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We investigate quantum phase transitions in a topological Josephson junction with an embedded ferromag-
netic layer, revealing a rich landscape of critical phenomena. The low-energy excitations comprise Majorana
fermions propagating along the junction, coupled to the magnons in the ferromagnet. Based on mean-field and
renormalization group arguments, we predict Berezinskii-Kosterlitz-Thouless (BKT) transitions in this system,
both in the case of a magnetic easy-plane and weak easy-axis anisotropy. In the latter case, this is based on an
emergent effective easy plane, spanned by the easy axis and the component of the magnetization, which couples
to the Majoranas. We conclude by presenting a conjecture for the full phase diagram of the model. It covers BKT
transitions as well as exotic multicritical and supersymmetric points known from related models of interacting

real fermions and bosons.

DOLI: 10.1103/PhysRevB.111.205428

I. INTRODUCTION

During the ongoing efforts to study and control Majorana
modes in condensed matter systems [1-3], a variety of them,
e.g., topological insulator-superconductor structures [4,5],
quantum anomalous Hall insulator films [6,7], Kitaev spin
liquids [8], and iron-based superconductors [9], have proven
to be promising platforms to host these exotic quasiparti-
cles. Signatures of Majorana modes were also claimed in the
van der Waals CrBr;/NbSe, heterostructure [10]; however,
these were later called into question because of a topolog-
ically trivial Yu-Shiba-Rusinov state reported in the same
system [11].

In this work, we focus our interest on long Josephson
junction geometries comprised of s-wave superconductors
proximity coupled to the surface states of a three-dimensional
(3D) topological insulator (TT). These structures have been
shown to resemble junctions of spinless two-dimensional
Px + ip, superconductors, which are able to host Majorana
modes [12,13].

Depositing a ferromagnetic strip in such a junction opens
possibilities of manipulating the associated Josephson current
and quasiparticle states [14—17]. However, when studying the
effect of a ferromagnet’s magnetization on the electronic prop-
erties, one has to keep in mind that the magnetization itself is
not perfectly rigid, but may exhibit dynamics, as described by
the Landau-Lifshitz-Gilbert equation.
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In particular, in Ref. [18] such a setup has been stud-
ied under the assumption of a strong magnetic easy-axis
anisotropy. There, the authors found that the spatial and tem-
poral stiffness of the magnetization can stabilize a phase with
spontaneous Z,-symmetry breaking, in which the magnetiza-
tion is tilted away from the easy axis and the one-dimensional
Majorana fermions consequently gapped out. Solitonic exci-
tations in this phase carry zero-dimensional Majorana bound
states. A closely related system of an antiferromagnet coupled
to the edge of a p. + ip, superconductor, known since as
Grover-Sheng-Vishwanath model, was analyzed numerically
in Ref. [19]. The phase transition in this model was identified
to belong to the supersymmetric tricritical Ising universality
class.

The present work proposes an approach that encompasses
arbitrary magnetic anisotropies. It predicts novel quantum
phases in the easy-plane and weak easy-axis regime while also
reproducing the strong easy-axis limit addressed in Ref. [18].
To this end, we derive an effective field theory from the
full model for each case, motivated by examining the corre-
sponding mean-field picture. Performing a momentum-shell
renormalization group (RG) analysis, we identify Berezinskii-
Kosterlitz-Thouless (BKT) transitions of the system and find
that the magnetic stiffnesses are responsible for stabilizing any
(quasi-)long-range order.

We conclude with a conjecture for the complete phase
diagram of the model, including both the (strong-coupling)
tricritical Ising and (weak-coupling) BKT behavior in the
easy-axis regime, as well as possible novel multicritical
points.

