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 A B S T R A C T

Efficient computational approaches are crucial for advancing computational fluid dynamics (CFD)-based 
automated planning in nasal surgeries, such as septoplasties and turbinectomies. This study introduces a hybrid 
lattice-Boltzmann and level-set method to address the trade-off between computational cost and automation. By 
interpolating geometry variations in discrete steps between pre-surgical and target states, the approach achieves 
computational efficiency with only 21 surface variations per intervention. Previous methods rely on more 
costly coupling strategies, such as reinforcement learning or thermal modeling, which may still be appropriate 
for complex planning scenarios involving multiple intervention sites or thermal flow analysis. In contrast, 
the presented method reduces complexity while retaining key predictive capabilities, making it particularly 
suitable for widespread, time-sensitive clinical use focused on a single surgical intervention. Fluid mechanical 
metrics, including pressure loss and volume flow rate balance, are evaluated alongside tissue removal volume 
to recommend optimized surgical plans. Case studies on three patients demonstrate tissue savings of 12–25% 
without compromising key flow parameters. Additionally, a non-linear regression model trained on as few as 
11 CFD simulations predicts pressure loss and flow rates with errors below 4%, and reduces computational 
costs by 50%. The proposed framework represents a significant step toward making CFD-based virtual nasal 
surgery planning more accessible and practical.
1. Introduction

Computational fluid dynamics (CFD) simulations are experiencing 
an increasing popularity for evaluating surgeries of respiratory diseases. 
In [1], it was stated that neither rhinometry nor computed tomography
(CT) can adequately quantify nasal airflow pattern changes following 
surgery. The study demonstrated the feasibility of assessing changes 
in nasal airflow dynamics following partial middle turbinate resection 
using CFD techniques. Flow simulations were conducted for quasi-
steady laminar nasal airflow with the Fluent©1 flow solver and meshes 
with 1.7–1.9 million cells. The 3D models of the pre- and post-surgical 
nasal cavities were reconstructed from CT data. It was found that the 
partial middle turbinate resection results in a shift of regional airflow 
towards the area of the removal with a resultant decreased airflow 
velocity, decreased wall-shear stress, and increased local air pressure. 

∗ Corresponding author.
E-mail address: a.lintermann@fz-juelich.de (A. Lintermann).

1 https://www.ansys.com/products/fluids/ansys-fluent.

Similarly, in [2], the fluid mechanical effects of miniscrew-assisted 
rapid maxillary expansion (MARME) treatment on respiratory flow and 
the breathing capability were analyzed numerically. In addition to 
the fluid mechanical quantities mentioned in the previous study, the 
heating capability was investigated with a thermal lattice-Boltzmann
(LB) method. The results confirmed that the respiratory resistance and 
the average wall-shear stress decrease after the treatment, whereas the 
heating capability deteriorates. In [3], the steady inspiratory airflow of 
eight patients with chronic nasal obstruction was studied pre- and post-
operatively by analyzing the heat transfer from the mucous membrane. 
Therefore, CFD calculations based on patient-specific cone beam CT im-
ages were performed. The patients had enlarged inferior turbinates and 
radiofrequency thermal ablation treatment was applied to the anterior 
parts of the inferior turbinates on both sides. The OpenFOAM [4] flow 
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solver was used for CFD calculations with a laminar and incompressible 
flow assumption and meshes containing between 4–6 million cells. It 
was found that the heat transfer from the anterior parts of the inferior 
turbinates, where surgical interventions were performed, decreased 
significantly. In [5,6], the physical quantities used to evaluate surgeries 
were extended by relative humidity, an important indicator for the 
air conditioning ability of the nose [7]. Both studies reported streams 
of much colder air in the nasopharynx following turbinate reduction, 
which matched with each patient’s perception.

Apart from estimating an already conducted surgery’s outcome, re-
cently, CFD simulations have also been employed for virtually planning 
nasal surgeries. In [8], virtual surgeries and post-operative results were 
compared to the pre-operative breathing condition for two patients 
with nasal obstructions requiring septoplasty. By adding air voxels 
or performing millimetric translations in the segmentation files of CT 
data, new shapes were created aiming to simulate a realistic surgical 
procedure. No statistical difference between the results of the virtual 
surgery and the post-operative flow regarding heat flux, wall-shear 
stress, total pressure, and temperature were observed. In contrast, 
pre-operative measurements were significantly different for the heat 
flux, total pressure, and the temperature, but not for the wall-shear 
stress. In [9], CFD and 3D virtual surgery techniques were used to 
enhance the precision of nasal surgery and to optimize patients’ future 
surgery outcomes. Laminar CFD simulations were carried out with 
OpenFOAM using meshes that consist of around 9 million tetrahedral 
cells. The virtual surgeries were conducted using an integrated mod-
ule within Flowgy©,2 a software enabling 3D virtual surgery to be 
performed directly on the patient’s 3D model. It was found that both 
integration of CFD and 3D virtual surgery techniques in otolaryngology 
can substantially reduce variability in surgical planning and decision-
making, ultimately leading to improved patient outcomes. In [10], the 
implications of congenital nasal pyriform aperture stenosis (CNPAS) on 
neonatal nasal airflow were investigated with CFD simulations. The 
virtual surgery was conducted by manual modifications of the seg-
mentation file, resulting in a geometry that mirrors a post-operatively 
corrected patient. In the CNPAS model, airflow dynamics underwent 
discernible alterations, with a marked pressure drop around the nasal 
valve and diminished velocities.

The aforementioned studies about virtual surgery planning have in 
common that only single virtually planned 3D models based on manual 
modifications of the segmentation files generated from the pre-surgical 
CT images were investigated. In contrast, the work in [11] proposed a 
method that goes beyond the analysis of single modifications. It con-
siders multiple geometry variations that are between the pre-surgical 
3D model and a surgeon’s initial idea for a desired surgical outcome. 
Two surgical interventions were analyzed, i.e., the straightening of a 
deviated septum near the nostrils and the removal of a bony spur 
further inside the nose. The pre-surgical 3D model was generated with 
the help of the machine learning (ML)-based pipeline described in [12], 
where convolutional neural networks (CNNs) segment the upper air-
ways and prepare in- and outflow regions for boundary condition 
prescription. To obtain the geometry that represents the surgeon’s ini-
tial idea, the pre-surgical segmentation file was modified by the surgeon 
using the open-source software 3DSlicer [13] and then by-passed into 
the pipeline in [12]. The geometry variations were computed with a 
level-set (LS) approach that interpolates between the pre-surgical state 
and the state based on the surgeon’s initial idea. The approach allowed 
to monitor the simulation results while the pre-surgical state was 
iteratively adjusted towards the surgeon’s initial idea. It was reported 
that in the course of the virtual surgery the nasal resistance was reduced 
by 25.3%, whereas the heating capability was retained despite the 
geometry modification.

2 https://www.flowgy.com.
2 
The method in [11] has two drawbacks: (i) It is expensive, since 
the LS field needs to be computed for each time step. In the current 
study, it is observed that computing a time step of the coupled LB-LS 
approach can take a factor of 2.5 longer than using the LB method 
alone. (ii) If a user prefers to monitor changes at more than one 
location, they can only be monitored sequentially. However, there 
might be a combination of changes at both locations that yields a better 
surgical outcome than the outcome of the states that are monitored 
when changing the surfaces sequentially, one after another.

In [14], both challenges were addressed by coupling the LB method 
to a reinforcement learning (RL) algorithm. First, the RL agent can 
change the LS field with discrete actions in a pre-defined time step 
interval, e.g., every 25,000 time steps. Second, if two separate surgery 
locations are investigated, the RL agent learns to find the optimal 
combination of changes at the two locations based on feedback in terms 
of the time-averaged pressure loss and temperature increase between 
the inlets (nostrils) and outlet (pharynx) after each modification. The 
method was demonstrated for two patients, the first one suffering from 
a deviated septum and a bony spur, and the second one from enlarged 
turbinates. The simulation domain of the first patient was resolved by 
about 110 ⋅ 106 cells, and the domain of the second patient by about 
220 ⋅ 106 cells, using mesh resolutions of 𝛥𝑥 = 0.1mm to accurately 
resolve narrow channels and thin boundary layers [15,16]. For the first 
time, large-scale CFD simulations with grids on the order of hundreds 
of million cells were coupled to an RL algorithm. For equal weights 
on the pressure loss and temperature increase, the algorithm proposed 
a slightly weaker correction of the deviated septum, compared to the 
surgeon’s plan. It also suggested to keep the bony spur in case of the 
first patient. In case of the second patient, it recommended to nearly 
completely remove the inferior turbinate and moderately reduce the 
middle turbinate. However, training only in a single RL environment 
entails the risk of ending up in local optima, and the number of possible 
surface variations and the large grids make this automated approach 
computationally expensive.

To overcome these limitations, the method described in [14] was 
improved in [17] by training the RL agents in multiple environments 
in parallel and replacing some of the expensive CFD computations 
by predictions of a Gaussian process regression (GPR) model. The 
former allows the agents to share their experiences in pre-defined 
intervals and jointly search for the global optimum. For the latter, the 
automated virtual surgery procedure is subdivided into two stages. In 
the first stage, the GPR model does not interact and feedback for the 
RL algorithm is solely provided by the CFD solver [14]. When a pre-
defined number of CFD computations have been computed, they are 
used as training data for the GPR model in the second stage. That is, 
whenever the RL agent explores a new geometry variation, the GPR 
model is trained with the so far computed CFD data. With the help of 
the uncertainty quantification of the GPR model it is decided whether 
to use the GPR prediction or a new CFD computation to determine the 
pressure loss and temperature increase. It was found that employing a 
parallel RL algorithm improves the reliability of the surgery planning 
tool in finding the global optimum. However, parallel training also led 
to a larger number of geometry variations that need to be computed 
by the CFD solver. This overhead was compensated by replacing some 
of the computations with the GPR algorithm, i.e., around 6% of the 
computations could be saved without significantly degrading the pre-
dictions’ accuracy. Nevertheless, the approach is still expensive and can 
be taken into consideration for specific patients that need to undergo 
complex surgical interventions, i.e., at two or more separate locations 
inside of the nasal cavity. There is still a need for a cheaper automated 
approach that is similarly accurate and can be employed to a wide set 
of applications, e.g., for receiving first estimates of a surgical plan for 
a single surgical intervention location.

