001043187 001__ 1043187
001043187 005__ 20250624202314.0
001043187 037__ $$aFZJ-2025-02795
001043187 041__ $$aEnglish
001043187 1001_ $$0P:(DE-Juel1)130749$$aKang, Kyongok$$b0$$eCorresponding author$$ufzj
001043187 1112_ $$aSoftComp Annual Meeting 2025$$cVenice, Italy$$d2025-05-19 - 2025-05-22$$gSoftComp 2025$$wItaly
001043187 245__ $$aMorphological Transitions in Block Copolymer Surface Micelles via Solvent Immersion and the Effective Protein-salt Binding$$f2025-05-21 -
001043187 260__ $$c2025
001043187 3367_ $$033$$2EndNote$$aConference Paper
001043187 3367_ $$2DataCite$$aOther
001043187 3367_ $$2BibTeX$$aINPROCEEDINGS
001043187 3367_ $$2ORCID$$aLECTURE_SPEECH
001043187 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1750750030_10827$$xAfter Call
001043187 3367_ $$2DINI$$aOther
001043187 502__ $$cUniv. of Venice
001043187 520__ $$aIn this combined talk, first a comprehensive library of nanopatterns derived from a single block copolymer (BCP) exhibit wide range of structures from simple spheres to more intricate forms, including split micelles, flower-like clusters, toroids, disordered arrays, and other unique morphologies [1]. Using polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) surface micelles deposited on SiOx surfaces, a distinctive transformation in morphology is triggered by direct immersion in various solvents. By varying the solvent type, BCP molecular weight, substrate interactions, and temperature, the thermodynamic and kinetic parameters are also affected by these driving morphological transitions. Furthermore, the work highlights the practical utility of BCP nanopatterns as templates for fabricating metal nanostructures via direct solvent immersion. This method provides a versatile and efficient strategy for producing diverse nanostructures, with potential applications in the fields of nanolithography, catalysis, electronics, membranes, plasmonics, and photonics. Secondly, the protein crystallization (kinetics) and liquid−liquid phase separation (LLPS) are to be presented, showing the effective protein (lysozyme)-salt (NaSCN) binding in the phase diagram, with distinct crystal morphologies, by single- and multi-arm crystals, flower-like crystal structures, whiskers, and sea-urchin crystals [2]. Crystal morphologies exhibit significant variations in changes in protein and salt concentrations. Moreover, the adsorption of SCN− ions to the surface of lysozyme is effectively enhanced by applying the weak AC electric field in protein crystallization processes.Reference:[1] Seokyoung Bae, Dong Hyup Kim*, and So Youn Kim*, Small, 20, 2311939 (2024)[2] D. Ray, M. Madani, J. K. G. Dhont, F. Platten and K. Kang*, Phys. Chem. Lett. 15, 8108−8113 (2024).
001043187 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001043187 909CO $$ooai:juser.fz-juelich.de:1043187$$pVDB
001043187 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130749$$aForschungszentrum Jülich$$b0$$kFZJ
001043187 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001043187 9141_ $$y2025
001043187 920__ $$lyes
001043187 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
001043187 980__ $$atalk
001043187 980__ $$aVDB
001043187 980__ $$aI:(DE-Juel1)IBI-4-20200312
001043187 980__ $$aUNRESTRICTED