behavioral data were col-

lected, with no improvement when predicting the same score, as com-

pared to a similar score (see Figure 5). Also using the HCP dataset and

WM task data, Stark et al. (2021) reported similar though slightly

higher accuracies than ours for n-back (“same task”) and list-sorting

(“similar task”) scores, with higher correlations for the former (but not

tested for significance). We here extend these insights by also testing

effects of task similarity for SOCIAL and EMO scores and by showing

that although n-back WM performance seems to be predicted better,

the difference between “same task” and “similar task” score predic-

tion is not significant.

A possible reason for the lack of support of our hypothesis might

lie in the nature of the task used in the scanner. That is, a lot of para-

digms were developed in experimental contexts (Hedge et al., 2018)

and therefore optimized for inducing a robust effect across partici-

pants instead of assessing interindividual differences. This might espe-

cially be the case for experimental tasks used in the scanner. For

example, the emotional face-matching task (Hariri et al., 2002) used

for EMO assessment was developed to induce robust amygdala acti-

vation, rather than capturing individual emotion processing abilities.

Additionally, the tasks used here were rather short and may have

lacked enough difficult items for a clearer differentiation between par-

ticipants. The n-back task, for example, most strongly differentiates

between individuals when using high-load conditions (>3-back), both

in terms of behavior and brain activity (Lamichhane et al., 2020).

Therefore, using behavioral measurements from tasks optimized for

obtaining stable group-average effects might have counteracted the

successful prediction of interindividual differences.

4.3 | Is there network specificity for brain–
behavior predictions?

We based the network specificity hypothesis on the assumption that

if networks are reliably engaged during a task, then these networks

should play an important role in the task outcome (i.e., specific perfor-

mance). Importantly, our aim to demonstrate network specificity was

based on the idea that a priori task-defined networks improve inter-

pretability (Bzdok et al., 2012; Langner et al., 2018; Müller

et al., 2018; Rottschy et al., 2012) as they reflect interactions between

regions that are jointly engaged during a specific task and should

therefore be biologically meaningful (J. Chen et al., 2021; Nostro

et al., 2018; Pläschke et al., 2017). Further, visual inspection of FC

within task networks and states averaged across subjects (see supple-

mental Figures S14–S20) revealed the expected stronger FC within

the congruent networks and states, respectively. This was most

strongly expressed in WM and EMO, whereas in SOCIAL no clear pat-

tern was visible. Yet, this apparently tighter coupling of congruent

networks did not provide enough information for the prediction of

individual behavior to translate into a significant improvement.

Nonetheless, our results showed that prediction performance

was weak regardless of the networks used (see Figure 3—COD). Com-

parison of the differences between networks showed that prediction

from the whole-brain representation (Power et al., 2011) significantly

improved prediction compared to the task specific networks (see

Figure 4d–f). The reason for an advantage of the whole-brain connec-

tome remains to be revealed. We assume that some subtle pieces of

information in the whole-brain connectome, which are not captured

by the task networks, reflect individual processing differences in some

parts of the tasks at hand and thus contribute to some extent to

behavior prediction. Additionally, the whole-brain connectome has

considerably more nodes than the task networks studied here, giving
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the model much more features to learn from. These nodes can poten-

tially capture interactions and integration of multiple brain regions,

including regions, that are not consistently involved in the investi-

gated mental processes and do not translate into group-level average

task networks. However, despite the whole-brain Power nodes per-

forming, on average, significantly better than the task networks, they

were not consistently superior (see Supplemental Figure S29 showing

the prediction performance sorted by network size).

Nevertheless, our results suggest that there is no network speci-

ficity, which is in line with the findings of Heckner et al., 2023 and

Pläschke et al., 2017, 2020. Using networks based on group analyses

may therefore not be a suitable avenue for assessing individual differ-

ences (Finn et al., 2017; O'Connor et al., 2017; Shah et al., 2016).

Brain mapping results from group analyses typically reveal regions

with low inter-subject variability (Hedge et al., 2018), and group-

averaged patterns of brain activation often look quite different from

patterns observed on the individual subject level (Miller et al., 2002).

In addition, it has been shown that brain regions, for which activation

has been found to be associated with behavioral outcomes, are not

necessarily those that show up in standard group-average analyses

(Ganis et al., 2005). Our results now indicate that this might also apply

to networks derived from large samples that also reflect small average

effects (HCP-derived networks) or from large-scale meta-analyses.

However, improvement may be gained through an individualization of

the networks prior to prediction. For example, Kong and colleagues

employed a multi-session hierarchical Bayesian model to estimate

individual-specific cortical network parcellations, significantly improv-

ing prediction performance relative to other parcellations (Kong

et al., 2019). Similarly, using a different approach (Li et al., 2019) dem-

onstrated an improvement in prediction accuracy using an iterative

search based on a population-based functional atlas in combination

with a map of inter-individual variability (D. Wang et al., 2015).

4.4 | Methodological considerations

In this study, we aimed to predict complex behavior based on

FC. Generally, our prediction accuracies were rather low. Neverthe-

less, they are comparable to the accuracies (correlation between pre-

dicted and observed score) reported in the literature (Dubois, Galdi,

Han, et al., 2018; Greene et al., 2018; Heckner et al., 2023; Kandaleft

et al., 2022; Ooi et al., 2022; Tomasi & Volkow, 2020). However, using

correlation alone as a measure for prediction accuracy can skew the

picture. All measures individually (correlation, COD, RMSE) have been

shown to have their drawbacks and therefore it has been suggested

that they should be considered together as a whole (Poldrack

et al., 2020). Our results emphasize the importance of using more than

one measure and especially using more than Pearson's r as a measure

for prediction performance, as this metric, when used in isolation, may

draw an overly optimistic picture. As illustrated in our plots (see sup-

plementary material), Pearson's r invites the observer to interpret

some apparent patterns. Yet, when looking at the model fit given by

COD values, it can be easily seen that most models barely fit the data

(see e.g. Figure 3). Surprisingly, only few prediction studies in the neu-

roimaging literature have reported metrics other than r. However, if

they did, results were rather similar to ours, with finding only small

amounts of variance explained (COD) and reporting high prediction

errors on average (Dubois, Galdi, Han, et al., 2018; Kandaleft

et al., 2022; Ooi et al., 2022).

There may be several reasons why we did not successfully predict

behavioral performance. One is predicting behavioral scores of single

tasks or questionnaires, like WM, as opposed to compound scores

across many tests, like overall cognition (Akshoomoff et al., 2013;

Dubois, Galdi, Paul, & Adolphs, 2018). Studies using compound scores

generally report better accuracies (McCormick et al., 2022; Ooi

et al., 2022), as they may capture individual abilities better and show

higher reliabilities compared to individual test scores (Hedge

et al., 2018). However, the interpretation and biological foundation of

compound scores is debatable (Dubois, Galdi, Paul, & Adolphs, 2018;

McFarland, 2012; Van Der Maas et al., 2006). In this study, we aimed

to investigate specificity, and hence we focused on individual tasks or

questionnaires at the cost of a potential decrease in prediction

performance.

Another reason for the low prediction performance, related to

the first explanation, might be the reliability of the predicted measures

but also the features, setting an upper bound for detecting relation-

ships (Cohen et al., 2013; Vul et al., 2009; Yarkoni & Braver, 2010).

Using the HCP test–retest sample calculation of the correlations

between measurement time points 1 and 2 (test–retest reliability) of

the scores we used revealed reliabilities between 0.5 and 0.8, with

highest reliabilities for the WM domain. In our and other studies, WM

or intelligence scores were generally predicted better than other cog-

nitive measures (Avery et al., 2020; Kandaleft et al., 2022; Ooi

et al., 2022; Sripada et al., 2020; Takeuchi et al., 2021), which could

be because these constructs are measured more accurately than

others.