The current study presents such a method. That is, fluid mechanical 
properties are computed based on converged simulations in discrete 
interpolation steps only for single interventions. If an intervention 

https://www.flowgy.com
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involves geometry changes in several locations, they are carried out 
simultaneously. The low number of surface variations makes the cou-
pling to the parallel RL algorithm obsolete, which is why it is excluded 
here. Furthermore, instead of expensive thermal computations that 
can increase computational costs by a factor of 2, the investigation 
focuses on the pressure loss between the inflow (nostrils) and outflow 
(pharynx) regions, and balanced volume flow rates through the left and 
right nasal passages.

It should be noted that thermal effects such as volume expansion 
due to density changes or viscosity changes are not negligible. Their 
physiological relevance has been addressed in detail in [2,11,14,17]. 
The corresponding tools remain available and can be employed when 
a deeper analysis is required, e.g., including thermal flow and opti-
mization for two separate surgery locations. In contrast, the presented 
method aims to reduce complexity while retaining key predictive capa-
bilities, making it particularly suitable for a widespread, time-sensitive 
clinical use that focuses on single surgical interventions. Ultimately, the 
choice of whether or not to include temperature should depend on the 
specific needs and constraints of the patient or physician.

It is further investigated, how replacing some of the CFD sim-
ulations by predictions from non-linear regression models can save 
computational resources and, hence, speed up surgery planning. This 
investigation includes the analysis of interpolations between the pre-
surgical geometry and the geometry based on the surgeon’s initial plan, 
generated by the regression model.

An important factor that has not yet been sufficiently studied is 
the marginal benefit of a planned surgical intervention. Whereas the 
previously mentioned studies focus on finding geometry variations that 
guarantee optimal fluid mechanical parameters, the volume of the 
removed tissue has not yet been taken into consideration. The proposed 
method considers the marginal benefit of, e.g., further decreasing pres-
sure loss, by setting it into relation to the additional tissue that needs 
to be removed. For example, it might be the case that the benefit from 
an acceptable pressure loss to the global optimum is small, such that an 
additional removal of tissue is not justifiable. A surgeon’s responsibility 
is to remove as less tissue as possible, since her/his actions are mostly 
irreversible. This is analyzed for three patients in this work.

The manuscript is structured as follows. The medical data of the 
patients are detailed in Section 2, and the computational methods are 
presented in Section 3. Section 4 shows the results of the automated 
virtual surgery planning, Section 5 provides a summary and discussion, 
and Section 6 concludes the study.

2. Medical data

Anonymized CT data of three patients are used. The patients gave 
informed consent for inclusion of the data in the current study. The 
first patient suffers from a deviated septum and a bony spur (Case 
A), as shown in Fig.  1, which has been investigated in [11,14,17]. 
The bounds of a surgeon’s initial idea of the desired post-operative 
result are illustrated by grey 3D regions inside of the transparent-blue 
representations of the nasal cavity. In the close-up views, representative 
cross-sections of the nasal cavity are juxtaposed to their corresponding 
CT images. Apart from the boundary of the pre-surgical state, which 
is visualized by the black contour, Fig.  1 also shows the boundary of 
the geometry based on a surgeon’s initial idea of the post-operative 
result, highlighted by the red contour. This idea is an extension of the 
right nasal passage alongside a reduction of the left nasal passage in 
the vicinity of the nostrils, and an extension of the left nasal passage 
at the middle turbinate downstream. The CT data of the first patient 
are composed of 119 axial slices with 512 × 512 pixels each. The pixel 
spacing is 0.5mm, and the space between the axial slices is 0.7mm. The 
patient has been treated at Klinika Headline, Riga, Latvia, and the CT 
data have been obtained by a PHILLIPS Brilliance 16 CT scanner at 
Diamed ARS MEDICAL, Riga, Latvia.
3 
Fig. 1. The nasal cavity of the first patient, suffering from a deviated septum and a 
bony spur (Case A), which was investigated in [11,14,17]. The bounds of a surgeon’s 
initial idea of the desired post-operative result are illustrated by the grey 3D regions 
inside of the transparent-blue representations of the nasal cavity. The close-ups (a) and 
(b) on the right side correspond to the lines depicted in the 3D images above. They 
illustrate boundaries at representative cross-sectional areas, which are juxtaposed to the 
corresponding pre-surgical CT images below. The black and red contours represent the 
boundaries of the pre-surgical structure and the geometry based on a surgeon’s initial 
idea of the desired post-operative result.

The second patient has been diagnosed enlarged inferior and middle 
turbinates (Case B), illustrated in Fig.  2, which has been analyzed 
in [14,17]. The bounds of a total turbinectomy, a complete removal 
of the turbinates, are illustrated by the grey 3D regions inside of the 
transparent-blue representations of the nasal cavity. A representative 
cross-section of the nasal cavity is juxtaposed to its corresponding CT 
image. The boundary of the pre-surgical state and the total turbinec-
tomy are highlighted by the black and red contours. The CT recordings 
of the second patient have 103 axial slices, again with 512 × 512 pixels 
each. The pixel spacing is 0.326mm, and the space between the axial 
slices is 1.0mm. The patient has been treated at HNOmedic, Bornheim, 
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Fig. 2. The nasal cavity of the second patient, suffering from enlarged inferior and 
middle turbinates (Case B), which was investigated in [14,17]. The bounds of a total 
turbinectomy are illustrated by the grey 3D regions inside of the transparent-blue repre-
sentations of the nasal cavity. The close-up on the left side in (a) illustrates boundaries 
at a representative cross-sectional area, which is juxtaposed to the corresponding pre-
surgical CT image on the right. The black and red contours represent the pre-surgical 
structure and the geometry based on the total turbinectomy. The location of the cross-
section is displayed above in the 3D images.

Germany, and the CT data have been obtained by a SIEMENS Somatom 
Emotion 16 CT scanner at Radiomedicum, Frankfurt, Germany.

The third patient suffers from a deviated septum (Case C), as shown 
in Fig.  3. Similar to the other patients, the bound of a surgeon’s initial 
idea of the desired post-operative result are illustrated by the grey 
3D regions inside of the transparent-blue representations of the nasal 
cavity, a representative cross-section of the nasal cavity is juxtaposed to 
its corresponding CT image, and the boundary of the pre-surgical state 
and the surgeon’s initial idea of the post-operative result are stressed 
by the black and red contours. The CT recordings of the second patient 
have 146 axial slices, again with 512 × 512 pixels each. The pixel 
spacing is 0.465mm, and the space between the axial slices is 0.7mm. 
The patient has been treated at Uniklinikum Aachen, Germany, and the 
CT data have been obtained by a SIEMENS Somatom Definition AS CT 
scanner.
4 
Fig. 3. The nasal cavity of the third patient, suffering from a deviated septum that 
blocks the right nasal passage (Case C). The bounds of a surgeon’s initial idea of 
the desired post-operative result are illustrated by the grey 3D regions inside of the 
transparent-blue representations of the nasal cavity. The close-up on the left side of (a) 
illustrates boundaries at a representative cross-sectional area, which is juxtaposed to the 
corresponding pre-surgical CT image on the right. The black and red contours represent 
the boundary of the pre-surgical structure and the geometry based on a surgeon’s initial 
idea of the desired post-operative result. The location of the cross-section is displayed 
above in the 3D images.

For all patients, the 3D model of the pre-surgical upper airway 
is generated based on the digital imaging and communications in 
medicine (DICOM) files of the CT data with the following steps:

1. Pre-filtering of the CT images to better identify the air–tissue 
interface

2. Segmentation of the upper airway by a 2D CNN
3. Segmentation of the nostrils by a 3D CNN
4. Generating a 3D nasal cavity model from the segmentation
5. Identifying inflow areas and their normal vectors by a 2D CNN
6. Identifying the outflow area and its normal vector with the 
centerline at the pharynx

7. Cutting the 3D model at the inflow and outflow regions and close 
the holes with flat surfaces
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8. Distributing the 3D model’s triangles to inflow, wall, and outflow 
regions

Pre-filtering is done with a convolutional filter for edge detection [18] 
and a gradient anisotropic diffusion filter [19] to reduce image noise 
without removing edges. The CNNs for steps 2 and 3 have been trained 
in a supervised manner to segment all voxels that represent the human 
airway. Two steps are required, since the most challenging segmenta-
tion task is separating ambient air from the airway at the nostrils. In 
step 4, a triangulated 3D model is generated with a marching cubes 
algorithm [20], which is smoothed by a windowed sync filter [21]. In 
steps 5–7, flat surfaces of the inflow and outflow regions are generated. 
This is necessary to provide clear extrapolation directions at the inlets 
and outlet for the boundary conditions described in Section 3.2. The 
final step 8 is required to automatically define different boundary 
segments and start the simulation. The complete pipeline and more 
details are described in [12].

For the first and the third patient, surgery planning of a septoplasty 
is investigated, and for the second patient, the surgical potential of a 
turbinectomy is analyzed. More details about the medical data, types 
of surgeries, and motivation from a medical background are given 
in [11,14,17].

3. Computational methods

The numerical methods used to simulate the respiratory flows are 
described in Section 3.1, the flow and boundary conditions for the 
CFD simulations are presented in Section 3.2, and the LS approach for 
obtaining surface variations is explained in Section 3.3. This is followed 
by providing details on the non-linear regression model in Section 3.4.