II. MODEL

We consider the surface of a three-dimensional strong
TI, covered by a superconductor-ferromagnet-superconductor
(SMS) junction (see Fig. 1). The TI surface states can be
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FIG. 1. Considered geometry of a superconductor-ferromagnet-
superconductor (SMS) junction of width W and thickness D on
the surface of a 3D strong topological insulator (TI) with a phase
difference § between the superconductors. The low-energy physics
of the 1D junction is described by counterpropagating Majorana
fermions (MF) g, which are coupled by the dynamic magneti-

zation M(y) = |M| - m(y).

described by a single Dirac cone with Fermi velocity vp and
a chemical potential p. Due to the proximity effect, the s-
wave superconductors induce superconducting gaps Age*%/2,
where the sign of the phase =+ refers to the left-/right-hand
side of the junction, respectively. The magnetization M of the
ferromagnetic insulator induces an effective exchange field
ﬁeff = oM in the surface of the TI, coupling to the electronic
spins.

In Ref. [18] it has been shown, akin to the seminal work by
Fu and Kane [12], that by treating the magnetization term as
a small perturbation for a fixed phase difference between the
superconductors 6 = 7, the low-energy physics of the system
can be described by two counterpropagating Majorana modes
Xr/L in the junction, hybridized by the x component of the
magnetization. The corresponding Hamiltonian reads

v .
Hy, = /d)’[ - E(XRayXR — XLoyxL) + lgmxXRXL]»
@.1)

and

with m = M/|M|, o
effective fermionic velocity v >~ Jl cos(uW/ vr)| vg in the
experimentally relevant regime p >> a|M|, Ao.

Additionally, we introduce a micromagnetic description of
the magnetization dynamics with an exchange coupling A and
scalar anisotropy B in z direction (easy axis if B > 0, easy
plane if B < 0). Under the assumption of sufficiently small
width W, such that 7m(r) >~ m(y), the magnetization dynamics
can be described by the Lagrangian

coupling constant g =~ a|M| Y
2

Ly =Mp(l —cosb) — cos? 6,

2.2)

[(9 " + (¢')? cos? 0] +

where the angles [6(y), ¢(y)] parametrize the magneti-
zation direction in spherical coordinates 7 = (sin 6 cos ¢,

M2A
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FIG. 2. Schematic phase diagram for the case of a strong easy-
axis anisotropy B. The Peierls-like instability leading to a tilting of
the magnetization away from the (easy) z axis due to the magnon-
Majorana interaction is stabilized by the stiffnesses M and A.

sin @ sin ¢, cos #)7. In order for the equation of motion cor-
responding to £, to be the dissipationless Landau-Lifshitz-
Gilbert equation, we fix M = |M|/y with gyromagnetic
ratio y.

Altogether, the effective Euclidean action we are going to
study reads

- /dtdy[%)‘(ax — iM(3,9)(1 — cos )
2 2 B
((8 0)” + (d,¢)” cos 29) — —cos 0

+ 2.3)

N0 N

XX sin900s¢],

with the two-component Majorana spinor x = (xR, x)T,
X = x"vo, the Dirac matrices yy = o, and y; = oy, as well
as d = %)/08, + y10y.

III. RECAP OF RESULTS FOR STRONG
EASY-AXIS ANISOTROPY

In Ref. [18], the case of a strong easy-axis anisotropy
B >0 for this model was considered, such that
my, my, < 1 throughout. In this regime, the authors found a
quantum phase transition between a massive (m,) % 0 and
a massless (m,) = 0 phase with critical Majorana fermions
(central charge ¢ = 1/2) to take place at sufficiently large
M and/or A. The corresponding spontaneous symmetry
breaking, leading to a nonzero vacuum expectation value of
m, in the massive phase, is in mean-field theory found to
be of Peierls type (m,)yp ~ e 5/ ¢ The parameters M and
A act as stiffnesses of the magnetization dynamics in time
and space, respectively, stabilizing the mean-field result and
thus the broken symmetry against quantum fluctuations. The
larger the anisotropy, and thus the smaller (m, )y, the larger
the critical stiffnesses were found to be. The resulting phase
diagram is sketched in Fig. 2.
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FIG. 3. Plots of the mean-field ground-state energy E}F (6, ¢), given by (4.1), divided by the easy-plane anisotropy strength (—B) for a
fixed value of the coupling constant g = 0.01. The small diagrams show the projection onto the unit sphere.

