001043189 001__ 1043189
001043189 005__ 20250804202237.0
001043189 0247_ $$2doi$$a10.1016/j.future.2025.107935
001043189 0247_ $$2ISSN$$a0167-739X
001043189 0247_ $$2ISSN$$a1872-7115
001043189 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02797
001043189 0247_ $$2WOS$$aWOS:001512546300001
001043189 037__ $$aFZJ-2025-02797
001043189 041__ $$aEnglish
001043189 082__ $$a004
001043189 1001_ $$0P:(DE-Juel1)177985$$aRüttgers, Mario$$b0$$ufzj
001043189 245__ $$aTowards a widespread usage of computational fluid dynamics simulations for automated virtual nasal surgery planning
001043189 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2025
001043189 3367_ $$2DRIVER$$aarticle
001043189 3367_ $$2DataCite$$aOutput Types/Journal article
001043189 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1753430183_27505
001043189 3367_ $$2BibTeX$$aARTICLE
001043189 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001043189 3367_ $$00$$2EndNote$$aJournal Article
001043189 520__ $$aEfficient computational approaches are crucial for advancing computational fluid dynamics (CFD)-based automated planning in nasal surgeries, such as septoplasties and turbinectomies. This study introduces a hybrid lattice-Boltzmann and level-set method to address the trade-off between computational cost and automation. By interpolating geometry variations in discrete steps between pre-surgical and target states, the approach achieves computational efficiency with only 21 surface variations per intervention. Previous methods rely on more costly coupling strategies, such as reinforcement learning or thermal modeling, which may still be appropriate for complex planning scenarios involving multiple intervention sites or thermal flow analysis. In contrast, the presented method reduces complexity while retaining key predictive capabilities, making it particularly suitable for widespread, time-sensitive clinical use focused on a single surgical intervention. Fluid mechanical metrics, including pressure loss and volume flow rate balance, are evaluated alongside tissue removal volume to recommend optimized surgical plans. Case studies on three patients demonstrate tissue savings of 12–25% without compromising key flow parameters. Additionally, a non-linear regression model trained on as few as 11 CFD simulations predicts pressure loss and flow rates with errors below 4%, and reduces computational costs by 50%. The proposed framework represents a significant step toward making CFD-based virtual nasal surgery planning more accessible and practical.
001043189 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001043189 536__ $$0G:(EU-Grant)101136269$$aHANAMI - Hpc AlliaNce for Applications and supercoMputing Innovation: the Europe - Japan collaboration (101136269)$$c101136269$$x1
001043189 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001043189 7001_ $$0P:(DE-HGF)0$$aWaldmann, Moritz$$b1
001043189 7001_ $$0P:(DE-HGF)0$$aHübenthal, Fabian$$b2
001043189 7001_ $$0P:(DE-HGF)0$$aVogt, Klaus$$b3
001043189 7001_ $$0P:(DE-HGF)0$$aTsubokura, Makoto$$b4
001043189 7001_ $$0P:(DE-HGF)0$$aLee, Sangseung$$b5
001043189 7001_ $$0P:(DE-Juel1)165948$$aLintermann, Andreas$$b6$$eCorresponding author
001043189 773__ $$0PERI:(DE-600)2020551-X$$a10.1016/j.future.2025.107935$$gVol. 174, p. 107935 -$$p107935$$tFuture generation computer systems$$v174$$x0167-739X$$y2026
001043189 8564_ $$uhttps://juser.fz-juelich.de/record/1043189/files/1-s2.0-S0167739X25002304-main.pdf$$yOpenAccess
001043189 8767_ $$d2025-08-04$$eHybrid-OA$$jDEAL
001043189 909CO $$ooai:juser.fz-juelich.de:1043189$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
001043189 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177985$$aForschungszentrum Jülich$$b0$$kFZJ
001043189 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
001043189 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
001043189 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165948$$aForschungszentrum Jülich$$b6$$kFZJ
001043189 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001043189 9141_ $$y2025
001043189 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-17
001043189 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-17
001043189 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-17
001043189 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001043189 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFUTURE GENER COMP SY : 2022$$d2024-12-17
001043189 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-17
001043189 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-17
001043189 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001043189 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFUTURE GENER COMP SY : 2022$$d2024-12-17
001043189 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-17
001043189 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-17
001043189 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001043189 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001043189 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001043189 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001043189 920__ $$lyes
001043189 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001043189 9801_ $$aFullTexts
001043189 980__ $$ajournal
001043189 980__ $$aVDB
001043189 980__ $$aUNRESTRICTED
001043189 980__ $$aI:(DE-Juel1)JSC-20090406
001043189 980__ $$aAPC