3.1. Numerical flow simulations

Unstructured, hierarchical, uniformly-refined Cartesian meshes are 
created using the massively parallel mesh generator from multiphysics 
Aerodynamisches Institut Aachen (m-AIA) [22]. The mesh generation 
relies on an octree structure formed through iterative subdivision of 
an initial cube that encloses the region of interest (ROI) [23], i.e., in 
this case the nasal cavity. Starting with the initial cube, successive 
refinements divide each cube into eight sub-cubes over a specified 
number of refinement levels. The octree structure emerges from the 
parent–child relationships between cubes and sub-cubes. Cells outside 
the ROI are removed to optimize the mesh.

Below a specific refinement level, the cells are ordered along a Z-
curve [24]. Above this level, the domain is partitioned using a Hilbert 
space-filling curve decomposition method [25]. The Hilbert curve pre-
serves spatial locality, meaning that adjacent cells in the computational 
domain are likely assigned to the same process due to the curve’s self-
similar structure. As a result, neighboring subdomains tend to reside 
on the same compute node or on adjacent nodes, enhancing process 
locality within and across nodes. Since the distribution is balanced 
from the beginning and stays fixed, node imbalance does not appear. In 
any case, when adaptive mesh refinement is required, node imbalance 
is treated by an efficient load-balancing strategy presented in [26]. 
The final mesh is efficiently stored in Network Common Data Form
(NetCDF) format using parallel I/O routines [27].

CFD simulations are conducted with the LB method of the m-AIA 
solver framework. It is well known that LB methods feature some 
major advantages over finite-element or finite-volume methods when 
highly intricate geometries are considered [28]. Since the main idea 
of this study is to demonstrate a tool that can be employed efficiently 
on a widespread basis, the functionalities that have been developed 
in [11,14,17] need to be reduced to save computational efforts. For this 
purpose, the computation of the temperature distribution is neglected 
and the simulation only considers the velocity and pressure fields, 
5 
Table 1
Geometry and simulation parameters.
 Case 𝑅𝑒𝑃 𝑑𝑃 [m] 𝐴𝑃 [m2] 𝐴𝑙 [m2] 𝐴𝑟 [m2] No. of cells 
 A 960 11.45 ⋅ 10−3 20.13 ⋅ 10−5 13.56 ⋅ 10−5 15.10 ⋅ 10−5 110 ⋅ 106  
 B 766 16.19 ⋅ 10−3 32.44 ⋅ 10−5 6.04 ⋅ 10−5 7.13 ⋅ 10−5 220 ⋅ 106  
 C 1390 10.54 ⋅ 10−3 11.63 ⋅ 10−5 7.06 ⋅ 10−5 5.08 ⋅ 10−5 185 ⋅ 106  

which is sufficient to estimate the condition of a patient and potential 
surgery outcomes.

The LB module solves the discretized form of the Boltzmann equa-
tion with the Bhatnagar–Gross–Krook (BGK) approximation of the 
right-hand side collision process [29], i.e., 
𝑓𝑖(𝒙 + 𝝃𝒊𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓𝑖(𝒙, 𝑡) = −𝜔(𝑓𝑖(𝒙, 𝑡) − 𝑓 𝑒𝑞

𝑖 (𝒙, 𝑡)) (1)

is solved for the particle probability distribution functions (PPDFs) 𝑓𝑖
at neighboring fluid cells at locations 𝒙 + 𝝃𝒊𝛿𝑡. They are functions of 
the location vector 𝒙 = (𝑥1, 𝑥2, 𝑥3)𝑇 , the discrete molecular velocity 
vector 𝝃𝒊 = (𝜉1, 𝜉2, 𝜉3)𝑇 , and the time and time increment 𝑡 and 𝛿𝑡. 
The collision frequency is expressed by 𝜔. The advantage over the 
methods in [11,14,17], where a second set of PPDFs is used to model 
the temperature in form of a passive scalar transport equation, is that 
the exclusion of the temperature distribution requires to only solve for 
one set of PPDFs, i.e., reducing the computational effort.

The discretization is based on the D3Q27 model [30], with 𝑖 ∈
{1,… , 𝑄} directions in 3D for 𝑓𝑖 and 𝑄 = 27. The D3Q27 model 
is chosen because it conserves rotational invariance in laminar flow 
and produces much smaller errors in transitional or turbulent regimes 
compared to other three-dimensional lattice discretization models such 
as the D3Q19 model [31,32]. The discrete Boltzmann–Maxwellian 
distribution function is defined as 

𝑓 𝑒𝑞
𝑖 = 𝑤𝑐𝑖𝜌

⎛

⎜

⎜

⎝

1 +
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+ 1
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𝑐2𝑠

)2

− 𝒖 ⋅ 𝒖
2𝑐2𝑠

⎞

⎟

⎟

⎠

, (2)

with the isothermal speed of sound 𝑐𝑠 = 1∕
√

3, density 𝜌, fluid velocity 
vector 𝒖 = (𝑢, 𝑣,𝑤)𝑇  with the velocity components 𝑢, 𝑣, and 𝑤 in 
the 𝑥1-, 𝑥2- and 𝑥3-directions, and weight coefficients 𝑤𝑐𝑖 [30]. The 
macroscopic variables 𝜌 and 𝒖 can be computed by

𝜌 =
𝑄
∑

𝑖=1
𝑓𝑖, (3)

𝜌𝒖 =
𝑄
∑

𝑖=1
𝝃𝑖 ⋅ 𝑓𝑖. (4)

The static pressure 𝑝𝑠𝑡𝑎𝑡 is obtained from the density by 𝑝𝑠𝑡𝑎𝑡 = 𝑐2𝑠 𝜌.

3.2. Flow and boundary conditions

For the simulations, the following boundary conditions are em-
ployed. At the inlets, i.e., at the nostrils of the nasal cavity, the equation 
of Saint-Venant and Wantzel is applied [15] to compute 𝜌, and the 
velocity is extrapolated from the inner cells. At the pharynx outlet, 
the pressure is iteratively adapted to fit a prescribed volume flux of 
𝑉̇𝑃 = 250mL∕s [15], yielding steady inflow conditions at inspiration. 
For the first patient, this corresponds to a Reynolds number of 𝑅𝑒𝑃 =
(𝑉̇𝑃 ⋅ 𝑑𝑃 )∕(𝐴𝑃 ⋅ 𝜈) = 960, calculated from the hydraulic diameter of the 
pharynx 𝑑𝑃 = 11.45 ⋅ 10−3 m, the pharyngeal cross-sectional area 𝐴𝑃 =
20.13 ⋅ 10−5 m2, and the kinematic viscosity of air 𝜈 = 1.63 ⋅ 105 m2∕s. 
For the second patient it is 𝑅𝑒𝑃 = 766 with 𝑑𝑃 = 16.19 ⋅ 10−3 m and 
𝐴𝑃 = 32.44 ⋅ 10−5 m2, and for the third patient it is 𝑅𝑒𝑃 = 1390 with 
𝑑𝑃 = 10.54 ⋅ 10−3 m and 𝐴𝑃 = 11.63 ⋅ 10−5 m2. The resulting simulation 
parameters are summarized in Table  1. The velocity is extrapolated 
from the inner cells. An interpolated bounce-back scheme is used to 
satisfy the no-slip condition at the inner walls of the nasal cavity [33].
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The simulation domains of the three patients are resolved by about 
110 ⋅ 106, 220 ⋅ 106, and 185 ⋅ 106 cells, using mesh resolutions of 
𝛥𝑥 = 0.1 mm to accurately resolve narrow channels and thin boundary 
layers. The decision is based on the mesh refinement study presented 
in [15], which was conducted with the D3Q27 model of m-AIA’s LB 
method. Simulation results for nasal cavity flows with a cell size of 
𝛥𝑥 = 0.093569 mm and 92.6 ⋅106 cells were compared to the results with 
a cell size of 𝛥𝑥 = 0.046784 mm and 724⋅106 cells. The same volume flux 
at the pharynx of 𝑉̇𝑃 = 250mL∕s as in the current study was prescribed. 
The various resolutions resulted in only a small difference of the total 
pressure loss of 2.1‰ and 0.8‰ for the left and right nasal cavity. For 
a more detailed comparison of velocity profiles and the power spectral 
density for the different resolutions, the reader is referred to [15].

3.3. Level-set approach for varying the surface

Automated surgery planning is realized with a coupled LB-LS ap-
proach. In the LS method, the geometry is represented by the signed 
distance function 𝜑, the LS field. That is, for each cell of the com-
putational mesh, the minimum distance to the geometry surface is 
calculated. If the cell center is located outside the geometry, the value 
of the corresponding cell is multiplied by −1, resulting in 𝜑 < 0. 
Hence, the surface of the geometry is represented by 𝜑 = 0. To perform 
a virtual surgery, three LS fields are stored. The first LS field 𝜑1 is 
calculated using the linear interpolation [11] 
𝜑1 = (1 − 𝛼)𝜑2 + 𝛼𝜑3, (5)

with the second and the third LS fields 𝜑2 and 𝜑3 containing informa-
tion on the pre-surgical shape and the shape generated based on the 
surgeon’s initial plan. The factor 𝛼 ∈ [0, 1] defines the interpolation 
between the pre-surgical state (𝛼 = 0) and the state based on the 
surgeon’s plan (𝛼 = 1).

The LS field 𝜑1 is changed in discrete steps of |𝛥𝛼| = 0.05 to 
propose geometry variations that account for the precision of standard 
surgical tools [14]. Unlike the investigations in [14,17], where for 
each patient combinations of two surgical interventions were analyzed, 
the current study analyzes one intervention per patient. This yields a 
reduction from 441 potential combinations of surface variations that 
have to be explored in the optimization procedure to only 21 geometry 
variations per patient. Thus, computational costs for recommending a 
surgical intervention are drastically reduced, which paves the way for 
a widespread usage of the surgery planning tool.