Finally, for ML applications in CV schemes, sample size is an

important factor for achieving good prediction performance. The more

data is available, the better a model can learn. In our case, our sample

size decreased due to our carving out a subsample for a priori network

delineation, leaving us with 420 subjects in the training set. This step

was essential to assess network specificity using networks as close as

possible to the investigated tasks. Other studies using the HCP data-

set and similar algorithms have in part achieved slightly better predic-

tions, possibly through larger training sets (Jiang et al., 2020; Ooi

et al., 2022). The effects we sought to detect are presumably very

small; hence, a substantially larger dataset and/or more reliable behav-

ioral assessments could be required to detect them (Marek

et al., 2022).

4.5 | Limitations and outlook

We are aware that there is a plethora of preprocessing pipelines and

feature selection models that may improve prediction. We used a

well-established preprocessing pipeline (Glasser et al., 2016) and
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widely used ML models that previously yielded the highest predictions

(Greene et al., 2018; Jiang et al., 2020; Yeung et al., 2022). Given that

we saw a similar pattern of prediction accuracies irrespective of the

model used, we would not expect a substantial change of the result

pattern if other models were used.

Further, we aimed to cover a broad range of task network repre-

sentations by (i) extracting networks from a high-powered single

study using task fMRI data, (ii) using ALE meta-analyses based on pre-

viously published neuroimaging results (see supplemental material), as

well as (iii) including a whole-brain representation (Power et al., 2011)

for comparison with the task networks. We acknowledge that differ-

ent whole-brain representations, such as the parcellation by Schaefer

et al. (2018) could yield different and possibly even better prediction

accuracies. Also, the inclusion of data-driven approaches to network

definition, like principle component analysis or group independent

component analysis, could lead to different results. Testing the influ-

ence of such methodological choices is an important research topic

and should be addressed more systematically in future studies. Until

then, our results should only be generalized to settings that employ

the same or similar methods as were used here. We here, hence, lim-

ited our analyses to one whole-brain representation, as our focus was

on task networks and their interpretability. This also entails using the

task-specific networks in their most accurate representation, encom-

passing their unique spatial distributions as well as their different

sizes. We believe that both aspects constitute fundamental inherent

characteristics of networks.

Finally, the HCP dataset comprises young and healthy adults, with

an above-population average intelligence. As the majority of subjects

in the HCP dataset were highly educated, performed generally well on

the tests, and as tests are optimized for group effects, the between-

subject variability in this dataset is relatively limited, that is, subopti-

mal for approaches relying on individual differences. Nevertheless,

the HCP currently offers the only dataset that allows for the investi-

gation of such complex research questions as state specificity, state–

target similarity, and network specificity in brain-based prediction set-

tings, because it covers a vast array of phenotypic domains, both in

and outside the scanner, while providing high-quality fMRI data

in task and resting states in a large number of participants.

4.6 | Conclusions

Here, using state-of-the-art ML algorithms for out-of-sample predic-

tion analyses, we aimed to investigate the specific influence of the

factors state, task, and network on behavior prediction from FC pat-

terns. Based on previous research on brain–behavior relationships, we

hypothesized that FC features from corresponding state, tasks, and

networks would be more informative than non-corresponding fea-

tures and hence improve prediction. We only found improvement for

using task over resting state fMRI, as well as better predictions for

whole brain compared to task specific networks. However, across

three behavioral domains, predictive performance was generally poor,

and there were no significant patterns indicating specificity of state,

networks, or task similarity, when looking at RMSE and COD. A signif-

icant improvement of prediction performance based on task-fMRI

(vs. resting-state fMRI) was only observed for the WM domain. Of

note, an isolated consideration of Pearson's correlation coefficient as

the sole index of model fit would have led us to different and appar-

ently overly optimistic conclusions. Hence, even with maximum

state–network–behavior compatibility, the relationship between FC

and behavior remains low. This study therefore emphasizes the need

for a critical assessment of prediction accuracies and suggests that

individual behavior cannot be successfully predicted based solely on

FC in task-specific networks.
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Methods 

Overview of references per task: 

Table S1: Behavioral Scores used in the prediction 

Domain “Same” / In-scanner 

task 

“Similar ” / Out-of-scanner 

task 

Working Memory / 

WM 

N-back (Barch et al., 2013) List sorting (NIH Toolbox List 

Sorting Working Memory 

Test; (Cognition Measures, 

n.d.) 

Theory of mind / 

SOCIAL 

Labelling of interaction 

between animated shapes as 

random or interaction (Castelli 

et al., 2000; Wheatley et al., 

2007) 

Compound score “Social 

Satisfaction” (Babakhanyan et 

al., 2018) composed of scores 

for: 

Friendship, loneliness, 

emotional support, 

instrumental support, and 

perceived rejection all from 



 

 

NIH Toolbox Emotion battery 

(Emotion Measures, n.d.; 

Salsman et al., 2013). 

Emotion Recognition / 

EMO 

Face-matching. Adapted by 

(Hariri et al., 2002) 

Penn Emotion Recognition 

Test (Gur et al., 2002, 2010) 

 

Network Delineation 

Network Delineation via Meta-Analysis 

As a second approach, to offer feature spaces that are entirely independent from the target, we 

performed three activation likelihood estimation (ALE) meta-analyses for each of the selected tasks: 

WM, SOCIAL, and EMO. WM and EMO were based on previous meta-analyses (WM: Rottschy et 

al., 2012;  EMO: Müller, Höhner, et al., 2018), but were extended by including recent publications 

(findings up to March 2020) and reduced to those tasks that matched the three tasks used in the 

HCP (i.e. only 2-back vs. 0 back experiments for WM, matching faces > matching shapes for 

EMO). For SOCIAL we performed our own literature search and coding procedure, following the 

guidelines for neuroimaging meta-analyses (Müller, Cieslik, et al., 2018) and including experiments 

that used a theory of mind task using animated shapes and report results of the interaction > random 

contrast. For each specific task, a meta-analysis was calculated using the ALE algorithm (details 

about the method see Müller, Cieslik, et al., 2018 and Kogler et al., 2020. From these resulting ALE 

maps, illustrating spatial convergence across experiments, we extracted all peak coordinates with a 

minimum distance of 15 mm using FSL. This resulted in three networks from the meta-analyses: 

MetaWM, MetaSOCIAL, and MetaEMO. The three meta-analytically defined networks will be 

openly available via the ANIMA-database (Reid et al., 2016; https://anima.fz-juelich.de/). 

 

Network-based prediction of individual behavior 

In addition to PLS, we used Support Vector Regression (SVR), Random Forest, kernel ridge 

regression algorithms for prediction. Lastly, we performed connectivity-based prediction modelling 

(CBPM; Finn et al., 2015; Shen et al., 2017) as a popular feature reduction technique with both PLS 

and kernel ridge as algorithms.  



 

 

For each algorithm we tuned the hyperparameters in an inner 5x-CV loop. For SVR we ran two 

different kernels: linear and RBF-kernel. For the linear kernel we tuned the regularization parameter 

C within [1e-6, 1e-5, 1e-4, 0.0005, 0.001, 0.005], with maximum 2000 iterations. For the RBF-

kernel we used the same regularization parameter range, but extended it by [0.01, 0.1, 1, 5, 10]. For 

the random forest prediction, the number of trees was set to 2000, with mean squared error as the 

criterion. The number of features was tuned within [0.14, 0.22, 0.33, 0.5, 0.75], with a minimum 

number of 5 samples required to be at a leaf node. For kernel ridge regression we tuned the lambdas 

in a range from 0-1000000. In the CBPM feature reduction, feature selection was based on Pearson 

correlation, retaining features with correlations below the significance threshold of 0.01 and 

grouping and summing them by positive and negative correlated features. We used the same 

hyperparameter tuning outlined above with the respective algorithms.  

For the significance tests, we used the Nadeau-Bengio machine learning adjusted t-test (Nadeau & 

Bengio, 1999): ! = 	
!
"∑ "#"

#$!