Equivalently, one can think of M and A as controlling
the nonlocality of an effective 4-Majorana interaction. The
corresponding correlation lengths of this interaction read
&, ~ +/A/B in space and & ~ M/B in time. The interaction
can be shown to be RG irrelevant in the local case, i.e., if
&, vE S A~! with some short-distance cutoff A~!, such that
only sufficiently large values of A and M enable the possibility
of a phase transition at strong coupling.

Numerical analyses of similar models [19,20] suggest the
corresponding phase transition to belong to the tricritical
Ising (TCI) universality class with ¢ = 7/10. This can be
understood as a consequence of the Majorana character of
the fermions, since a theory of free Majoranas is equivalent
to the critical Ising phase with central charge ¢ = 1/2. The
TCI class is then the most natural way to transition from such
a gapless phase to one with an Ising-like broken symmetry.
Note that domain walls in the gapped phase furthermore carry
the coveted Majorana zero modes.

IV. EASY-PLANE ANISOTROPY

In contrast to the case discussed above, in the follow-
ing we are going to consider an easy-plane anisotropy with
B < 0, before returning to the case B > 0 in Sec. V. One-
dimensional ferromagnetic chains with a sufficiently large
easy-plane anisotropy are known to be well described by
an XY-type model [21]. If the continuous symmetry in the
easy plane is broken by means of a Zeeman field, the long-
wavelength dynamics can be mapped to a sine-Gordon action
for the azimuthal angle ¢ and the Zeeman field can thus induce
a BKT transition [21,22]. In the following, we will see that
the Majorana-magnon interaction in our system plays a very
similar role to such a Zeeman field by breaking the continuous
symmetry and pinning the magnetization.

A. Mean-field theory

Integrating out the fermions from (2.3) and for now simply
assuming 6 and ¢ to be constant, one finds the mean-field

ground-state energy density E}' to read

B ~
E(I)V[F(Q, Q) = —3 cos’ 6 + g

X {ln (i—z sinzécosz(p) — 1}, “4.1)

where we introduced the dimensionless parameters
B=B/(wA?) and g=g/(vA). The resulting energy
landscape for different values of (—B) and g is plotted in
Fig. 3.

For large values of (—B) > &, the first term in (4.1) dom-
inates and the situation resembles the pure easy-plane picture
one would expect: the energy is minimal for configurations
with 7 in the x-y plane, i.e., with & = 7 /2, and there is an
approximate continuous symmetry regarding rotations around
the z axis, i.e., the energy does not depend on ¢. This suggests
the strong easy-plane case to correspond to a phase with ¢
fluctuating freely, while 6 is fixed to 7 /2, i.e., a pure XY
model. If in contrast (—B) « g%, the interaction with the
Majorana fermions dominates and leads to pronounced min-
ima on the x axis at ¢ = 0 and ¢ = & (still with 8 = 7 /2).
With regards to the action (2.3), this signals a fermionic gap
opening with a spontaneous Z, symmetry breaking akin to
the strong easy-axis case discussed in Sec. III. Note however,
that there the mean-field minima were exponentially close to
each other, whereas here they lie on opposite ends of the unit
sphere. In analogy to our earlier discussion, we then expect the
stability against quantum fluctuations of this massive phase,
emerging in the mean-field picture, to be dependent on suf-
ficiently large values of the stiffnesses A and/or M. The less
pronounced the minima, i.e., the larger (—B) compared to g,
the larger the A and M values required for the stability be-
come. If the stiffnesses are too small, the minima get smeared
out and the system resides in a massless phase with free ¢.

Note that we operate here and below under the assumption,
that even the small stiffnesses are large enough to sufficiently
suppress fluctuations in # direction, i.e., fluctuations out of the
easy plane, which is reasonable for a ferromagnet.