To avoid surgically impossible combinations of 𝛼, the surgeon must 
guarantee that the modifications of the pre-surgical segmentation in 
3D Slicer (see Section 2) yield a surgically possible 3D model, and 
that all states between the pre-surgical state and the state based on the 
surgeon’s modification are surgically feasible. After 𝜑1 is calculated, it 
is transferred to the CFD solver, where the boundary cells, i.e., cells 
containing the isosurface at 𝜑1 = 0, are determined. Examples of 
the LS fields 𝜑1 at 𝛼 = 0.6, 𝜑2, 𝜑3, and the corresponding contours 
for 𝜑1 = 0 (green), 𝜑2 = 0 (black), and 𝜑3 = 0 (red) are shown 
for the third patient in Fig.  4. To allow for an accurate computation 
of the nasal cavity’s surface, the grid of the maximum bound of the 
virtual surgery (light grey) is thickened by an outer layer (dark grey). 
Inside the dotted rectangle, the LS fields are computed for every cell. 
Outside the rectangle, the LS fields are only needed to define the nasal 
cavity’s surface. They are hence only computed along the boundary. 
This reduces the computational effort at the first time step when the 
LS fields are computed for the first time. During the virtual surgery, 
only the LS field in the dotted rectangle is updated.

In contrast to [11], where 𝛼, and hence 𝜑1, is modified every time 
step, here 𝛼 and 𝜑1 are only updated every 𝑁 = 25,000 time steps 
(𝛿𝑡) to guarantee that time-averaging is performed on a converged, 
yet still unsteady flow field. This saves computing time compared to 
the original method in [11]. Details about the choice for 𝑁 = 25,000
time steps and the numerical threshold for convergence are provided 
in Section 3.4.
6 
Fig. 4. LS fields 𝜑1 at 𝛼 = 0.6, 𝜑2, and 𝜑3 and the corresponding contours for 𝜑1 = 0
(green), 𝜑2 = 0 (black), and 𝜑3 = 0 (red) of the third patient for the same cross-sectional 
area that is shown in Fig.  3. The light grey area stands for the maximum bound of the 
virtual surgery, and the dark grey area shows the thickened mesh.

3.4. Non-linear regression with polynomial features

Non-linear regression models are essential for capturing complex 
relationships between independent variables and a dependent variable 
that cannot be adequately described by a simple linear function. The 
independent variable is 𝛼, and two dependent variables are predicted. 
The first one is the normalized pressure loss 𝛥𝑝𝑛𝑜𝑟𝑚 between the inlets 
(nostrils) and the outlet (pharynx) 

𝛥𝑝𝑛𝑜𝑟𝑚 =
𝛥𝑝(𝛼) − 𝛥𝑝(𝛼 = 1)

𝛥𝑝(𝛼 = 0) − 𝛥𝑝(𝛼 = 1)
. (6)

The pressure loss 𝛥𝑝 is defined as 

𝛥𝑝 = 𝑝𝑜𝑢𝑡 −
1
2
(𝑝𝑖𝑛,𝑙 + 𝑝𝑖𝑛,𝑟), (7)

with the total pressure at the outlet 𝑝𝑜𝑢𝑡, and at the two inlets 𝑝𝑖𝑛,𝑙 and 
𝑝𝑖𝑛,𝑟 being defined as follows: 
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Here, 𝐻𝑖𝑛,𝑙, 𝐻𝑖𝑛,𝑟, and 𝐻𝑜𝑢𝑡 are the number of boundary cells at the 
inflow and outflow regions. A feedback loop takes 𝑁 = 25,000 time 
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Fig. 5. 𝛥𝑝𝑛𝑜𝑟𝑚 for the geometry change from 𝛼 = 0.4 to 𝛼 = 0.35 of Case B with different 
start time steps 𝑁𝑠𝑡𝑎𝑟𝑡 ∈ {0, 1,000, 2,000,… , 28,000} of the averaging period.

steps and the feedback is averaged over the last 𝑁𝑎 = 10,000 time 
steps. Note that 𝑝𝑡𝑜𝑡 is the total pressure, expressed as the sum of the 
static pressure 𝑝𝑠𝑡𝑎𝑡 and the dynamic pressure 𝑝𝑑𝑦𝑛 = 𝜌𝑢2𝑚𝑎𝑔∕2, where 
𝑢𝑚𝑎𝑔 stands for the velocity magnitude.

The rational behind choosing 𝑁 = 25,000 and 𝑁𝑎 = 10,000 is 
explained with the help of Fig.  5. The figure shows 𝛥𝑝𝑛𝑜𝑟𝑚 for the 
geometry change from 𝛼 = 0.4 to 𝛼 = 0.35 of Case B with different start 
time steps 𝑁𝑠𝑡𝑎𝑟𝑡 ∈ {0, 1,000, 2,000,… , 28,000} of the averaging period. 
This geometry change has been selected as it features the largest change 
in active/inactive cells among all changes for the three patients. The 
quantity 𝛥𝑝𝑛𝑜𝑟𝑚 is chosen as criterion as it is known to adapt slower 
to changes in the flow configuration than, e.g., the velocity field. The 
velocity is determined by local momentum exchange, while density, 
being a conserved quantity, requires time to equilibrate through slower 
modes [34]. This difference arises from the LB method’s separation 
of scales, where momentum adjusts rapidly but mass conservation 
leads to slower global density adaptation. The numerical threshold for 
convergence is defined with the help of 𝛿𝛥𝑝𝑛𝑜𝑟𝑚, which is the absolute 
change of 𝛥𝑝𝑛𝑜𝑟𝑚 for two consecutive averaging periods with a gap of 
𝛥𝑁𝑠𝑡𝑎𝑟𝑡 = 1,000. For 0 < 𝑁𝑠𝑡𝑎𝑟𝑡 < 15,000, the flow field adapts to the 
change from 𝛼 = 0.4 to 𝛼 = 0.35 and 𝛿𝛥𝑝𝑛𝑜𝑟𝑚 fluctuates. After that, 
𝛥𝑝𝑛𝑜𝑟𝑚 starts to converge. For the simulations of the current study, the 
convergence threshold is defined as 𝛿𝛥𝑝𝑛𝑜𝑟𝑚 < 0.01 for 10 consecutive 
averaging periods. This is achieved at 𝑁𝑠𝑡𝑎𝑟𝑡 = 15,000 for the first time.

The second dependent variable is the normalized volume flow rate 
𝑉̇𝑛𝑜𝑟𝑚 = 𝑉̇𝑙∕𝑉̇𝑟, where 𝑉̇𝑙 and 𝑉̇𝑟 represent the volume flow rates through 
the left and right nostrils from a patient’s view. They are defined by 
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with (𝑛𝑙,𝑥1 , 𝑛𝑙,𝑥2 , 𝑛𝑙,𝑥3 )𝑇  and (𝑛𝑟,𝑥1 , 𝑛𝑟,𝑥2 , 𝑛𝑟,𝑥3 )𝑇  representing the normal 
vectors, and 𝐴𝑙 and 𝐴𝑟 the areas of the left and right inflow regions 
(see Table  1).

Among non-linear regression methods, polynomial regression offers 
a straightforward yet powerful approach by leveraging polynomial 
transformations of the input data. It involves modeling the relationship 
between 𝛥𝑝𝑛𝑜𝑟𝑚 or 𝑉̇𝑛𝑜𝑟𝑚, here denoted as the function 𝜙, and 𝛼 as an 
𝑛-degree polynomial 
𝜙 ∈ {𝛥𝑝𝑛𝑜𝑟𝑚, 𝑉̇𝑛𝑜𝑟𝑚} = 𝛽0 + 𝛽1𝛼 + 𝛽2𝛼

2 +⋯ + 𝛽𝑛𝛼
𝜁 + 𝜖, (13)

where 𝛽𝑖 are the coefficients to be estimated, 𝜖 represents the er-
ror term, and 𝜁 is the degree of the polynomial that determines the 
complexity of the model, allowing it to capture various levels of non-
linearity. The method enables the modeling of non-linear relationships 
by transforming the input features into polynomial terms, such as 
7 
Table 2
Training data for combinations CB 1, CB 2, and CB 3.
 Combination 𝜙(𝛼 = ...)  
 CB 1 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 
 CB 2 0.0, 0.15, 0.3, 0.45, 0.6, 0.75, 0.9, 1.0  
 CB 3 0.0, 0.2, 0.4, 0.6, 0.8, 1.0  

𝛼, 𝛼2, 𝛼3,… , 𝛼𝜁 , and interaction terms for multivariate data. The regres-
sion task is realized with the non-linear regression tool with polynomial 
features of the Scikit-learn Python library [35]. First, polynomial terms 
are generated with the polynomial features transformer. After feature 
transformation, a linear regression model is applied to the expanded 
feature space. Although the model remains linear in the transformed 
space, it effectively represents a non-linear relationship in the original 
input space.

Training data is used to fit the regression model and test data to 
evaluate the model’s performance. The training data are computed with 
the LB method. In principle, cross-validation should be performed to 
assess the risk of overfitting and to better separate variance from bias in 
such a small dataset. However, for this study, classical cross-validation 
techniques involving randomized or shuffled splits cannot be applied. 
The 21 available samples, defined by pairs of 𝜙 ∈ {𝛥𝑝𝑛𝑜𝑟𝑚, 𝑉̇𝑛𝑜𝑟𝑚} and 
interpolation parameter 𝛼, follow a physically continuous sequence of 
deformations between the pre-surgical shape and the surgeon’s initial 
plan. Random reordering or omission of samples would break this con-
tinuity and lead to large, abrupt geometric changes between training 
points. Such jumps can cause numerical instabilities in the CFD solver, 
as newly activated cells (due to the LS change) are initialized with zero 
velocities. If too many cells are changed at a time, these gradients may 
lead to divergence in the simulations.

Including more than 21 simulations would not make sense, since 
surface variations based on a smaller step size, or even a continuous 
action space, could not be realized by a surgeon due to the lacking 
precision of standard surgical tools. Three different combinations (CB 
1, CB 2, and CB 3) of training and test data are investigated. Table  2 
shows the training data for each combination.

