001     1043189
005     20250804202237.0
024 7 _ |a 10.1016/j.future.2025.107935
|2 doi
024 7 _ |a 0167-739X
|2 ISSN
024 7 _ |a 1872-7115
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02797
|2 datacite_doi
024 7 _ |a WOS:001512546300001
|2 WOS
037 _ _ |a FZJ-2025-02797
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Rüttgers, Mario
|0 P:(DE-Juel1)177985
|b 0
|u fzj
245 _ _ |a Towards a widespread usage of computational fluid dynamics simulations for automated virtual nasal surgery planning
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1753430183_27505
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Efficient computational approaches are crucial for advancing computational fluid dynamics (CFD)-based automated planning in nasal surgeries, such as septoplasties and turbinectomies. This study introduces a hybrid lattice-Boltzmann and level-set method to address the trade-off between computational cost and automation. By interpolating geometry variations in discrete steps between pre-surgical and target states, the approach achieves computational efficiency with only 21 surface variations per intervention. Previous methods rely on more costly coupling strategies, such as reinforcement learning or thermal modeling, which may still be appropriate for complex planning scenarios involving multiple intervention sites or thermal flow analysis. In contrast, the presented method reduces complexity while retaining key predictive capabilities, making it particularly suitable for widespread, time-sensitive clinical use focused on a single surgical intervention. Fluid mechanical metrics, including pressure loss and volume flow rate balance, are evaluated alongside tissue removal volume to recommend optimized surgical plans. Case studies on three patients demonstrate tissue savings of 12–25% without compromising key flow parameters. Additionally, a non-linear regression model trained on as few as 11 CFD simulations predicts pressure loss and flow rates with errors below 4%, and reduces computational costs by 50%. The proposed framework represents a significant step toward making CFD-based virtual nasal surgery planning more accessible and practical.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a HANAMI - Hpc AlliaNce for Applications and supercoMputing Innovation: the Europe - Japan collaboration (101136269)
|0 G:(EU-Grant)101136269
|c 101136269
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Waldmann, Moritz
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hübenthal, Fabian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Vogt, Klaus
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tsubokura, Makoto
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Lee, Sangseung
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Lintermann, Andreas
|0 P:(DE-Juel1)165948
|b 6
|e Corresponding author
773 _ _ |a 10.1016/j.future.2025.107935
|g Vol. 174, p. 107935 -
|0 PERI:(DE-600)2020551-X
|p 107935
|t Future generation computer systems
|v 174
|y 2026
|x 0167-739X
856 4 _ |u https://juser.fz-juelich.de/record/1043189/files/1-s2.0-S0167739X25002304-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1043189
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177985
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)165948
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-17
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FUTURE GENER COMP SY : 2022
|d 2024-12-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-17
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b FUTURE GENER COMP SY : 2022
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-17
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Elsevier 09/01/2023
|2 APC
|0 PC:(DE-HGF)0125
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21