001043249 001__ 1043249
001043249 005__ 20250930132704.0
001043249 0247_ $$2doi$$a10.1002/mp.17890
001043249 0247_ $$2ISSN$$a0094-2405
001043249 0247_ $$2ISSN$$a1522-8541
001043249 0247_ $$2ISSN$$a2473-4209
001043249 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02799
001043249 0247_ $$2pmid$$a40387059
001043249 0247_ $$2WOS$$aWOS:001490137600001
001043249 037__ $$aFZJ-2025-02799
001043249 082__ $$a610
001043249 1001_ $$0P:(DE-Juel1)164150$$aHong, Suk-Min$$b0$$eCorresponding author
001043249 245__ $$aNovel 1 H/ 19 F double‐tuned coil using an asymmetrical butterfly coil
001043249 260__ $$aHoboken, NJ$$bWiley$$c2025
001043249 3367_ $$2DRIVER$$aarticle
001043249 3367_ $$2DataCite$$aOutput Types/Journal article
001043249 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1756896949_18417
001043249 3367_ $$2BibTeX$$aARTICLE
001043249 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001043249 3367_ $$00$$2EndNote$$aJournal Article
001043249 520__ $$aBackground: Fluorine-19 (19F) magnetic resonance imaging (MRI) is a non-invasive imaging tool for the targeted application of fluorinated agents, such as cell tracking, and for the demonstration of oximetry. However, as the SNR of 19F is significantly weaker than that of proton (1H) imaging, the 19F coil must be combined with 1H coils for anatomical co-registration and B0 shimming. This is difficult due to the strong coupling between the coils when they are in proximity, and is problematic since the Larmor frequency of 19F is 94% that of 1H, further increasing the potential for coupling between the 1H and 19F elements.Purpose: Conventional double-tuned coil methods tend to generate loss compared to single-tuned reference coils. The asymmetrical butterfly coil has a split resonance peak, which can cover frequencies of 1H and 19F without losses arising from lossy traps or switching circuits. In this study, the use of an asymmetrical butterfly coil was evaluated for 1H/19F applications.Methods: To increase quadrature efficiency at both the 1H and 19F frequencies, the left and right loops of the butterfly coil were tuned asymmetrically. The coil's tuning and performance were evaluated in simulations and MR measurements, and the results were compared to a dimension-matched single-tuned loop coil.Results: The split resonance peak of the asymmetrical butterfly coil successfully spanned the 19F to 1H frequency. It operated with higher quadrature efficiency at both 1H and 19F frequencies and demonstrated superior receive sensitivity and SNR compared to the dimension-matched single-tuned loop coil.Conclusions: The split resonance peak of the asymmetrical butterfly coil supported both 1H and 19F frequencies, delivering a higher SNR than that of the single-tuned loop coil. Since the asymmetrical butterfly coil can cover ¹H and ¹⁹F frequencies without loss and provides higher efficiency than the reference single-tuned coil, it can be effectively utilized for ¹H/¹⁹F MRI applications.
001043249 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001043249 536__ $$0G:(GEPRIS)491111487$$aDFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2025 - 2027 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x1
001043249 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001043249 7001_ $$0P:(DE-Juel1)164356$$aChoi, Chang-Hoon$$b1
001043249 7001_ $$0P:(DE-Juel1)131761$$aFelder, Jörg$$b2
001043249 7001_ $$0P:(DE-Juel1)131794$$aShah, N. Jon$$b3$$eCorresponding author
001043249 773__ $$0PERI:(DE-600)1466421-5$$a10.1002/mp.17890$$gp. mp.17890$$n7$$p17890$$tMedical physics$$v52$$x0094-2405$$y2025
001043249 8564_ $$uhttps://juser.fz-juelich.de/record/1043249/files/Invoice_2736229.pdf
001043249 8564_ $$uhttps://juser.fz-juelich.de/record/1043249/files/Medical%20Physics%20-%202025%20-%20Hong%20-%20Novel%201H%2019F%20double%E2%80%90tuned%20coil%20using%20an%20asymmetrical%20butterfly%20coil.pdf$$yOpenAccess
001043249 8767_ $$82736229$$92025-06-11$$a1200215181$$d2025-06-27$$ePage charges$$jZahlung erfolgt$$zUSD 400
001043249 8767_ $$d2025-08-20$$eHybrid-OA$$jDEAL
001043249 909CO $$ooai:juser.fz-juelich.de:1043249$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$pOpenAPC$$popen_access$$popenaire
001043249 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164150$$aForschungszentrum Jülich$$b0$$kFZJ
001043249 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164356$$aForschungszentrum Jülich$$b1$$kFZJ
001043249 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131761$$aForschungszentrum Jülich$$b2$$kFZJ
001043249 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b3$$kFZJ
001043249 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001043249 9141_ $$y2025
001043249 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001043249 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001043249 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001043249 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001043249 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
001043249 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
001043249 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001043249 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-13
001043249 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED PHYS : 2022$$d2024-12-13
001043249 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-13$$wger
001043249 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-13
001043249 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-13
001043249 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
001043249 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-13
001043249 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001043249 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-13
001043249 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-13
001043249 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-13
001043249 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
001043249 920__ $$lyes
001043249 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
001043249 980__ $$ajournal
001043249 980__ $$aVDB
001043249 980__ $$aUNRESTRICTED
001043249 980__ $$aI:(DE-Juel1)INM-4-20090406
001043249 980__ $$aAPC
001043249 9801_ $$aAPC
001043249 9801_ $$aFullTexts