4. Results

In Section 4.1, surgery planning solely based on CFD simulations 
is demonstrated for the three patients described in Section 2. In Sec-
tion 4.2, the potential of replacing some of the CFD computations with 
predictions from the regression model is analyzed. The simulations 
were run on the central processing unit (CPU) and graphics process-
ing unit (GPU) partitions of the Jülich Research on Exascale Cluster 
Architectures (JURECA-DC), Forschungszentrum Jülich [36,37]. Each 
node of the GPU partition is equipped with four NVIDIA A100 GPUs 
and two AMD EPYC 7742 CPUs with 64 cores clocked at 2.25 GHz and 
512 GB DDR4 memory. Each node of the CPU partition contains two 
AMD EPYC 7742 processors without acceleration.

The flexibility of m-AIA allows to run the LB method on either CPUs 
or GPUs. To showcase this flexibility, Cases A and B were run on 16
CPU nodes, i.e., on 2,048 cores, and Case C on 8 GPU nodes, i.e., on 32
GPUs. For Cases A and B, the solver was compiled with the GCC/13.3.0 
compiler and OpenMPI/5.0.5 module of the HPC system. For Case C, 
the solver was compiled with the NVHPC/ 23.7-CUDA-12 compiler and 
OpenMPI/4.1.5. Since the regression model only consumes a negligible 
fraction of the total compute, it can run on the same partition as the 
CFD simulation.

4.1. Surgery planning based on CFD simulations

The results presented in this section are obtained solely by CFD 
computations. That is, a simulation first runs with 𝛼 = 1.0 for 150,000
time steps 𝛿𝑡 until a converged flow field is reached, followed by 
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Fig. 6. 𝛥𝑝𝑛𝑜𝑟𝑚 (red), 𝑉̇𝑛𝑜𝑟𝑚 (green), and 𝑉 𝑜𝑙𝑛𝑜𝑟𝑚 (violet) in the course of the virtual surgery for Case A.
reductions of 𝛼 by 𝛥𝛼 = −0.05 each 𝑁 = 25,000 time steps. Choosing 𝛼 =
1.0 as the starting point and 𝛥𝛼 = −0.05 as the decrement is important, 
since geometry variations with 𝛥𝛼 < 0 converge faster than those with 
𝛥𝛼 > 0. This comes from the fact that with 𝛥𝛼 > 0 usually more 
previously inactive grid cells become active than the other way round. 
A newly activated cell is initialized with 𝜌 = 1 and 𝒖 = (0, 0, 0)𝑇 , which 
creates large gradients to those cells that were already active before. 
If the number of activated cells is large, this can lead to numerical 
instabilities. In contrast, if previously active cells become inactive, the 
new near-wall flow field needs to be adjusted only slightly, because 
𝜌 and 𝒖 of the new boundary cells were computed under near-wall 
conditions before the geometry change.

For Case A, Fig.  6 shows 𝛥𝑝𝑛𝑜𝑟𝑚 (red), which is assigned to the 
left vertical axis, 𝑉̇𝑛𝑜𝑟𝑚 (green) following the right vertical axis, and 
the normalized volume 𝑉 𝑜𝑙𝑛𝑜𝑟𝑚 (violet bars), which is removed in the 
course of the virtual surgery for 𝛼 ∈ {0.0, 0.05,… , 1.0}.

The normalized removed volume 𝑉 𝑜𝑙𝑛𝑜𝑟𝑚 is defined as 

𝑉 𝑜𝑙𝑛𝑜𝑟𝑚 =
𝑉 𝑜𝑙(𝛼) − 𝑉 𝑜𝑙(𝛼 = 0)

𝑉 𝑜𝑙(𝛼 = 1) − 𝑉 𝑜𝑙(𝛼 = 0)
, (14)

where 𝑉 𝑜𝑙 stands for the complete volume of the nasal cavity. Although 
𝛥𝑝𝑛𝑜𝑟𝑚 is continuously reduced from 𝛼 = 0.0 to 𝛼 = 1.0, there is only a 
marginal gain between 𝛥𝑝𝑛𝑜𝑟𝑚(𝛼 = 0.8) = 0.012 and 𝛥𝑝𝑛𝑜𝑟𝑚(𝛼 = 1.0) = 0.0. 
The pre-surgical geometry is characterized with 𝑉̇𝑛𝑜𝑟𝑚(𝛼 = 0.0) = 3.722
by a large deviation between 𝑉̇𝑙 and 𝑉̇𝑟. The quantity 𝑉̇𝑛𝑜𝑟𝑚 reaches 
a plateau between 𝛼 = 0.25 and 𝛼 = 0.45, before it continues to 
decrease steadily. Again, there is only a marginal change between 
𝑉̇𝑛𝑜𝑟𝑚(𝛼 = 0.8) = 2.255 and 𝑉̇𝑛𝑜𝑟𝑚(𝛼 = 1.0) = 2.067. Based on these 
results, the surgeon can conclude that 𝛼 = 0.8 is already satisfying, 
considering that between 𝑉 𝑜𝑙𝑛𝑜𝑟𝑚(𝛼 = 0.8) and 𝑉 𝑜𝑙𝑛𝑜𝑟𝑚(𝛼 = 1.0) 12.0% of 
the tissue volume that was planned to be removed can be saved. In an 
irreversible intervention like nasal surgeries it lies in the responsibility 
of the surgeon to remove only as much tissue as needed.

The difference between the pre-surgical structure (black), the ge-
ometry based on a surgeon’s initial idea of the desired post-operative 
result (red), and the geometry with 𝛼 = 0.8 is illustrated for the cross-
sectional areas I–V in Fig.  7. Two cross-sections (I, II) are located in 
the anterior part of the nasal cavity, and three cross-sections (III–V) 
near the bone spur. The difference between the boundaries of 𝛼 = 0.8
and 𝛼 = 1.0 is particularly evident near the bone spur. Instead of the 
relatively flat surface at 𝛼 = 1.0, a curvy residue remains at 𝛼 = 0.8, 
which, according to the results in Fig.  6, does not seem to significantly 
increase the pressure loss.

The differences in the pressure distribution between 𝛼 = 0.0 and 𝛼 =
1.0 have been extensively studied and visualized in [14,17]. However, 
the velocity fields did only play a minor role in the previous studies, 
which is why an example of the normalized velocity magnitude 𝑢𝑚𝑎𝑔∕𝑢𝑖𝑛
for the cross-sectional area II of Case A is provided in Fig.  8. The inflow 
velocity 𝑢𝑖𝑛 is defined as 

𝑢𝑖𝑛 =
1
(

𝑉̇𝑙 +
𝑉̇𝑟

)

. (15)

2 𝐴𝑙 𝐴𝑟
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Fig. 7. Cross-sectional areas I–V of Case A that show the contours of the pre-surgical 
structure (black), the geometry based on a surgeon’s initial idea of the desired post-
operative result (red), and the geometry with 𝛼 = 0.8 (blue).

Fig. 8. 𝑢𝑚𝑎𝑔∕𝑢𝑖𝑛 at the cross-sectional area II of Case A for the pre-surgical structure 
(left) and the geometry with 𝛼 = 0.8 (right).

The left part of the figure shows how the incoming air is hindered by 
the narrowed right passage of the pre-surgical nasal cavity to spread 
evenly. Instead, it is trapped in the lower part of the right nasal passage. 
In contrast, the left nasal passage for 𝛼 = 0.0 is widened and more 
extensively supplied with air. The right part of Fig.  8 reveals a more 
balanced flow through the left and right nasal passages. However, there 
is still a gap quantified by a factor of 𝑉̇𝑛𝑜𝑟𝑚(𝛼 = 0.8) = 2.255.

Overall, the spatial differences between the geometries defined by 
𝛼 = 0.8 and 𝛼 = 1.0 are not large, e.g., the difference between the 
blue and red contours in Fig.  7 are sometimes hardly visible. This 
shows that the surgeon’s initial idea goes into the right direction, 
and it underlines that the proposed method does not only help to 
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Fig. 9. 𝛥𝑝𝑛𝑜𝑟𝑚 (red), 𝑉̇𝑛𝑜𝑟𝑚 (green), and 𝑉 𝑜𝑙𝑛𝑜𝑟𝑚 (violet) in the course of the virtual surgery for Case B.
Fig. 10. Cross-sectional areas I–V of Case B that show the contours of the pre-surgical 
structure (black), the geometry based on the maximum possible intervention (total 
turbinectomy) (red), and the geometry with 𝛼 = 0.5 (blue).

Fig. 11. 𝑢𝑚𝑎𝑔∕𝑢𝑖𝑛 at the cross-sectional area II of Case B for the pre-surgical structure 
(left), the geometry with 𝛼 = 0.5 (center), and the geometry based on the maximum 
possible intervention (right).

suggest surgical interventions, but also to provide valuable feedback on 
a surgeon’s initial thoughts. This helps to further develop a surgeon’s 
skills and complement her/his experience.