.2 2
— sin” 0 cos” ¢
VA2
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B. Effective theory near x-y plane and RG analysis

In the strong easy-plane anisotropy case, (—B) > &, we
saw that it is natural to limit the theory to the x-y plane and
only consider small fluctuations around it, & ~ 7 /2 + 36 with
86 <« 1, as is reflected in the mean-field results in Fig. 3.
Furthermore, the mean-field picture suggests that for the pos-
sible phase transition to a phase with massive fermions and
the rotational ¢ symmetry broken down to a spontaneously
broken Z, symmetry, only configurations in the x-y plane
are of importance as well. We therefore proceed by deriv-
ing an effective field theory valid in the vicinity of the x-y
plane.

Replacing 6 = /2 + 46 in the action (2.3) and only keep-
ing terms involving 86 up to Gaussian order, it follows

S~ —iM/dr dy(3fgo)+/dr dy[%iax + iM (3, ¢)86
A 2 2 B_, &._
+ 5((3);39) + (0yp)7) — 589 + EXX cosp|. (4.2)

The first term is a theta term, which is trivial in the present
case and can be omitted. Integrating out §6 yields

v
S = fdrdy |:§)'(8x + 5)‘()( cosgp]

2
" 1 / dwdqg M?o? 4 AL @.3)
2| Gap o\ g g TAT puer G
where ¢(y, 7) = ‘Z;Td)? @0 " and we introduced

the new parameter A’, which microscopically equals A but
scales differently under RG than the A already present. In
particular, we find at tree-level dA’/dl = —2A’. A’ is thus
strongly irrelevant and will be omitted in the following. In
Appendix B, we explicitly check that even if
A’A? > (—=B) holds microscopically, the A’ term
can safely be neglected from the outset with-
out  qualitatively  altering the  resulting  phase
diagrams.

Additionally, we will see that a cos2¢ term is generated
under RG flow and the resulting effective theory can thus be
written as

1/1
S = /d‘r dy [g)_(ax + 5(;(3r¢)2 +C(3x¢)2>

+ucos2B¢ + §7<X cos ,qu]. (4.4)

Here, we defined B> = /—B/(M?A), the effective bosonic
velocity ¢ = /—BA/M? and the rescaled field ¢ = ¢/B. Mi-
croscopically, u = 0.

This model is evocative of the supersymmetric sine-
Gordon (SSG) model, which it corresponds to for &=
—4B%u and u < 0. It is known that the SSG model always
flows to a gapped phase [23], which can be checked to be
consistent with Egs. (4.6)—(4.8).

Employing a momentum-shell RG analysis, for which
the details can be found in Appendix A, yields the flow

equations [up to second order in i = u/(vA?) and ] below.
They are valid as long as 82 > 7 /2 and read

25 2
de _ P8 (”— _ 1>c, (4.5)
dl  16mv/c\ 2

dIBZ B v2 6.2 ,34§2

dal _EC'?ﬂ v 8mwv/c’ (4.6)

~ 2 ~
@—T( —’3—>—§ 4.7)
dl 2w 8
dg (B v,
T g(l i -8 u), 4.8)

where Cj/, are numerical constants (see Appendix A for de-
tails). Similar flow equations for this type of model have been
obtained in Ref. [24].

From Eq. (4.5) follows an emergent Lorentz symmetry.
The flow of the remaining three parameters, starting in the
it = 0 plane relevant for this problem, is shown in Fig. 4(a). It
exhibits the characteristics of a BKT transition: there is a line
of fixed points on the ,32 axis, and a transition near /32 =4,
from a regime with the couplings running to zero (orange) to a
strong-coupling regime with § — oo and &t — —oo (purple).

This corresponds to a phase transition from unbounded
fluctuations of ¢, being described by a free massless theory,
to a massive phase with (¢) = 0 or m, i.e., the magnetization
being pinned to the x axis, spontaneously breaking the inver-
sion symmetry. An expectation value (@) # £ /2, and thus
(my) # 0, gaps out the Majorana fermions.