#(!"	&	
"%&'%
"%()*"

)()+
 . Within each cognitive domain, we first tested effects of state 

and network by averaging prediction performance of the respective other factors (i.e., averaging 

across networks and task when testing for state effects, and across state and task when testing for 

network effects). As domain specificity is an extension of state specificity, we here only averaged 

across networks for same and similar tasks, respectively. Significant effects (corrected for multiple 

comparisons) were then further assessed by comparing the respective individual prediction scores 

between each other. In particular, to assess i) state specificity we compared the prediction 

performance between states, while keeping network and task constant. That is, we only compared 

predictions between corresponding networks and tasks (e.g. comparing the prediction performance 

of “same” WM task score based on FC within Power nodes in resting state to the prediction 

performance of “same” WM task score based on FC within Power nodes in WM state). To assess ii) 

network specificity we compared the prediction performance between all networks, while keeping 

state and task constant (e.g. comparison of prediction performance of “same” WM score in resting 

state WM networks compared to “same” WM score in resting state in EMO networks). To assess 

iii) domain specificity we compared the prediction performance of “same” and “similar” task 

scores, while keeping state and network constant (e.g. comparison of prediction performance of 

“same” WM task score based on Power nodes in WM state to prediction performance of “similar” 

WM task score based on Power nodes in WM state). 

 



 

 

Results 

WM SOCIAL EMO 

 

Figure S1. Group-level activation map of WM-
task (p < 0.05 (cluster-level FWE-corrected 

threshold 0.05, cluster-forming threshold p < 
0.001) 

 

Figure S2. Group-level activation map of 
SOCIAL-task (cluster-level FWE-corrected 

threshold 0.05, cluster-forming threshold p < 
0.001) 

 

 

Figure S3. Group-level activation map of EMO-
task (cluster-level FWE-corrected threshold 0.05, 

cluster-forming threshold p < 0.001) 

 

Figure S4. Activation likelihood estimation map 
of WM meta-analysis (cluster-level FWE-
corrected threshold 0.05, cluster-forming 

threshold p < 0.001). 

 

Figure S5. Activation likelihood estimation map 
of SOCIAL meta-analysis (cluster-level FWE-

corrected threshold 0.05, cluster-forming 
threshold p < 0.001). 

 

 

Figure S6. Activation likelihood estimation map 
of EMO meta-analysis (cluster-level FWE-
corrected threshold 0.05, cluster-forming 

threshold p < 0.001). 

 

 

Table S2. List of peak coordinates for WM-NW, extracted with a minimum distance of 15 mm (from 
Fig. S1) 

Node X Y Z Brain Structure 
1 34 -58 -32 R Cerebellum Crus I 
2 46 -46 46 R Intraparietal Suclus 
3 -30 -60 -32 L Cerebellum VI 
4 -6 18 48 L Paracingulate Gyrus 
5 32 6 58 R Middle Frontal Gyrus 
6 -28 6 54 L Middle Frontal Gyrus 



 

 

7 -44 -52 46 L Intraparietal Sulcus 
8 40 34 28 R Middle Frontal Gyrus 
9 -8 -64 50 L Superior Parietal Lobule 

10 8 -68 54 R Precuneous Cortex 
11 34 22 4 R anterior Insular Cortex 
12 -32 50 16 L Frontal Pole 
13 -32 20 0 L anterior Insular Cortex 
14 -44 26 34 L Middle Frontal Gyrus 
15 38 -60 -48 R Cerebellum Crus II 
16 12 -76 -24 R Cerebellum Crus I 
17 38 48 18 R Frontal Pole 
18 -8 -80 -26 L Cerebellum Crus I 
19 -16 8 12 L Caudate 
20 18 10 16 R Caudate 
21 58 -30 -14 R posterior Middle Temporal Gyrus 
22 -8 -58 -54 L Cerebellum IX 
23 52 10 16 R Inferior Frontal Gyrus 
24 24 46 -14 R Frontal Pole 
25 -12 -92 2 L Occipital Pole 
26 10 2 6 R Thalamus 
27 0 -50 -18 Cerebellum I-IV 
28 0 -30 -4 L Thalamus 
29 8 -58 -54 R Cerebellum IX 
30 48 6 30 R Precentral Gyrus 
31 -24 50 -12 L Frontal Pole 
32 2 -12 16 R Thalamus 
33 0 -62 -36 Cerebellum Vermis VIIIb 
34 -56 -36 -14 L Middle Temporal Gyrus 
35 2 12 24 Cingulate Gyrus 
36 -2 -32 24 R Midcingulate Gyrus 
37 -44 -50 20 L Angular Gyrus 
38 28 -58 66 R Superior Lateral Occipital Cortex 
39 -14 -26 -32 Brain Stem 
40 20 -28 14 R Thalamus 
41 20 -96 -14 R Occipital Pole 
42 34 -90 -18 R Inferior Lateral Occipital Cortex 
43 16 28 -22 R Frontal Orbital Cortex 
44 24 -20 -6 R Hippocampus 
45 -22 -58 0 L Lingual Gyrus 

 
Table S3. List of peak coordinates for WM-Meta, extracted with a minimum distance of 15 mm 
(from Fig. S4) 

Node X Y Z Brain Structure 
1 -46 6 36 L Middle Frontal Gyrus 
2 -28 2 54 L Middle Frontal Gyrus 



 

 

3 -46 26 28 L Middle Frontal Gyrus 
4 -34 -54 48 L Intraparietal Suclus 
5 42 -46 44 R Intraparietal Sulcus 
6 10 -66 52 R Precuneous Cortex 
7 -2 18 48 L Pre-supplementary motor area 
8 -2 32 38 L Paracingulate Gyrus 
9 30 8 56 R Middle Frontal Gyrus 

10 32 24 -2 R anterior insular cortex 
11 44 34 26 R Middle Frontal Gyrus 
12 -32 -60 -34 L Cerebellum Crus I 
13 30 -60 -30 R Cerebellum IV 
14 -32 22 0 L anteior insular cortex 
15 -38 50 8 L Frontal Pole 
16 10 -76 -24 R Cerebellum IV 
17 -8 -76 -28 L Cerebellum Crus I 
18 -12 -68 60 L Superior Parietal Lobule 
19 -16 -2 16 L Caudate 

 
 
Table S4. List of peak coordinates for SOCIAL -NW, extracted with a minimum distance of 15 mm 
(from Fig. S2) 

Node X Y Z Brain Structure 
1 -12 -94 18 L Occipital Pole 
2 -22 -52 64 L Superior Parietal Lobule 
3 22 -50 68 R Superior Parietal Lobule 
4 18 -86 24 R Superior Lateral Occipital Cortex 
5 -10 -80 34 L Cuneal Cortex 
6 -18 -12 70 L Precentral Gyrus 
7 10 -80 -6 R Lingual Gyrus 
8 12 -74 38 R Precuneous Cortex 
9 16 -10 74 R Superior Frontal Gyrus 

10 26 -44 10 R Precuneous Cortex 
11 2 -24 30 R Posterior Cingulate Gyrus 
12 28 66 2 R Frontal Pole 
13 48 -56 46 R Inferior Parietal Lobules 
14 40 54 -6 R Lateral Frontal Orbital Cortex 
15 -26 68 4 L Frontal Pole 
16 0 16 10 Septum 
17 40 48 10 R Frontal Pole 
18 50 -2 -2 R Planum Polare 
19 -20 -26 76 L Precentral Gyrus 
20 -2 -10 70 L Supplementary Motor Area 
21 2 40 16 R Anterior Cingulate Gyrus 
22 -46 -10 60 L Precentral Gyrus 
23 -22 -76 4 L Intracalcarine Cortex 



 

 