Fig.  9 shows 𝛥𝑝𝑛𝑜𝑟𝑚 (red), 𝑉̇𝑛𝑜𝑟𝑚 (green), and 𝑉 𝑜𝑙𝑛𝑜𝑟𝑚 (violet bars) for 
𝛼 ∈ {0.0, 0.05,… , 1.0} of Case B. Enlarging the turbinates clearly leads 
to a reduced pressure loss. The loss 𝛥𝑝𝑛𝑜𝑟𝑚 reaches its global minimum 
at 𝛼 = 0.65, with a value of 𝛥𝑝𝑛𝑜𝑟𝑚(𝛼 = 0.65) = −0.044, indicating a lower 
normalized pressure drop compared to the reference configuration 𝛼 =
1.0, where 𝛥𝑝𝑛𝑜𝑟𝑚 = 0.0. However, a pressure loss nearly identical to that 
at 𝛼 = 1.0 is already achieved at 𝛼 = 0.5, with 𝛥𝑝𝑛𝑜𝑟𝑚(𝛼 = 0.5) = −0.019. 
If a surgeon decides 𝛥𝑝𝑛𝑜𝑟𝑚(𝛼 = 0.5) = −0.019 to be sufficiently low, 25% 
less tissue in comparison to a total turbinectomy (which is represented 
by the surface variations with 𝛼 = 1.0), would be removed.
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The volume flow rate through the right nasal passage is slightly 
increased compared to the one through the left nasal passage in the 
pre-surgical state. The widening of the left nasal passage increases 𝑉̇𝑙, 
which leads to an increase in the volume flow rate ratio from 𝑉̇𝑛𝑜𝑟𝑚(𝛼 =
0.0) = 0.968 to 𝑉̇𝑛𝑜𝑟𝑚(𝛼 = 1.0) = 1.148. In contrast to 𝑉 𝑜𝑙𝑛𝑜𝑟𝑚 for Case A 
in Fig.  6, where a nearly steady increase between 𝑉 𝑜𝑙𝑛𝑜𝑟𝑚(𝛼 = 0.0) and 
𝑉 𝑜𝑙𝑛𝑜𝑟𝑚(𝛼 = 1.0) is observed, the course of 𝑉 𝑜𝑙𝑛𝑜𝑟𝑚 for Case B in Fig.  9 
shows a turning point at 𝛼 = 0.4. The strongest changes of 𝑉 𝑜𝑙𝑛𝑜𝑟𝑚 are 
observed between 𝛼 = 0.2 and 𝛼 = 0.6.

The difference between the pre-surgical structure (black), the geom-
etry based on the maximum possible intervention (total turbinectomy 
- red), and the geometry with 𝛼 = 0.5 is illustrated for the cross-
sections I–V in Fig.  10. The results reveal that with 𝛼 = 0.5 much 
less tissue is removed compared to 𝛼 = 1.0 in both the middle and 
inferior turbinates, i.e., the blue contours are far away from a total 
turbinectomy represented by the red contours.

Similar to Case A, the differences in the pressure distribution has 
been extensively visualized in [14,17]. Therefore, Fig.  11 focuses on the 
velocity field and its effect on 𝑉̇𝑛𝑜𝑟𝑚. The left part of the figure shows 
that in the pre-surgical geometry, incoming airflow passes through 
the portion of the nasal passage surrounded by the middle turbinate 
but does not reach the area near the inferior turbinate. Especially in 
the left passage, where the turbinates are diagnosed to be enlarged, 
incoming air is largely prevented from passing through in the vicinity 
of the inferior turbinate. In contrast, the center part of Fig.  11 shows 
that in the course of removing tissue from the inferior turbinate and 
widening the left nasal passage, incoming air is distributed more evenly 
to the left nasal passage. However, the largest velocity magnitudes are 
concentrated in the small region highlighted by the dashed red circle. 
Here, a jet forms as a result of the inflow through the narrowed nasal 
valve. The jet persists under a further widening of the left nasal passage, 
i.e., shifting from 𝛼 = 0.5 to 𝛼 = 1.0. This is illustrated in the right part 
of Fig.  11. Interestingly, the velocity field away from this jet does not 
undergo any decisive change. This explains why 𝑉̇𝑛𝑜𝑟𝑚 experiences no 
major change between 𝛼 = 0.5 and 𝛼 = 1.0.

In contrast to Case A, where the surgeon’s initial plan was aligned 
with the numerically optimized outcome, the results for Case B indicate 
that a total turbinectomy should be avoided. Depending on clinical 
priorities, such as minimizing pressure loss while maintaining balanced 
left and right volume flow rates, an intervention with 𝛼 < 0.5 (for 
example, 𝛼 = 0.25) may represent a suitable compromise.

Fig.  12 shows 𝛥𝑝𝑛𝑜𝑟𝑚 (red), 𝑉̇𝑛𝑜𝑟𝑚 (green), and 𝑉 𝑜𝑙𝑛𝑜𝑟𝑚 (violet bars) 
for 𝛼 ∈ {0.0, 0.05,… , 1.0} of Case C. Straightening the deviated septum 
clearly leads to a reduced pressure loss. In contrast to the steady 
decrease of 𝛥𝑝𝑛𝑜𝑟𝑚 in Case A (see Fig.  6), the overall decrease of 𝛥𝑝𝑛𝑜𝑟𝑚
in Case C is accompanied by local fluctuations. As in Case A, there is 
only a marginal gain in reducing the pressure loss between 𝛥𝑝𝑛𝑜𝑟𝑚(𝛼 =
0.8) = 0.040 and 𝛥𝑝𝑛𝑜𝑟𝑚(𝛼 = 1.0) = 0.0. However, 20% of tissue removal 
can be saved when choosing 𝛼 = 0.8 over 𝛼 = 1.0. A major difference to 
the two other cases is that the virtually planned septoplasty in Case 
C has only a minor influence on 𝑉̇ , i.e., 𝑉̇ (𝛼 = 0.0) = 0.734
𝑛𝑜𝑟𝑚 𝑛𝑜𝑟𝑚
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Fig. 12. 𝛥𝑝𝑛𝑜𝑟𝑚 (red), 𝑉̇𝑛𝑜𝑟𝑚 (green), and 𝑉 𝑜𝑙𝑛𝑜𝑟𝑚 (violet) in the course of the virtual surgery for Case C.
Fig. 13. Cross-sectional areas I–III of Case C that show the contours of the pre-surgical 
structure (black), the geometry based on a surgeon’s initial idea of the desired post-
operative result (red), and the geometry with 𝛼 = 0.8 (blue).

Fig. 14. 𝛥𝑝𝑛𝑜𝑟𝑚,𝐼 of Case C at the cross-sectional area highlighted by the dotted line 
for the pre-surgical structure (top), and the geometry with 𝛼 = 0.8 (bottom).

and 𝑉̇𝑛𝑜𝑟𝑚(𝛼 = 1.0) = 0.715 deviate by only 2.6%. Similar to Case A, 
a nearly steady increase between 𝑉 𝑜𝑙𝑛𝑜𝑟𝑚(𝛼 = 0.0) and 𝑉 𝑜𝑙𝑛𝑜𝑟𝑚(𝛼 = 1.0)
is observed.

The difference between the pre-surgical structure (black), the geom-
etry based on a surgeon’s initial idea of the desired post-operative result 
(red), and the geometry with 𝛼 = 0.8 is illustrated for the cross-sectional 
areas I–III in Fig.  13. The main purpose of the procedure, i.e., widening 
the blocked right nasal passage, can clearly be seen.

The surgery planning outcomes show no major influence on 𝑉̇𝑛𝑜𝑟𝑚. 
Therefore, instead of visually analyzing velocity fields (as done in Cases 
A and B), the pressure distribution is analyzed in Fig.  14 in terms of the 
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local pressure loss normalized by 𝛥𝑝(𝛼 = 0) and 𝛥𝑝(𝛼 = 0.8) respectively 
(𝛥𝑝𝑙𝑜𝑐).

The upper part of the figure indicates a large increase in 𝛥𝑝𝑙𝑜𝑐 , 
which is caused by the interrupted nasal passage. This is highlighted by 
the dashed black circle. In the lower part of Fig.  14, it is shown how 
straightening the septum and thereby reconnecting the nasal passage 
leads to a reduced pressure loss. This effect is not only visible in the 
vicinity of the dashed black circle, but also in the downstream part of 
the nasal cavity up to the outflow region at the pharynx.

Overall, similar to Case A, the spatial differences between the 
geometries defined by 𝛼 = 0.8 and 𝛼 = 1.0 are not large. This again 
demonstrates the potential of the tool to also provide positive feedback 
and confirm a surgeon’s initially planned procedures with valuable 
physics-based assessments.

4.2. Surgery planning based on CFD simulations and a non-linear regression 
model

The results presented in this section are partly based on compu-
tations by the LB solver and partly on predictions by a non-linear 
regression model. The regression model predicts the dependent vari-
ables 𝜙 ∈ {𝛥𝑝𝑛𝑜𝑟𝑚, 𝑉̇𝑛𝑜𝑟𝑚} as a function of 𝛼. Every prediction saves the 
computation of 25,000 time steps. Note that 𝑉 𝑜𝑙𝑛𝑜𝑟𝑚 does not need to 
be predicted, since it can be easily calculated within one time step 
without time-averaging. The purpose of this section is to generalize 
regression-based predictions, i.e., to determine the parameter 𝜁 in a 
way that reliable predictions for all patients are achieved. The graphs 
of 𝛥𝑝𝑛𝑜𝑟𝑚 and 𝑉̇𝑛𝑜𝑟𝑚 in Section 4.1 are not linear or parabolic. Therefore, 
polynomials with 𝜁 < 3 are skipped.

For the Cases A–C, regression-based predictions are evaluated with 
the mean absolute percentage error (MAPE)

𝑒𝑀𝐴𝑃𝐸 = 1
𝑁𝑡𝑒𝑠𝑡

𝑁𝑡𝑒𝑠𝑡
∑

𝑖=0

(

|𝜙𝑠𝑖𝑚(𝑖) − 𝜙𝑡𝑒𝑠𝑡(𝑖)|
|𝜙𝑚𝑎𝑥 − 𝜙𝑚𝑖𝑛|

)

, (16)

and the maximum absolute percentage error (MaxAPE)

𝑒𝑀𝑎𝑥𝐴𝑃𝐸 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚
(

|𝜙𝑠𝑖𝑚(𝑖) − 𝜙𝑡𝑒𝑠𝑡(𝑖)|
|𝜙𝑚𝑎𝑥 − 𝜙𝑚𝑖𝑛|

)

. (17)

The subscripts pred and sim mark regression-based predictions and 
ground truth from CFD simulations, the subscripts min and max repre-
sent the minimum and maximum values of the corresponding data set, 
and 𝑁𝑡𝑒𝑠𝑡 is the size of test data.