Plotting the resulting phase diagram in terms of the orig-
inal parameters of the problem in Fig. 4(b), reveals that the
RG considerations confirm the mean-field picture: the larger
the easy-plane anisotropy (—B), the larger the stiffnesses
A and/or M need to be in order to stabilize the massive
phase.

V. EASY-AXIS ANISOTROPY

In Sec. I, we recapped results of an earlier work for
the case of an easy-axis anisotropy B > 0 of such a mag-
nitude, that only configurations of the magnetization with
my, my, < 1, i.e., near the z axis, were of interest. For weaker
easy-axis anisotropies, no such immediate simplifications of
the problem are obvious. Still, in the following, we are going
to attempt a generalization to weaker easy-axis anisotropies
based on observations within mean-field theory: there, as we
will see below, a regime can be identified in which an ef-
fective easy plane is spanned by the easy axis and the axis
perpendicular to the junction, along which the interaction
with the Majoranas takes place. This allows us, using similar
arguments as above, to again postulate an effective field theory
for which an RG analysis can be performed.

We would like to stress, however, that, compared to the pre-
vious section, the arguments that lead to the effective theory
here are of rather conjectural character. Still, we interpret the
consistency between the mean-field and RG results to be an
indication of the merit of this approach as a step towards an
understanding of the full phase diagram.
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(b) ; g=10.01

0.04 0.06
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FIG. 4. (a) RG flow corresponding to Eqs. (4.6)—(4.8) starting in the & = O plane. The characteristic BKT flow with a transition from a
regime with &, § — 0 (orange) to a strong-coupling regime (purple) is evident. The inset shows the same diagram from a rotated perspective
to make the flow towards negative i visible. (b) Resulting phase diagram in terms of the original parameters at g = 0.01, showing increasing
critical values of the stiffnesses for increasing anisotropy (A = A/v, M = M/A). The slope of the critical line diminishes when increasing the

coupling constant g.

A. Mean-field theory

In the easy-axis case B > 0, configurations with /7 pointing
in z direction will be important. In the parametrization we
used until now, this is problematic, as ¢ is not well defined
if 6 = 0 or 7. Let us therefore introduce new angles (n, V)
with which 7 = (sin#cos ¥, —cos 5, sinn siny)”. The re-
sulting mean-field ground-state energy density is plotted in
Fig. 5 for different values of B. Analogously to the easy-plane
case, at weak anisotropies B < g the interaction dominates
and leads to minima near the x axis, whereas at B > & the
regime discussed in Sec. III with minima near the z axis is
recovered. For B ~ g?/2, the system resides in a transitional
regime between these two edge cases, as the minima, stem-
ming, respectively, from interaction and anisotropy, merge.
Remarkably, this results in an energy landscape, which re-
sembles an easy-plane anisotropy, as the energy is minimal
and nearly degenerate for all v at n = /2. Effectively, in

¥4

0.50

Uy 075 0.5

100 00

this regime one can think of an easy plane being spanned by
the easy-axis direction and the magnon-Majorana interaction.
Mean-field theory thus suggests that here only configurations
in the x-z plane are of importance, as furthermore the energy
barriers for fluctuations in n direction are always larger than
for the ones in  direction. In analogy to our approach of the
easy-plane case, we therefore suggest the low-energy physics
to be reasonably well captured by an effective theory for i,
which is valid near n = 7 /2.