24 42 38 32 R Middle Frontal Gyrus 
25 -12 26 6 L Caudate 
26 -48 -2 -4 L Planum Polare 
27 -8 -76 -4 L Lingual Gyrus 
28 38 14 8 R Frontal Operculum Cortex 
29 4 46 2 R Anterior Cingulate Gyrus 
30 -42 -26 62 L Postcentral Gyrus 
31 48 -8 52 R Precentral Gyrus 
32 20 -26 76 R Precentral Gyrus 
33 -62 2 20 R Precentral Gyrus 
34 -46 -36 16 L Inferior Parietal Lobule 
35 2 4 50 R Supplementary Motor Area 
36 14 26 8 R Caudate 
37 42 -22 62 R Postcentral Gyrus 
38 20 -30 24 R Thalamus 
39 2 -30 50 R Precentral Gyrus 
40 -42 -60 48 L Intraparietal Sulcus 
41 -8 -10 52 L Supplementary Motor Area 
42 -26 46 -12 L Medial  Frontal Obital Cortex 
43 66 -20 8 R posterior Superior Temporal Gyrus 
44 -42 12 -8 R Anterior Insular Cortex 
45 14 -16 46 R Precentral Gyrus 
46 -38 -14 24 L Parietal Opercular Cotex 
47 60 -2 38 R Precentral Gyrus 
48 -36 12 10 L Anterior Insular Cortex 
49 -28 44 36 L Frontal Pole 
50 36 -10 20 R Parietal Opercular Cortex 
51 30 22 60 R Middle Frontal Gyrus 
52 -12 18 -16 L Medial  Frontal Obital Cortex 
53 40 -66 8 R inferior Lateral Occipital Cortex 
54 12 48 -26 R medial frontal orbital cortex 
55 -14 32 -22 L Frontal Orbital Cortex 
56 2 -70 -20 Cerebellum Vermis VI 
57 44 -36 34 R Intraparietal Sulcus 
58 44 -32 18 R Inferior Parietal Lobule 
59 -32 -52 30 L Intraparietal Sulcus 
60 -46 32 38 L Middle Frontal Gyrus 
61 62 -26 -16 R posterior Middle Temporal Gyrus 
62 -46 -66 -38 L Cerebellum Crus I 
63 -64 -30 -14 L Posterior Middle Temporal Gyrus 
64 -26 -48 -50 L Cerebellum VIIIb 
65 -34 -34 -38 L Cerebellum VI 
66 48 -62 -38 R Cerebellum Crus I 

 



 

 

Table S5. List of peak coordinates for SOCIAL-Meta, extracted with a minimum distance of 15 mm 
(from Fig. S5) 

Node X Y Z Brain Structure 
1 58 -48 14 R Inferior Parietal Lobule 
2 -58 -46 16 L Supramarginal Gyrus 
3 62 -8 -16 R Middle Temporal Gyrus 
4 54 6 -22 R Temporal Pole 
5 10 62 22 R Frontal Pole 
6 -44 -58 -10 L Mid Fusiform Gyrus 
7 54 28 6 R Inferior Frontal Gyrus 
8 -54 26 10 L Inferior Frontal Gyrus 
9 8 -48 50 R Precuneous Cortex 

10 8 -54 36 R Precuneous Cortex 
11 -60 -8 -14 R Middle Temporal Gyrus 

 
 
Table S6. List of peak coordinates for EMO-NW, extracted with a minimum distance of 15 mm 
(from Fig. S3) 

Node X Y Z Brain Structure 
1 24 -96 -4 R Occipital Pole 
2 42 -48 -20 R Mid Fusiform Gyrus 
3 -20 -94 -12 L Occipital Pole 
4 38 -72 -14 R Posterior Fusiform Gyrus 
5 18 -4 -16 R Amygdala 
6 -18 -4 -18 L Amygdala 
7 -34 -86 -12 L inferior lateral Occipital Cortex 
8 -40 -54 -20 L Mid Fusiform Gyrus 
9 44 18 24 R Inferior Frontal Gyrus 

10 -4 -82 2 L Intracalcarine Cortex 
11 14 -32 -2 R Thalamus 
12 -8 -76 -38 L Cerebellum Crus II 
13 34 34 -14 R Frontal Pole 
14 32 -6 -38 R Parahippocampal Gyrus 
15 -40 18 26 L Middle Frontal Gyrus 
16 48 -64 18 R Superior Lateral Occipital Cortex 
17 -10 -32 -2 L Thalamus 
18 -34 -10 -32 L Parahippocampus 
19 14 -70 10 R Intracalcarine Cortex 
20 50 -42 14 R Posterior Superior Termporal Sulcus 
21 -24 -24 -8 L Hippocampus 
22 -36 30 -16 L Frontal Orbital Cortex 
23 -2 -2 -16 L Hypothalamus 
24 20 -38 -44 R Cerebellum X 
25 0 -52 -36 Cerebellum Vermis IX 



 

 

26 22 -52 4 R Lingual Gyrus 
27 -20 -36 -44 L Cerebellum X 
28 -50 -72 18 L Superior Lateral Occipital Cortex 
29 50 -10 -12 R Superior Temporal Gyrus 
30 62 -52 12 R Middle Temporal Gyrus 
31 60 -42 -4 R Middle Temporal Gyrus 
32 10 -78 -38 R Cerebellum Crus II 
33 2 52 -14 R Frontal Medial Cortex 
34 46 2 54 R Middle Frontal Gyrus 
35 -52 -46 12 L Posterior Superior Termporal Sulcus 
36 34 -56 44 R Intraparietal Sulcus 
37 -44 40 -2 L Frontal Pole 
38 -60 -40 -8 L Middle Temporal Gyrus 
39 4 -60 40 R Precuneus 
40 0 4 28 Midcingulate Cortex 
41 36 -74 24 R superior lateral Occipital Cortex 
42 4 58 32 R Frontal Pole 
43 2 38 50 R medial superior Frontal Gyrus 
44 52 28 -6 R Inferior Frontal Gyrus 
45 -30 -68 -48 L Cerebellum VIIb 
46 -52 -10 -12 L Superior Temporal Gyrus 
47 22 -68 24 R Parieto-occipital sulcus 
48 6 -12 6 R Thalamus 
49 24 -32 -20 R Parahippocampal Gyrus 
50 -40 2 54 L Middle Frontal Gyrus 
51 28 -24 60 R Precentral Gyrus 
52 -50 12 46 L Middle Frontal Gyrus 
53 22 0 6 R Putamen 
54 34 20 54 R Middle Frontal Gyrus 
55 8 -96 26 R Occipital Pole 
56 -4 -22 58 L Precentral Gyrus 
57 16 -26 72 R Precentral Gyrus 
58 2 4 -2 R Basal Forebrain 
59 -18 -92 -28 L Cerebellum Crus I 
60 8 6 12 R Caudate 
61 0 -86 36 Cuneal Cortex 
62 -14 -26 72 L Precentral Gyrus 
63 6 -40 68 R Postcentral Gyrus 
64 -64 -6 28 L Postcentral Gyrus 
65 -12 10 4 L Caudate 
66 66 -2 28 R Postcentral Gyrus 
67 -50 -10 32 L Precentral Gyrus 
68 -50 -28 -2 L Posterior Superior Temporal Gyrus 
69 -38 18 58 L Middle Frontal Gyrus 
70 18 -12 20 R Caudate 



 

 

71 -38 -18 40 L Postcentral Gyrus 
72 12 -10 78 R Superior Frontal Gyrus 
73 2 12 70 R Pre-Supplementary Motor Area 
74 -12 -40 66 L Postcentral Gyrus 
75 30 -22 12 R Posterior Insula 
76 -14 -2 16 L Caudate 
77 -18 30 60 L Superior Frontal Gyrus 
78 -30 -80 26 L Superior Lateral Occipital Cortex 
79 -58 -12 48 L Postcentral Gyrus 
80 34 -68 -50 R Cerebellum VIIb 
81 -60 -10 -36 L Anterior Inferior Temporal Gyrus 
82 -50 -68 46 L Superior Lateral Occipital Cortex 
83 -32 -60 44 L Intraparietal Sulcus 

 
Table S7. List of peak coordinates for EMO-Meta, extracted with a minimum distance of 15 mm 
(from Fig. S6) 

Node X Y Z Brain Structure 
1 20 -4 -18 R Amygdala 
2 28 -94 -6 R Occipital Pole 
3 -22 -6 -14 L Amygdala 
4 -22 -96 -6 L Occipital Pole 
5 42 12 28 R Inferior Frontal Gyrus 
6 -42 -54 -22 L Mid Fusiform Gyrus 
7 40 -50 -26 R Mid Fusiform Gyrus 
8 -18 -32 -2 L Thalamus 
9 -50 -48 4 L Posterior Superior Termporal Sulcus 

10 -54 18 32 L Middle Frontal Gyrus 
 
  



 

 

 

 
Figure S7. WM Network Nodes. 