Fig.  15 shows 𝑒𝑀𝐴𝑃𝐸 and 𝑒𝑀𝑎𝑥𝐴𝑃𝐸 of regression-based predictions 
with different degrees of the polynomial (𝜁) and training-test data 
combinations CB 1 (red), CB 2 (green), and CB 3 (blue) for Case 
A. The predictions of 𝛥𝑝𝑛𝑜𝑟𝑚 in Fig.  15(a) reveal that all predictions 
have an error of 𝑒𝑀𝐴𝑃𝐸 < 5%. Averaging 𝑒𝑀𝐴𝑃𝐸 for all degrees of 
polynomials yields 𝑒𝑀𝐴𝑃𝐸 (𝐶𝐵1) = 0.0246, 𝑒𝑀𝐴𝑃𝐸 (𝐶𝐵2) = 0.0285, and 
𝑒𝑀𝐴𝑃𝐸 (𝐶𝐵3) = 0.0304. This shows the prediction accuracy generally 
deteriorates when the number of training data decreases.
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Fig. 15. 𝑒𝑀𝐴𝑃𝐸 (solid line, assigned to the left vertical axis) and 𝑒𝑀𝑎𝑥𝐴𝑃𝐸 (*, assigned 
to the right vertical axis) of regression-based predictions with different degrees of the 
polynomial (𝜁) and training-test data combinations CB 1 (red), CB 2 (green), and CB 
3 (blue) for Case A.

Fig. 16. Regression-based predictions for Case A of 𝛥𝑝𝑛𝑜𝑟𝑚 with 𝜁 = 6 (dashed line) 
and 𝜁 = 7 (solid line) compared to the corresponding training data (black circles) and 
test data (orange circles) for CB 2.

Fig. 17. Regression-based predictions for Case A of 𝑉̇𝑛𝑜𝑟𝑚 with 𝜁 = 6 (dashed line) and 
𝜁 = 3 (solid line) compared to the corresponding training data (black circles) and test 
data (orange circles) for CB 1.
11 
Fig. 18. 𝑒𝑀𝐴𝑃𝐸 (solid line, assigned to the left vertical axis) and 𝑒𝑀𝑎𝑥𝐴𝑃𝐸 (*, assigned 
to the right vertical axis) of regression-based predictions with different degrees of the 
polynomial (𝜁) and training-test data combinations CB 1 (red), CB 2 (green), and CB 
3 (blue) for Case B.

Looking at the individual training and test data combinations, the 
prediction accuracy tends to worsen with increasing 𝜁 . For example, 
CB 2 shows with 𝑒𝑀𝑎𝑥𝐴𝑃𝐸 (𝜁 = 7) = 13.61% and 𝑒𝑀𝑎𝑥𝐴𝑃𝐸 (𝜁 = 8) =
9.89% large errors at high 𝜁 values, which is caused by the well-
known overfitting phenomenon. This is demonstrated in Fig.  16 for the 
predictions of 𝛥𝑝𝑛𝑜𝑟𝑚 with 𝜁 = 6 (dashed line) and 𝜁 = 7 (solid line). The 
regression model of this example is trained with the training-test data 
split CB 2, and the corresponding training data (black circles) and test 
data (orange circles) are illustrated in the figure. Although both graphs 
intersect with all training points, only the graph with 𝜁 = 6 manages to 
accurately predict the test data. The graph with 𝜁 = 7 misses some of 
the test data, e.g., at 𝛼 = 0.05, 𝛼 = 0.1, or 𝛼 = 0.95.

The predictions of 𝑉̇𝑛𝑜𝑟𝑚 in Fig.  15(b) confirm the overall trend for 
𝑒𝑀𝐴𝑃𝐸 that has been reported earlier in Fig.  15(a), i.e., 𝑒𝑀𝐴𝑃𝐸 (𝐶𝐵1) =
0.0286 < 𝑒𝑀𝐴𝑃𝐸 (𝐶𝐵2) = 0.0336 < 𝑒𝑀𝐴𝑃𝐸 (𝐶𝐵3) = 0.0462. The figure also 
indicates relatively large errors for 𝜁 = 3, even for CB 1, which has the 
largest number of training data. The reasons for this are explained with 
the help of Fig.  17, which contains predictions of 𝑉̇𝑛𝑜𝑟𝑚 with 𝜁 = 3 (solid 
line) and 𝜁 = 6 (dashed line). The regression model of this example 
is trained with the training-test data split CB 1, and the corresponding 
training data (black circles) and test data (orange circles) are illustrated 
in the figure. In contrast to the overfitted regression model trained with 
𝜁 = 7 shown in Fig.  16, here 𝜁 = 3 is not complex enough to reproduce 
𝑉̇𝑛𝑜𝑟𝑚. Thus, looking only at Case A, 3 < 𝜁 < 7 yields the best results.

Fig.  18 shows 𝑒𝑀𝐴𝑃𝐸 and 𝑒𝑀𝑎𝑥𝐴𝑃𝐸 of regression-based predictions 
as functions of 𝜁 and CB 1 (red), CB 2 (green), and CB 3 (blue) for 
Case B. Both types of errors are for the predictions of 𝛥𝑝𝑛𝑜𝑟𝑚 (Fig.  18(a)) 
and 𝑉̇𝑛𝑜𝑟𝑚 (Fig.  18(b)) below 2.5%. This shows that the distribution of 
the pressure and volume flow rates (see Fig.  9) are in general easier 
to predict compared to those of Case A (see Fig.  6). However, slightly 
increased errors are observed for 𝜁 = 3, 𝜁 = 7, and 𝜁 = 8, which again 
gives the impression that 3 < 𝜁 < 7 yields the best results.
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Fig. 19. 𝑒𝑀𝐴𝑃𝐸 (solid line, assigned to the left vertical axis) and 𝑒𝑀𝑎𝑥𝐴𝑃𝐸 (*, assigned 
to the right vertical axis) of regression-based predictions with different degrees of the 
polynomial (𝜁) and training-test data combinations CB 1 (red), CB 2 (green), and CB 
3 (blue) for Case C.

Fig.  19 shows 𝑒𝑀𝐴𝑃𝐸 and 𝑒𝑀𝑎𝑥𝐴𝑃𝐸 of regression-based predictions 
with different degrees of the polynomial (𝜁) and training-test data com-
binations CB 1 (red), CB 2 (green), and CB 3 (blue) for Case C. Whereas 
the regression model seems to have no problems in predicting 𝑉̇𝑛𝑜𝑟𝑚
(Fig.  19(b)), Fig.  19(a) reveals that the predictions of 𝛥𝑝𝑛𝑜𝑟𝑚 are the 
most challenging ones. This comes from the largely fluctuating pressure 
loss visible in Fig.  9. Whereas training with CB 1 yields a still acceptable 
𝑒𝑀𝐴𝑃𝐸 (𝐶𝐵1) = 0.0663, training with CB 2 (𝑒𝑀𝐴𝑃𝐸 (𝐶𝐵2) = 0.0842) and 
CB 3 (𝑒𝑀𝐴𝑃𝐸 (𝐶𝐵3) = 0.0848) is not preferable for replacing some of the 
CFD computations. Therefore, if non-linear regression is employed to 
save computational resources, it is recommended to train the regression 
model with CB 1 and replace 50% of the CFD computations.

To assess the physical relevance of the regression errors, it is an-
alyzed whether the reported prediction inaccuracies could influence 
the surgical decision-making process. Since the proposed approach 
aims to support virtual surgery planning, it is critical to understand 
if deviations between predicted and simulated outcomes may lead to 
different clinical interpretations. The prediction errors for 𝑉̇𝑛𝑜𝑟𝑚 are 
generally lower and follow the trends observed in the CFD simulations 
shown in Figs.  6, 9, and 12, making them less likely to affect the 
overall interpretation. In contrast, when predicting 𝛥𝑝𝑛𝑜𝑟𝑚, large errors 
are observed for Case C with CB 2 and 𝜁 = 7 or 𝜁 = 8. Fig.  20 helps 
to show how those may lead to contradictory interpretations of the 
virtual surgery outcome. With 𝜁 = 7 (dashed line) and 𝜁 = 8 (solid 
line), 𝛥𝑝𝑛𝑜𝑟𝑚 at 𝛼 = 0.05 is larger than based on the simulation at the 
pre-surgical state (𝛼 = 0). This might lead to a wrong conclusion that 
widening the nasal airways increases the pressure loss. Furthermore, at 
𝛼 = 0.95, the regression-based pressure loss is smaller than 𝛥𝑝𝑛𝑜𝑟𝑚 based 
on the simulation. If a surgeon comes to the conclusion that 𝛼 = 0.95
is the desired surface variation, much more tissue would be removed 
than suggested in Section 4.1, cf. Fig.  12, where 𝛼 = 0.8 was found to 
be the maximum meaningful surface variation. While these examples 
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Fig. 20. Regression-based predictions for Case C of 𝛥𝑝𝑛𝑜𝑟𝑚 with 𝜁 = 7 (dashed line) 
and 𝜁 = 8 (solid line) compared to the corresponding training data (black circles) and 
test data (orange circles) for CB 2.

Table 3
𝑒𝑀𝐴𝑃𝐸 (𝜁 ∈ {4, 5, 6}) for predicting 𝛥𝑝𝑛𝑜𝑟𝑚 and 𝑉̇𝑛𝑜𝑟𝑚 with CB 1.
 𝜙 𝜁 𝑒𝑀𝐴𝑃𝐸 for Cases A, B, C 𝑒𝑀𝐴𝑃𝐸  
 𝛥𝑝𝑛𝑜𝑟𝑚 4 0.0211, 0.0106, 0.0639 0.0317 
 𝛥𝑝𝑛𝑜𝑟𝑚 5 0.0237, 0.0085, 0.0664 0.0329 
 𝛥𝑝𝑛𝑜𝑟𝑚 6 0.0231, 0.0085, 0.0685 0.0334 
 𝑉̇𝑛𝑜𝑟𝑚 4 0.0357, 0.0077, 0.0230 0.0221 
 𝑉̇𝑛𝑜𝑟𝑚 5 0.0357, 0.0069, 0.0185 0.0204 
 𝑉̇𝑛𝑜𝑟𝑚 6 0.0168, 0.0070, 0.0189 0.0142 

highlight the importance of understanding the impact of errors, a more 
comprehensive clinical interpretation of these trends would require 
further validation, which is, however, beyond the scope of this study.