B. Effective theory near x-z plane and RG analysis

Motivated by mean-field theory, we thus only consider
small fluctuations out of the x-z plane and take n >~ 7 /2 + §n
with §n < 1. Once again, only keeping terms involving 7
up to Gaussian order, subsequently integrating out én and
omitting the irrelevant A’ contribution, results in an action of

z Iz

] L]
0.002 0.005

0.01 anisotropy strength

(easy-axis)

FIG. 5. Plots of the mean-field ground-state energy E)™ (5, ) divided by the easy-axis anisotropy strength B for a fixed value of the
coupling constant g = 0.01. The small diagrams show the projection onto the unit sphere.
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FIG. 6. (a) RG flow corresponding to Egs. (4.6)—(4.8). As compared to Fig. 4, an additional BKT transition to a different strong coupling
regime (it — 00, g — 0) emerges, most clearly visible in the vicinity of the g = O-plane. The interpolation between the BKT transitions in
the &t = 0 and the g = 0 plane forms a critical surface, separating the different strong-coupling regimes (green) from the one with i, g — 0
(red). (b) Resulting phase diagram in terms of the original parameters at g = 0.01, showing a nonmonotonous behavior of the critical values
of the stiffnesses as a function of the anisotropy. This can be linked to the observation that in mean-field theory the energy landscape becomes
shallowest and thus allows for the largest fluctuations at some finite value of B.

the form (4.4),
v _ 1 1 2 2
S = dt dy E)(a)( + 5 ;(QT\IJ) + c(3:¥)

+u0082,3\1/+§)_()(008,3‘11i|, (GH))

where now 8% = ./B/(2M?A), ¢ = \/AB/(2M?), u = B/4,
and W = ¢r/B. Crucially, even though this is of course the
same theory with the same flow equations (4.5)—(4.8) as in
the easy-plane case, here u # 0 microscopically, which results
in a more involved phase structure. Specifically, note that
positive values of iz slow and may even revert the growth
of g. If the initial value of # is sufficiently large, the flow
might lead into a different strong-coupling regime than the
one above (which is still present here, of course), namely one
with # — oo and g =0, see Fig. 6(a). This would hint at
() = £ /2, i.e., the magnetization pointing in z direction,
corresponding to the regime with critical Majorana fermions
discussed in Sec. III. In between these two possible strong-
coupling limits, & and g are growing in competition with each
other. Rigorously differentiating between the strong-coupling
regimes [green in Fig. 6(a)] is not possible in this framework,
on account of the derived flow equations only being valid
for 2 > m/2 and the result of a weak-coupling expansion.
Still, the BKT transitions near the g 2 axis are well controlled.
This allows the identification of a massless phase (red), where
it, 8 — 0 with ¢ fluctuating without bound.

Looking at the resulting phase diagram at fixed g in the
M?A-B plane shows a nonmonotonous behavior of the crit-
ical value of the stiffnesses with a maximum at finite B
[see Fig. 6(b)]. This is in agreement with what can be ex-
pected from the mean-field picture: the energy landscape is
the shallowest in the transitional regime between weak and

strong anisotropy, which is why there the largest values for
the stiffnesses are necessary in order to stabilize a phase with

(¥) #0.

C. Experimental accessibility

Our analysis is primarily focused on qualitative aspects of
the quantum phase structure of the given model. Still, for the
sake of completeness, we proceed by roughly estimating the
experimental accessibility of the identified relevant parameter
regimes.

In Refs. [25,26], evidence for magnetic exchange gaps
a|1\71 | induced in TI surface states via covering with a fer-
romagnetic insulator as large as several tens meV has been
provided. Assuming a superconducting gap corresponding
to a few Kelvins as the high-energy cutoff vA = Ag ~
0.1-1 meV, we thus see that the coupling constant g~
o|M| % can be on the order of the cutoff even for very con-
servative estimates of the magnetic exchange coupling and/or
very narrow junctions. The small values of g/ Ao, needed for
our analysis to hold true, can therefore be presumed to be
readily attainable.