 
Figure S8. WM Meta-Analysis Network Nodes. 

 
 

 
Figure S9. SOCIAL Network Nodes.  

Figure S10. SOCIAL Meta-Analysis Network 
Nodes 

 
 

 
Figure S11. EMO Network Nodes 

 
Figure S12. EMO Meta-Analysis Network 
Nodes 

 
 



 

 

  
Figure S13. Whole-brain Power nodes. 

 
  



 

 

 
 

Figure S14) Heatmap of FC within the WM network averaged across participants in the four different states. FC reflects the Fisher 
Z- transformed Pearson correlation coefficients between all network nodes. Anatomical labels and coordinates of the nodes can be 
found in table S2-, node numbers are in the same order as in the table. 



 

 

 

 
 

Figure S15) Heatmap of FC within the WM-meta network averaged across participants during the four different states. FC reflects 
the Fisher Z- transformed Pearson correlation coefficients between all network nodes. Anatomical labels and coordinates of the 
nodes can be found in table S2-, node number correspond to the node number in the table. 



 

 

 
 

Figure S16) Heatmap of FC within the SOCIAL network averaged across participants during the four different states.. FC reflects 
the Fisher Z- transformed Pearson correlation coefficients between all network nodes. Anatomical labels and coordinates of the 
nodes can be found in table S3, node number correspond to the node number in the table. 

 

 



 

 

 
 

Figure S17) Heatmap of FC within the SOCIAL-meta network averaged across participants during the four different states.. FC 
reflects the Fisher Z- transformed Pearson correlation coefficients between all network nodes. Anatomical labels and coordinates of 
the nodes can be found in table S3, node number correspond to the node number in the table. 

 



 

 

 
 

Figure S18) Heatmap of FC within the EMO network averaged across participants during the four different states.. FC reflects the 
Fisher Z- transformed Pearson correlation coefficients between all network nodes. Anatomical labels and coordinates of the nodes 
can be found in table S4, node number correspond to the node number in the table. 

 

 



 

 

 
 

Figure S19) Heatmap of FC within the EMO-meta network averaged across participants during the four different states.. FC reflects 
the Fisher Z- transformed Pearson correlation coefficients between all network nodes. Anatomical labels and coordinates of the 
nodes can be found in table S4, node number correspond to the node number in the table. 

 

 



 

 

 
 

Figure S20) Heatmap of FC within the Power nodes during the four different states averaged across participants. FC reflects the 
Fisher Z- transformed Pearson correlation coefficients between all network nodes. 

  



 

 

 

 
Figure S21) PLS 100 x leave-30%-out CV 

Boxplots of the distribution of prediction accuracies from PLS 100 x leave-30%-out CV for WM, 
SOCIAL, and EMO domain, for coefficient of determination (COD) / model fit, RMSE and 
Pearson’s r. 

 
  



 

 

 
Figure S22) PLS 100 x leave-30%-out CV – trimmed time series 

Boxplots of the distribution of prediction accuracies from PLS 100 x leave-30%-out CV – 
trimmed time series for WM, SOCIAL, and EMO domain, for coefficient of determination 
(COD) / model fit, RMSE and Pearson’s r. 

  



 

 

 
Figure S23) Random Forest 100 x leave-30%-out CV 

Boxplots of the distribution of prediction accuracies from Random Forest 100 x leave-30%-out 
CV for WM, SOCIAL, and EMO domain, for coefficient of determination (COD) / model fit, 
RMSE and Pearson’s r. 

 

  



 

 

 
Figure S24) SVR – linear kernel - 100 x leave-30%-out CV 

Boxplots of the distribution of prediction accuracies from SVR – linear kernel - 100 x leave-30%-
out CV for WM, SOCIAL, and EMO domain, for coefficient of determination (COD) / model fit, 
RMSE and Pearson’s r. 

 

  



 

 

 
Figure S25) SVR – rbf kernel - 100 x leave-30%-out CV 

Boxplots of the distribution of prediction accuracies from SVR – RBF kernel - 100 x leave-30%-
out CV for WM, SOCIAL, and EMO domain, for coefficient of determination (COD) / model fit, 
RMSE and Pearson’s r. 

 

  



 

 

 
Figure S26) Kernel Ridge Regression - 100 x leave-30%-out CV 

Boxplots of the distribution of prediction accuracies from Kernel Ridge Regression - 100 x leave-
30%-out CV for WM, SOCIAL, and EMO domain, for coefficient of determination (COD) / 
model fit, RMSE and Pearson’s r. 

 

  



 

 

 
Figure S27) CBPM – with PLS - 100 x leave-30%-out CV 

Boxplots of the distribution of prediction accuracies from CBPM – with PLS - 100 x leave-30%-
out CV for WM, SOCIAL, and EMO domain, for coefficient of determination (COD) / model fit, 
RMSE and Pearson’s r. 

 

  



 

 

 
Figure S28) CBPM – with ridge regression - 100 x leave-30%-out CV 

Boxplots of the distribution of prediction accuracies from CBPM – with ridge regression - 100 x 
leave-30%-out CV for WM, SOCIAL, and EMO domain, for coefficient of determination (COD) 
/ model fit, RMSE and Pearson’s r. 

 

  



 

 

 
Figure S29. PLS 100 x leave-30%-out CV - sorted by network size 

Boxplots of the distribution of prediction accuracies from PLS 100 x leave-30%-out CV for WM, 
SOCIAL, and EMO domain, for coefficient of determination (COD) / model fit, RMSE and 
Pearson’s r – sorted by network size from large to small: Power (264 nodes), EMO-NW (84 
nodes), SOCIAL-NW (66 nodes), WM-NW (49 nodes), WM-meta-NW (19 nodes), SOCIAL-
meta-NW (11 nodes) to EMO-meta-NW (10 nodes) 
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6 Summary and general discussion 
With	 this	 dissertation	 I	 aimed	 to	 investigate	 how	 inter-individual	 differences	 in	
cognitive	and	socio-affective	processes	are	related	to	structural	brain	anatomy	and	
functional	connectivity	and	how	heritability	and	task	state	impact	brain–behaviour	
relationships	 as	 influencing	 factors.	 First,	 I	 investigated	 the	 phenotypic	 and	
morphological	association	of	cognition	and	affect	in	the	brain,	as	well	as	their	shared	
genetic	 variance.	 I	 then	 assessed	 the	 predictability	 of	 task	 states	 and	 network	
specificity.	

With	my	first	study	I	was	able	to	show	phenotypic	relationships	with	both	affect	and	
cognition	 and	 brain	 structure	 in	 the	 left	 superior	 frontal	 cortex.	 Decomposing	 the	
phenotypic	correlations	into	genetic	and	environmental	components	showed	that	the	
associations	were	accounted	for	by	shared	genetic	effects	between	the	traits.	Yet,	my	
second	study	revealed	that	individual	behaviour	can	only	moderately	be	explained	by	
network	interactions.	The	results	indicate,	that	interactions	within	a	priori	networks	
are	less	predictive	than	global	effects.	However,	a	slight	benefit	of	predictions	based	
on	FC	from	task	versus	resting	state	was	observed	for	performance	in	the	cognitive	
domain,	indicating	state	specificity.	

