001043250 001__ 1043250
001043250 005__ 20250624202315.0
001043250 0247_ $$2doi$$a10.48550/ARXIV.2505.06786
001043250 037__ $$aFZJ-2025-02800
001043250 041__ $$aEnglish
001043250 1001_ $$0P:(DE-Juel1)195920$$aJung, Niklas J.$$b0$$eCorresponding author$$ufzj
001043250 245__ $$aThe Quantum Optical Master Equation is of the same order of approximation as the Redfield Equation
001043250 260__ $$barXiv$$c2025
001043250 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1750750007_10827
001043250 3367_ $$2ORCID$$aWORKING_PAPER
001043250 3367_ $$028$$2EndNote$$aElectronic Article
001043250 3367_ $$2DRIVER$$apreprint
001043250 3367_ $$2BibTeX$$aARTICLE
001043250 3367_ $$2DataCite$$aOutput Types/Working Paper
001043250 520__ $$aQuantum master equations are widely used to describe the dynamics of open quantum systems. All these different master equations rely on specific approximations that may or may not be justified. Starting from a microscopic model, applying the justified approximations only may not result in the desired Lindblad form preserving positivity. The recently proposed Universal Lindblad Equation is in Lindblad form and still retains the same order of approximation as the Redfield master equation [arXiv:2004.01469]. In this work, we prove that the well-known Quantum Optical Master Equation is also in the same equivalence class of approximations. We furthermore compare the Quantum Optical Master Equation and the Universal Lindblad Equation numerically and show numerical evidence that the Quantum Optical Master Equation yields more accurate results.
001043250 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001043250 588__ $$aDataset connected to DataCite
001043250 650_7 $$2Other$$aQuantum Physics (quant-ph)
001043250 650_7 $$2Other$$aFOS: Physical sciences
001043250 7001_ $$0P:(DE-HGF)0$$aRosati, Francesco$$b1
001043250 7001_ $$0P:(DE-HGF)0$$aRath, Gabriel L.$$b2
001043250 7001_ $$0P:(DE-Juel1)184630$$aWilhelm-Mauch, Frank$$b3$$ufzj
001043250 7001_ $$0P:(DE-HGF)0$$aSchuhmacher, Peter K.$$b4
001043250 773__ $$a10.48550/ARXIV.2505.06786
001043250 909CO $$ooai:juser.fz-juelich.de:1043250$$pVDB
001043250 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195920$$aForschungszentrum Jülich$$b0$$kFZJ
001043250 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184630$$aForschungszentrum Jülich$$b3$$kFZJ
001043250 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001043250 9141_ $$y2025
001043250 920__ $$lyes
001043250 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x0
001043250 980__ $$apreprint
001043250 980__ $$aVDB
001043250 980__ $$aI:(DE-Juel1)PGI-12-20200716
001043250 980__ $$aUNRESTRICTED