In order to estimate the regions which are accessible in
the M?A-B phase diagram with realistic materials, consider
for example the 3D TI Bi,Ses. Its surface states exhibit
a Fermi energy of p >~ 300meV and a Fermi velocity of
vr >~ 400 meV nm [27,28]. The corresponding superconduct-
ing coherence length is & = vp/Ay ~ 400-4000 nm. Values
for the micromagnetic parameters of ferromagnetic insula-
tors (see, e.g., Refs. [29-33]) typically fall in the range
of A/(DW) ~ 1072-10~" Jm~! for the exchange stiffness,
B/(DW) ~ 10°~10° Jm 3 for the scalar anisotropy constant
as well as |1\7I|/(DW) ~ 10*-10° Am~! for the saturation
magnetization, which leads to a ratio between saturation

205428-6



BEREZINSKII-KOSTERLITZ-THOULESS TRANSITIONS ...

PHYSICAL REVIEW B 111, 205428 (2025)

magnetization and gyromagnetic ratio (y ~ 10'' s=!T~!) of
M/(DW) ~ 10-10%/Am~3. Here, D is the thickness of the
magnetic covering. The characteristic length scale over which
the magnetization varies is given by the magnetic exchange

length l.x = V2A/ M0|M |> ~ 10-400 nm. As indicated in the
listed references, these properties are generally not purely
material specific, but depend on the geometry and temperature
of the sample.

The values of the dimensionless parameters we are in-
terested in are given by B = vB/A} as well as M?A =
vM?A/A}. They are thus proportional to v o | cos(uW/vg)|.

With the given estimates, we find experimentally viable
parameters, depending on the width W and thickness D of
the magnetic film, to read B >~ 107°-1072 2% | cos(uW/vr)|,
M?*A ~ 1072-10! (%)ﬂ cos(uW/vr)|. Consequently, due to
the large stiffnesses naturally associated with ferromagnets,
in order to roughly land in the region of the phase diagram
that is examined in Fig. 6, a small cross-sectional area with,
e.g., D ~W ~ 0.6-0.8 nm is necessary, which corresponds
to few atomic layers in each direction. While typically the
dimensions of magnetic thin films for applications like spin-
tronics range from a few nanometers to a few micrometers,
atomically thin layers exhibiting ferromagnetism have been
successfully realized in the past (see, e.g., Refs. [33-36]).
A reduction of the saturation magnetization, for example in
diluted ferromagnets, would also allow for the parameters
in larger, more readily available junction geometries to be
found in the desired region. It can thus be said that the pre-
dicted BKT transition likely resides at the boundary between
current experimental capabilities and what are foreseeable
advancements.

It is worth noting that generally a larger number of fermion
flavors stabilizes the mean-field results, where an ordinary
(complex) fermion can be understood as two (real) Majo-
rana fermions. Therefore, if we considered a one-dimensional
channel of ordinary instead of Majorana modes (e.g., quantum
Hall edge states), this BKT transition would likely not be
attainable in realistic systems, since in that case even smaller
stiffnesses of the magnetization would be necessary to access
it. It is the Majorana nature of the fermions that allows the
transition to take place at higher values of M and A.

In contrast, for the TCI transition at strong easy-axis
anisotropies discussed in Sec. III, consider the case where
B ~ g~ 1. With the estimates from Ref. [18] (assuming a
ratio AB/M? ~ 10 in accordance with the experimentally rel-
evant values), we find for this transition critical stiffnesses of
M?A ~ 10°. According to our estimates above, this transition
is thus accessible by devices with a more readily attainable
magnetic cross-sectional area of DW ~ 100 nm?,

VI. CONJECTURED PHASE STRUCTURE
IN STRONG-COUPLING REGIME AND FULL
PHASE DIAGRAM

As mentioned above, within our framework it is not
possible to rigorously differentiate between the different
strong-coupling phases, which may emerge for B > 0. Let us
here speculate about this part of the phase diagram, which is
not accessible to our calculations, and subsequently present a

conjecture for the full phase diagram, resulting from combin-
ing these speculations with our analysis in this paper.

We expect three strong-coupling phases to exist for B > 0:

(i) one with the x-inversion symmetry spontaneously bro-
ken ({(m,) = %1, purple in Fig. 7),

(ii) one with z-inversion symmetry spontaneously broken
({m;) = £1, blue in Fig. 7),

(iii) and one with both x and z inversion broken (0 <
| (my) |, | (m;) | < 1, pink in Fig. 7).