	

6.1 Cognition and affect – integrated dimensions 

Intelligence	 or	 cognition	 is	 a	 very	 well-studied	 and	 delineated	 concept.	 Reliable	
measures	 have	 been	 developed	 (Akshoomoff	 et	 al.,	 2013;	 Heaton	 et	 al.,	 2014),	
capturing	 different	 aspects	 of	 cognition	 such	 as	 ]luid	 reasoning	 and	 crystallized	
knowledge,	 including	 executive	 function,	 working	 memory,	 processing	 speed,	
attention,	episodic	memory,	and	language.	In	the	]irst	study,	I	used	these	measures	to	
analyse	 crystallised	 and	 ]luid	 intelligence,	 assessed	 with	 the	 National	 Institute	 of	
Health	 (NIH)	 toolbox	 for	 Assessment	 of	 Neurological	 and	 Behavioral	 Function®	
(neuroscienceblueprint.nih.gov).	 This	 measurement	 has	 been	 shown	 to	 capture	
interindividual	differences	 reliably	 (Akshoomoff	 et	 al.,	 2013;	Gershon	et	 al.,	 2013).	
However	 in	 the	 second	study,	 to	 investigate	 the	 in]luence	of	 task	 states,	 I	used	 the	
cognitive	process	of	working	memory,	which	in	this	dataset	was	assessed	with	a	2-
back	task.	Unfortunately,	the	simplicity	of	the	task	leads	to	a	ceiling	effect,	where	many	
participant	 solve	 the	 task	 successfully,	 leading	 to	 a	 low	 variance.	 This	 has	 been,	
however,	 mitigated	 by	 introducing	 reaction	 time	 into	 an	 inverse	 ef]iciency	 score.	
Nevertheless	 the	moderate	predictability	of	 task	states	could	be	related	 to	 the	 low	
variance	within	both	the	cognitive	score,	as	well	as	a	within	the	task	states.	

Emotion	or	affect	has	gained	scienti]ic	attention	 later	and	has	seen	struggles	being	
investigated	due	to	the	elusive	nature	(Barrett,	2012;	Lindquist	et	al.,	2012).	However,	
emotion	and	trait	affect	in]luence	what	we	notice,	learn	(Mather	&	Sutherland,	2011;	
Tyng	et	al.,	2017),	remember	(Cahill	&	McGaugh,	1998;	Mather	&	Sutherland,	2011)	
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and	even	how	we	decide	(Bechara	et	al.,	2000).	Several	tests	have	been	developed	to	
assess	emotion	and	affect.	 In	the	]irst	study,	self-reports	were	used	to	capture	trait	
affect	from	the	Emotion	Battery	of	the	NIH	Toolbox	(Pilkonis	et	al.,	2013;	Salsman	et	
al.,	2013,	2014).	For	the	second	study	an	emotional	face	matching	task	was	performed,	
which	has	been	developed	and	tested	to	reliably	activate	the	amygdala.	However,	only	
little	variance	of	 individual	emotion	processing	abilities	 is	captured.	This	has	been,	
again,	 mitigated	 by	 introducing	 reaction	 time	 into	 an	 inverse	 ef]iciency	 score.	
Nevertheless,	it	would	be	interesting	to	see	a	similar	study	setup	to	investigate	state	
and	network	speci]icity,	however	with	different,	more	complex	tasks.	

Despite	 cognition	and	affect	being	 seen	as	 separate	 constructs	 for	a	 long	 time	and	
therefore	being	studied	separately,	an	integration	is	inevitable.	This	can	be	seen	with	
the	word	“emotional	intelligence”,	the	ability	to	use	and	regulate	emotions.	But	also	
with	social	cognition	or	 theory	of	mind,	which	has	been	 investigated	 in	the	second	
study,	showing	a	combination	of	both	emotional	interpretation	and	social	inference.		

While	cognitive	functions	have	traditionally	been	attributed	to	higher-order	cortical	
regions—such	as	the	lateral	and	medial	prefrontal,	temporal,	and	parietal	cortices—
affective	 processes	 have	 historically	 been	 associated	 with	 evolutionarily	 older,	
subcortical	 structures,	 including	 the	 amygdala,	 basal	 ganglia,	 and	 hypothalamus.	
However,	as	outlined	above,	recent	research	increasingly	investigates	the	integration	
of	affect	and	cognition	across	both	cortical	and	subcortical	systems,	challenging	the	
historical	dichotomy	between	emotional	and	cognitive	brain	networks.	 In	 line	with	
that,	both	my	studies	showed	on	the	one	hand	a	convergence	phenotypically,	as	well	
as	in	the	superior	frontal	gyrus	(study	1),	as	well	as	no	network-speci]icity	and	only	
moderate	state-speci]icity	 for	cognition	(study	2),	 suggesting	potential	overlapping	
networks	and	functions.	

	

6.1.1 Brain morphology and heritability (study 1) 

The	modular	approach	on	cognition	and	affect	has	already	been	challenged	by	several	
researchers	such	as	(Barrett	et	al.,	2011;	Lindquist	et	al.,	2012;	Pessoa,	2008),	arguing,	
that	cognition	and	emotion	are	deeply	intertwined	in	both	brain	and	behaviour.	In	this	
dissertation,	 by	 using	 anatomic	 data	 and	 twin	 modelling,	 I	 build	 on	 this	 by	
demonstrating	that	cognitive	and	affective	traits	are	not	only	theoretically	connected,	
but	 phenotypically	 and	 genetically	 associated,	 pointing	 toward	 a	 shared	 neural	
infrastructure	 in	 the	 superior	 frontal	 gyrus.	 This	 convergence	 underlines	 previous	
]indings	 (Barrett	 &	 Satpute,	 2013),	 while	 furthering	 this	 integration	 through	
heritability	 modelling,	 showing	 a	 shared	 phenotypic	 and	 genetic	 association	 with	
cortical	thickness	in	the	left	superior	frontal	cortex.	This	convergence	indicates	the	
prefrontal	 cortex	 as	 not	 just	 essential	 for	 cognitive	 function,	 but	 a	 hub	 where	
emotional	 and	 cognitive	 traits	 are	 co-constructed.	 The	 discovery	 of	 a	 brain	 region	
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simultaneously	relating	to	cognitive	and	affective	traits,	while	 further	driving	these	
associations	genetically,	strongly	indicates	that	cognition	and	emotion	are	integrated	
within	the	brain.	Therefore,	this	biologically	stable	marker	has	further	implications	
for	understanding	trait-level	vulnerabilities,	also	in	mental	health.		

	

6.1.2 Functional connectivity and predictability of task states (study 2) 

The	 ]inding	of	a	 shared	phenotypic	and	genetic	association	between	cognition	and	
trait	 affect	 in	 the	 superior	 frontal	 cortex	 is	 rooted	 in	 quanti]iable	 structural	
morphology	 providing	 trait-level	 and	 heritability	 insights.	 In	 a	 next	 step,	 I	 put	 a	
stronger	focus	on	the	effects	of	state	and	the	relationship	to	brain	function,	in	contrast	
to	brain	structure.	Thus,	these	results	led	me	to	develop	the	research	of	cognition	and	
emotion	 into	 a	 more	 dynamic	 approach,	 by	 complementing	 it	 with	 functional	
connectivity	in	resting-state	und	task-based	fMRI.	

Unlike	 structural	 markers,	 functional	 connectivity	 re]lects	 state-dependent	 and	
network-based	 dynamics.	 Therefore,	 in	 my	 second	 study	 I	 explored	 whether	
functional	 connectivity	 could	 predict	 inter-individual	 differences	 within	 cognition	
(represented	 through	 WM),	 and	 emotion,	 complemented	 with	 social	 cognition.	
Moving	 from	structural	morphology	and	heritability	 to	 functional	 connectivity	and	
machine	learning	prediction,	allowed	me	to	investigate	the	in]luence	of	state	on	brain–
behaviour	relationships.	