The question remains which of 𝜁 = 4, 𝜁 = 5, or 𝜁 = 6 delivers the 
best results. To give a first answer to this question, 𝑒𝑀𝐴𝑃𝐸 (𝜁 ∈ {4, 5, 6})
is defined, which is the averaged error of the training runs with CB 1 
for Cases A, B, and C shown in Table  3. According to the table, 𝜁 = 4
is recommended for predicting 𝛥𝑝𝑛𝑜𝑟𝑚 and 𝜁 = 6 for predicting 𝑉̇𝑛𝑜𝑟𝑚. 
However, since this is based on the mean of just three samples these 
results should be interpreted with caution. An extended study with 
more patients and methods like bootstrapping is required to provide 
a strong recommendation.

5. Summary and discussion

The complexities involved in planning nasal surgeries, such as 
septoplasties or turbinectomies, highlight the need for innovative and 
efficient approaches to enable the widespread adoption of CFD-based 
automated surgery planning. Methods of previous works were either 
automated but computationally expensive, or cheaper methods that 
were not automated and solely analyzed single solutions based on 
manual geometry modifications. The current study bridges the gap 
between these two drawbacks. Three patients are investigated, the first 
patient suffering from a deviated septum accompanied by a bony spur, 
the second patient from enlarged turbinates in the left nasal passage, 
and the third patient from a deviated septum.

Two types of investigations were carried out. The first investigation 
presented a combined LB-LS method that could be used to efficiently 
compute fluid mechanical parameters of geometry variations that lie 
between the pre-surgical geometry and a surgeon’s initial plan for 
the desired surgical outcome. In contrast to previous works, where 
the geometry was varied and the LS field needed to be recomputed 
each time step, in the proposed method the geometry is varied in 
discrete interpolation steps between the two reference states. After each 
step, the CFD computations were run for 25,000 time steps until a 
converged flow field was reached. Furthermore, while previous works 
considered multiple surgical intervention locations, resulting in up to 
441 potential geometry variations requiring flow field computations, 
this study focuses on single interventions, reducing the number of 
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surface variations to 21. The fluid mechanical parameters included 
the pressure loss between the inflow (nostrils) and outflow (pharynx) 
regions, and the balance between the volume flow rates through the 
left and right nasal passages. An additional criterion that can be taken 
into account by a surgeon is the volume of the removed tissue for each 
geometry variation.

For the first patient, a geometry variation was recommended that 
saves 12% of the volume initially planned to be removed by the 
surgeon. In an irreversible intervention like nasal surgery, it is the 
surgeon’s responsibility to remove only as much tissue as needed. At 
the same time, the proposed geometry variation causes no meaningful 
deterioration in terms of pressure loss or balanced volume flow rates 
compared to the surgeon’s initial plan. For the second patient, it was 
found that a total turbinectomy should be avoided. Considering only 
the pressure loss, it can be maintained with a geometry variation 
that saves 25% of the volume compared to completely removing the 
turbinates. These savings can be even greater if the surgeon places more 
emphasis on balanced volume flows. This is because a jet develops after 
the incoming air streams through the narrowed nasal valve, and its 
intensification does not change significantly when the nasal passage 
is widened beyond a certain size. For the third patient, a geometry 
variation was recommended that saves 20% of the volume initially 
planned to be removed by the surgeon, without degrading pressure loss 
or balanced volume flow rates.

The second investigation shows how some of the fluid mechanical 
parameters that are normally extracted from CFD simulations can be 
replaced by predictions of a non-linear regression model. Scenarios 
were analyzed where the regression model was trained with data from 
11 (CB 1), 8 (CB 2), and 6 (CB 3) CFD simulations. While the predictions 
of the regression model trained with CB 2 or CB 3 sometimes caused 
large inaccuracies, the predictions with CB 1 yielded averaged errors 
below 4% for predictions of the pressure loss, and averaged errors 
below 3% for the volume flow rates.

Employing the regression model with CB 1 saves 50% of the CFD 
computations and hence also 50% of the computational resources. This 
reduced the run time for Case A using 16 CPU nodes, i.e., 2,048 cores, 
from around 18 to 9h, and for Case B from around 24 to 12h. To 
show the flexibility in terms of employing the proposed tool on CPUs 
or GPUs, Case C was also run on GPUs. Here, surgery planning took 
around 20h on 8 GPU nodes, i.e., using 32 GPUs, without and 10h with 
the regression model.

Acquiring both pre-surgical CT data and expert-modified post-
surgical models that reflect a surgeon’s initial plan is difficult. Hence, 
the number of patients in this study is limited to three. Importantly, 
this work does not aim to perform a clinical evaluation or assess 
long-term surgical outcomes. Instead, the focus is on demonstrating 
a numerical framework and monitoring techniques for virtual nasal 
surgery planning. Within this scope, the selected cases are sufficient 
to illustrate the feasibility and potential of the proposed algorithms. 
The regression results should, however, be interpreted with care, as 
generalization to broader patient populations requires a validation on 
larger datasets. Future work will address this by expanding the patient 
cohort and evaluating model robustness across varying anatomical and 
clinical conditions.

As this study uses a standard regression approach to predict pressure 
loss and volume flow rate from geometric variation, regularization 
techniques such as ridge regression or Bayesian regression could pro-
vide advantages in controlling model complexity and mitigating overfit-
ting, especially in low-data regimes. However, given the structured and 
deterministic way in which training samples are generated in this study 
(via CFD simulations at controlled deformation levels) overfitting was 
primarily addressed through careful design of the training/test split and 
performance evaluation on unseen intermediate geometries. The inclu-
sion of regularization methods may be beneficial in future studies with 
larger patient datasets or more complex geometric parametrizations.
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The most important criteria for a widespread usage of an automated 
virtual nasal surgery planning tool are accuracy, affordability, and prac-
ticability. The results of the current investigation have already shown 
a solid foundation for all three criteria. However, further investigations 
can still be made on the way towards a widespread usage. A validation 
of the LB solver of the m-AIA framework for simulating respiratory 
flows to examine the accuracy has so far only been done with flow 
at expiration through a simplified lung model in [38]. That is, stereo-
particle-image velocimetry measurements were performed in multiple 
parallel measurement planes for a Reynolds number of 𝑅𝑒 = 700 based 
on the hydraulic diameter of the trachea to determine the highly three-
dimensional flow in a realistic transparent silicone lung model, and a 
comparison with the LB method in terms of the absolute velocity and 
the out-of-plane velocity component show a good agreement. However, 
the inflow region of the lung model is located at the pharynx and 
flow through the nasal cavity is not considered. For an increased 
credibility, further validations are needed that include flow through 
the nasal cavity and, e.g., inspiration or unsteady inflow conditions of 
a breathing cycle.

Automated nasal surgery planning could be made more affordable 
by entirely replacing CFD simulations with ML methods. This could be 
attempted by trying to predicting the 3D flow and pressure field in the 
nasal cavity based on geometric information as input to the ML model, 
or by directly predicting target quantities such as the pressure loss or 
the ratio of left and right volume flow rates. However, such attempts are 
challenging because they require a large dataset of nasal cavities and 
the corresponding ground truth generated with CFD simulations [39].

The tool’s practicability could be enhanced by a more user-friendly 
graphical user interface (GUI) for creating the 3D model of the sur-
geon’s initial surgery idea. Currently, the user loads a binary segmen-
tation file of the nasal cavity into the software 3DSlicer [13]. While 
the segmentation file is generated automatically with the pipeline de-
scribed in [12], manual interaction is necessary for creating the binary 
segmentation file of the surgeon’s initial plan. That is, the user adds 
or removes voxels with paint or erase functionalities of the segment 
editor, either slice by slice, or with a spherical tool in a 3D viewer. 
An improvement that should be considered for future improvements 
is replacing this tedious process by combining non-uniform rational 
B-splines (NURBS) [40] for geometric flexibility and isogeometric anal-
ysis (IGA) [41,42] for simulation-readiness. Doing so it would be 
possible to create a user-friendly system where a nasal cavity 3D model 
can be modified interactively with a mouse click-and-drag mechanism.

Overall, the presented method offers a promising approach for 
integrating CFD, RL, and regression techniques in virtual nasal cavity 
surgery planning. Since the study does not include validation against 
real surgical outcomes, the results should currently be considered as 
a technical feasibility study. The application of such computational 
tools in clinical decision processes will require further investigation 
through clinical collaborations, larger datasets, and regulatory approval 
processes.

6. Conclusion

This study addressed the challenges of automated virtual nasal 
surgery planning by bridging the gaps in previous methods, providing 
a solution that balances accuracy, affordability, and practicability. The 
combined LB-LS method introduced here enables efficient computa-
tion of fluid mechanical parameters for geometry variations, reducing 
the computational cost while maintaining accuracy. Recommendations 
for all three patients demonstrate the method’s ability to save tissue 
volume while preserving critical flow characteristics, such as pressure 
loss and balanced volume flows. Additionally, incorporating a non-
linear regression model further reduces computational resources by 
replacing certain CFD simulations, achieving significant cost savings 
without compromising accuracy.
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While the results lay a strong foundation for the widespread adop-
tion of CFD-based automated surgery planning, further validation is 
needed, particularly including flow through the nasal cavity. Future ef-
forts could explore replacing CFD simulations entirely with ML models, 
though this will require a large dataset of nasal geometries and simu-
lations. Lastly, enhancing the tool’s usability through a more intuitive 
graphical user interface, leveraging NURBS and IGA, would streamline 
the creation and modification of 3D nasal models, enabling surgeons to 
interactively plan surgeries with greater efficiency.
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