Here,	 I	 found	 that,	overall,	FC	patterns	showed	 limited	ability	 to	predict	 individual	
behavioural	performance.	The	predictive	power	was	modest,	though	comparable	to	
other	studies	applying	a	similar	approach	(Dubois	et	al.,	2018;	Greene	et	al.,	2018;	Ooi	
et	al.,	2022).	However,	slightly	better	predictions	were	achieved	using	task-based	FC	
compared	 to	 resting-state	 FC,	 particularly	 in	 the	working	memory	 domain,	 which	
extend	 results	 from	previous	 studies,	 showing	 that	 FC	 from	 task-based	 fMRI	 carry	
more	 behaviourally	 relevant	 and	 individual	 information	 (Finn	 et	 al.,	 2015;	 Finn	&	
Bandettini,	 2021;	 Greene	 et	 al.,	 2018).	 Despite	 the	 modest	 predictive	 power,	 the	
stronger	prediction	performance	of	task-based	compared	to	resting-state	FC	supports	
the	idea	that	contextual	activation	enhances	signal	relevance	by	being	more	re]lective	
of	 individual	 differences.	 While	 in	 my	 study	 this	 was	 only	 observed	 for	 working	
memory,	 it	 stands	 to	 investigate,	whether	 an	 improvement	 could	 be	 seen	within	 a	
larger	sample	(through	increase	of	statistical	power)	or	with	different	task	capturing	
the	emotion	domain	(through	capturing	more	emotional	variance).	

	

6.1.3 Complementary results 

With	these	two	studies	I	investigated	how	the	behavioural	and	brain	morphometric	
data	 provide	 trait-level	 and	 heritable	 foundations,	 revealing	 a	 stable	 hub	 of	
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convergence	between	cognition	and	affect	 in	 the	 superior	 frontal	 cortex.	 Further,	 I	
approached	 functional	 connectivity	 with	 machine	 learning	 predictions	 offering	
insights	into	large-scale	patterns	in	cognitive	and	emotional	functioning.	Here,	task-
based	connectivity	yielded	better	prediction	performance	(compared	to	resting-state	
FC,	 in	working	memory	prediction)	 implying	 the	 importance	of	 state	 and	network	
interactions	 within	 interindividual	 variation.	 However,	 no	 signi]icant	 difference	 in	
prediction	 performance	 between	 the	 different	 domains	 could	 be	 observed,	 which	
could	 potentially	 indicate	 individual	 variability	 similarities	 in	 FC	 of	 cognitive	 and	
socio-affective	processing.		

Encompassing	 both	 studies,	 I	 applied	 several	 analyses,	 leveraging	 the	 power	 of	
multimodal	 integration.	With	 the	analyses	on	both	 structural	 and	 functional	data	 I	
offer	complimentary	insights.	While	the	analysed	structure	in	combination	with	the	
heritability	analysis	reveals	stable	traits	and	genetic	boundaries	within	which	one	can	
change	and	develop,	functional	analysis	reveals	how	a	person	behaves	and	feels	in	the	
moment.	Therefore,	my	 results	 show	 that	 cognition	 and	 affect	 are	both	 stable	 and	
]lexible	within	our	behaviour,	as	well	as	our	brain,	revealing	insights	important	for	our	
understand	within	the	layered	inter-individual	brain–behaviour	relationships.	With	
this	 dissertation	 I	 present	 the	 results	 of	 a	 genetically	 driven	 overlap	 between	
cognition	and	affect	in	the	superior	frontal	cortex,	while	the	influence	of	state	showed	
moderate	predictability	only	in	cognition	but	none	for	the	socio-affective	domain.	This	
is	in	line	with	the	latest	research	endeavours	and	important	for	future	individualised	
neuroscience.	In	sum,	by	examining	structure	and	function	and	investigating	different	
influencing	factors	of	brain–behaviour	relationships	one	gets	a	more	nuanced	picture	
about	the	integration	of	cognition	and	affect	in	the	human	brain.		

	

6.2 Limitations and opportunities 

Despite	 the	 faceted	 and	 broad	 approach,	 there	 are	 some	 limitations	 to	 be	
acknowledged.	First	of	all,	both	studies	used	the	openly	available	Human	Connectome	
Project.	Openly	available	large	datasets	such	as	the	HCP	used	here,	or	the	Adolescent	
Brain	Cognitive	Development	Study	(ABCD),	and	the	UK	Biobank	are	tremendously	
valuable	and	have	transformed	and	furthered	research	in	neuroscience.	They	play	an	
important	 role	 in	 the	 standardization	 of	 protocols	 and	 data	 collection,	 and	 in	 the	
promotion	 of	 reproducibility	 through	 transparency,	 replicability	 and	 validation	 of	
]indings.	 Further,	 the	 varied	 data	 sampling	 within	 these	 datasets	 allows	 for	 the	
multimodal	 analysis	 of	 complex	 research	 questions	 as	 done	 here.	 Importantly,	 the	
large	 sample	 sizes	 increase	 statistical	 power,	 through	 which	 robust	 correlations	
(study	1)	and	the	application	machine	learning	models	(study	2)	are	only	possible.	

While	the	HCP	is	a	densely	sampled	dataset	enabling	the	research	of	complex	research	
questions,	 it	 also	 shows	 only	 a	 small	 fraction	 of	 the	 population:	 the	 age	 range	 is	
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between	22	and	37	years,	with	all	healthy	subjects	from	the	USA,	with	a	slightly	higher	
IQ	than	the	population	average.	While	this	sample	was	chosen	consciously	in	an	effort	
to	establish	potential	brain–behaviour	relationships	within	a	healthy	and	constrained	
sample,	it	anyhow	constrains	the	results	to	only	a	section	of	the	population.	For	both	
studies	it	would	be	bene]icial	to	repeat	the	analyses	in	different	samples	in	order	to	
test	for	generalisability.	However,	these	very	speci]ic	research	questions	addressed	in	
this	dissertation	could	for	now	unfortunately	only	be	answered	with	the	HCP	dataset,	
as	they	allow	for	twin-based	heritability	testing	(study	1),	and	further	offer	a	wide	
variety	of	 in-	and	out-of-scanner	 tests	and	questionnaires	allowing	 for	 the	analysis	
and	 comparison	 of	 FC	 predictability	 between	 different	 behaviour	 performances	
(study	2).	Yet,	the	extensive	testing	comes	at	the	cost	of	potentially	rather	super]icial	
and	short	tasks.	This	includes	the	tasks	performed	in	the	scanner	as	well	as	outside.	
Most	of	the	task	developed	for	fMRI	induce	a	robust	activation	of	targeted	brain	areas	
instead	 of	 allowing	 for	 strong	 interindividual	 variability.	 Further,	 tasks	 performed	
both	 inside	 and	 outside	 the	 scanner	 are	 often	 optimized	 for	 stable	 group-average	
effects.	In	both	studies	this	needs	to	be	factored	into	the	interpretation	of	the	]indings.	

Furthermore,	the	widespread	use	of	these	datasets	increases	the	risk	of	false	positive	
]indings.	 Since	 numerous	 researchers	 are	 conducting	 a	 multitude	 of	 independent	
analyses	within	 these	datasets,	 statistically	signi]icant	 results	may	arise	by	chance.	
Publication	 bias	 adds	 to	 this	 problem,	 as	 positive	 ]indings	 are	 more	 likely	 to	 be	
published,	 skewing	 the	 literature	 towards	 overstated	 effects.	 Therefore,	 it	 was	
especially	important	to	me	to	publish	the	results	of	the	second	paper	as	transparently	
as	 possible,	 without	 overstating	 the	 ]indings	 and	 acknowledging	 the	 moderate	
prediction	performance.		

As	mentioned	above,	it	would	be	valuable	to	test	the	generalisability	of	these	]indings	
using	independent	samples.	Since	there	are	so	far	no	suitable	large	openly	available	
datasets,	it	could	be	interesting	to	test	the	]indings	in	smaller	datasets,	as	well	as	in	
harmonised	data	from	several	smaller	datasets.	Such	a	data	pool	could	also	be	used	to	
inform	 synthetic	 data.	 Synthetic	 data	 could	 offer	 an	 exciting	 opportunity	 to	 train	
machine	learning	models,	especially	in	areas	where	there	is	notoriously	insuf]icient	
data	 (J.	 Wang	 et	 al.,	 2023),	 such	 as	 rare	 diseases,	 diseases	 with	 dif]iculties	 to	 be	
scanned	in	an	MRI	scanner,	or	areas	where	data	privacy	protection	is	an	issue	(Vaden	
et	al.,	2020).	

Further,	 it	 is	 important	 to	 mention	 that	 although	 multimodal	 analyses	 are	 highly	
promising,	 technical	 nuances	 and	 methodological	 limitations,	 and	 therefore	
meaningful	 interpretation,	 depends	 on	 having	 (or	 inquiring)	 domain-speci]ic	
expertise.	This	has	been	especially	evident	in	the	work	on	the	second	paper	applying	
machine	 learning	 for	 behavioural	 performance	 prediction	 based	 on	 FC.	 Several	
landmark	 papers	 used	 oversimpli]ied	 assessments	 of	 prediction	 performance,	
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painting	 a	more	 optimistic	 picture	 of	 the	 achievements.	 For	my	publication	 it	was	
therefore	important	to	offer	a	critical	and	transparent	assessment	of	the	]indings.	

Moreover,	 potential	 avenues	 to	 develop	 these	 ]indings	 presented	 here,	 despite	 the	
multimodal	 approach	 within	 the	 papers,	 are	 manifold.	 Within	 the	 ]irst	 paper	 the	
research	focus	between	brain–behaviour	relationships	and	the	genetic	drivers,	could	
be	 extended	 to	 investigate	 the	 heritability	 of	 functional	 task	 activation	 and	
connectivity.	Based	on	studies	performed	in	the	same	dataset,	it	would	be	expected	to	
be	in	line	with	our	current	]indings	and	show	that	not	only	brain	structure,	but	also	
FC	 is	 heritable	 (Colclough	 et	 al.,	 2017;	 Ge	 et	 al.,	 2017).	 However,	 a	 potential	
convergence	 between	 cognition	 and	 affect	 and	 FC	 has	 not	 been	 investigated.	
Furthermore,	 in	 the	 second	 paper,	 only	 FC	 was	 used	 to	 predict	 behavioural	
performance.	While	one	of	the	goals	of	the	second	paper—to	improve	interpretability	
of	 machine	 learning	 features—would	 be	 hindered,	 it	 would	 nevertheless	 be	
interesting	 to	 see	 if	 a	 combination	between	 structural	 and	 functional	data	or	 even	
genetic	or	EEG	data	could	improve	prediction	performance.	Finally,	since	the	network	
used	 in	 the	second	paper	were	based	on	a	priori	de]ined	delineations,	 future	work	
could	 adopt	 and	 compare	 different	 individualised	 parcellations	 (such	 as	 different	
approaches	developed	by	 (Beckmann	et	 al.,	 2005;	Kong	et	 al.,	 2019;	Mueller	et	 al.,	
2013;	 D.	Wang	 et	 al.,	 2015)).	Within	 the	 scope	 of	my	 research,	 I	 have	 applied	 the	
approach	 by	 (Kong	 et	 al.,	 2019).	 However,	 preliminary	 results	 revealed	 only	 a	
marginal	 improvement	 in	 prediction	 performance	 for	 the	 speci]ic	 networks	 and	
behavioural	 targets.	 Therefore,	 I	 assume	 that	 even	 individualised	 a	 priori	 de]ined	
networks	 may	 not	 signi]icantly	 improve	 prediction	 performance	 and	 therefore	
interpretability	of	relevant	features.	Instead,	machine-learning	appropriate	post-hoc	
analyses	 of	whole-brain	 FC	 predictions	 (Tian	&	 Zalesky,	 2021)	might	 offer	 greater	
potential	to	identify	biologically	relevant	features.	

	

6.3 Relevance and impact 

The	 research	 and	 investigation	 of	 cognition	 and	 affect	 is	 not	 only	 of	 theoretical	
interest,	but	 is	essential	 in	everyone’s	daily	 life,	as	well	as	fundamental	 in	different	
mental	 disorders.	Many	 cognitive	 and	neural	 processes	 are	 expected	 to	 operate	 in	
similar	ways	in	both	healthy	individuals	and	those	with	neurological	or	psychiatric	
disorders.	With	my	dissertation,	using	a	healthy	and	constrained	sample,	I	aimed	to	
apply	 different	 analyses	 to	 contribute	 new	 insights	 for	 precision	 neuroscience,	 by	
providing	a	deeper	understanding	of	the	interplay	between	cognition	and	affect,	and	
individual	variability	in	brain	and	behaviour.	

Therefore,	in	line	with	previous	studies	showing	structural	association	with	cognition	
and	emotion	in	the	superior	frontal	cortex	(Engen	&	Anderson,	2018;	Okon-Singer	et	
al.,	2015),	I	extend	these	]indings	in	study	1	by	providing	evidence	for	shared	genetic	
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effects	 between	 the	 traits.	 It	 therefore	 reinforces	 the	 importance	 of	 integrated	
theories	(Barrett,	2012;	Pessoa,	2008)	and	provides	a	basis	for	investigating	shared	
risk	 factors	 in	 mental	 health	 disorders.	 Further,	 study	 2	 extended	 the	 already	
extensive	 research	 of	 task-based	 FC	 compared	 to	 resting-state	 FC	 comparison	 for	
behavioural	prediction	within	the	cognitive	domain	(e.g.	(Avery	et	al.,	2020;	Greene	et	
al.,	2018;	Jiang	et	al.,	2020)),	by	the	socio-affective	domain.	Although	the	prediction	
performance	 was	 moderate,	 an	 additional	 important	 contribution	 was	 the	
transparent	 acknowledgment	 and	 reporting	 of	 these	 limitations.	 Moreover,	 the	
undetected	 differences	 in	 prediction	 performance	 between	 unrelated	 FC	 and	
behavioural	 score	 (e.g.	 prediction	 of	working	memory	 score	 from	FC	 yielded	 from	
emotion	recognition	task),	might	also	suggest	that	cognitive	and	emotional	processes	
are	 interconnected	 at	 the	 neural	 level	 to	 allow	 for	 clearly	 separable	 predictive	
patterns.	

Finally,	in	order	to	improve	interpretability	of	machine	learning	features,	I	de]ined	a	
priori	networks	based	on	meta-analyses	and	from	large	individual	task-fMRI	studies.	
Therefore,	I	computed	GLM	for	all	tasks,	and	further	conducted	three	separate	meta-
analyses	 for	 working-memory	 (n-back	 task),	 emotion	 recognition	 and	 social	
cognition.	 These	 meta-analytically	 de]ined	 networks	 are	 openly	 available	 via	 the	
ANIMA-database	 (Reid	 et	 al.,	 2016);	 https://anima.fz-juelich.de/studies/	
Kraljevic_NetStateSpec_2024).	

	

6.4 Conclusion 

In	 sum,	with	my	dissertation	 I	 provide	 an	 integrative	model	 of	 how	 cognition	 and	
affect	 relate	 to	 the	 human	 brain.	 By	 combining	 insights	 from	 structural	 anatomy,	
heritability	modelling,	and	functional	connectivity-based	prediction,	my	results	reveal	
that	these	traditionally	distinct	domains	share	common	neural	substrates,	while	also	
being	dynamically	shaped	through	context-sensitive	activation	and	connectivity.	

The	identi]ication	of	the	superior	frontal	cortex	as	a	heritable	anatomical	hub	for	both	
cognitive	and	affective	traits	emphasizes	the	stability	of	this	 integration	at	the	trait	
level.	In	contrast,	the	moderate,	yet	comparable,	predictability	of	task-based	FC	shows	
the	in]luence	of	brain	state	and	network	dynamics	in	shaping	individual	behaviour,	
while	also	promoting	a	transparent	and	critical	assessment	of	multi-modal	analyses.	
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svojoj	djeci	omoguće	dobar	život.	Hvala	najboljoj	sestri	na	svijetu:	Ivi	Kraljević.	Vi	ste	
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