The latter two phases are the ones identified and discussed
in Sec. III, expected to be separated by a TCI transition.
This claim can be further supported by noticing that the large
B limit corresponds to BW¥ being restricted to small values
in (5.1). Expanding the cosine terms for small arguments
then yields the action of the Gross-Neveu-Yukawa model, for
which a TCI transition has been theorized in Ref. [19].

In contrast, the transition between (i) and (iii) is one be-
tween two massive phases. It seems therefore most natural
for it to belong to the Ising universality class with ¢ = 1/2.
This is supported by the fact that close to the x axis, where
this transition happens, i.e., at n ~ /2 and ¥ ~0 or 7,
integrating out the (massive) Majorana fermions, one arrives
at an effective ¢* theory.

The way in which the TCI and the Ising critical line con-
nect to the BKT transition remains an open question to be
investigated. A relation to the considerations in Ref. [37],
where a supersymmetric multicritical point at the intersection
of an Ising and a BKT transition is identified, seems very
likely. A possible connection to such kind of a supersym-
metric multicriticality is further supported by the similarity
between the supersymmetric sine-Gordon model and the ef-
fective theory that arises here. Together with the analysis and
discussion presented in Secs. III-V, we arrive at the conjec-
tured phase diagram presented in Fig. 7.

VII. SUMMARY AND CONCLUSIONS

In this work, we propose topological superconductor-
ferromagnet-superconductor junctions as a platform for
hosting (1 4 1)-dimensional BKT and TCI phase transitions.
Criticality arises from the coupling between counterprop-
agating Majorana fermions and a dynamic magnetization,
which fluctuates either around an easy axis or within an easy
plane.

In the easy-plane case, such a BKT transition separates
a massless phase, with unbounded fluctuations of the mag-
netization within the easy plane, from a massive phase with
gapped out Majorana fermions and the magnetization pinned
to the axis perpendicular to the junction, spontaneously break-
ing a Z, symmetry. The massive phase is stabilized by the
spatial and temporal rigidity of the magnetic modes.

For the easy-axis anisotropy, the derivation of an effec-
tive theory is less straightforward than in the easy-plane
case. Starting from mean-field considerations, we arrived at
a conjecture for an effective low-energy theory based on an
emerging effective easy plane (oriented perpendicular to the
propagation direction of the Majorana modes). Therein, we
again identified a BKT transition separating a phase with un-
bounded fluctuations in the effective easy plane from a strong-
coupling regime with pinned magnetization, leading either
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M?A

isotropic
limit

easy-plane nisotropy

easy-axis anisotropy

FIG. 7. Conjecture for the full phase diagram at a fixed, finite g. The dotted boxes mark the areas for which we conducted an analysis
in this paper, the areas outside of that are a subject of speculation. The TCI transition in the dotted box (a) is discussed in Sec. III, the
BKT transitions in the dotted boxes (b) and (c) are analyzed and discussed in Secs. IV and V, respectively. The (green) strong coupling
phase of Fig. 6(b) for B > 0 is here comprised of the phases colored blue, pink and purple. The speculations of Sec. VI furthermore lead
us to expecting an Ising transition to take place between a phase with both x- and z-inversion symmetry spontaneously broken (pink) and
one with x-inversion spontaneously broken (purple). The way in which the Ising and the TCI line connect to each other and/or the BKT
line remains an open question. The isotropic limit B — 0 (dark gray) is out of the scope of this work but likely characterized by strong

fluctuations.

to a phase with massive fermions or, if the magnetization
is pinned to the easy-axis direction, a different phase with crit-
ical Majoranas. This pinning of the magnetization is again en-
abled by the magnetic stiffnesses dampening the fluctuations.
Finally, we presented a suggestion for the phase dia-
gram of the topological SMS junction spanning all values of
the magnetic anisotropy, based on mutually complementary
mean-field and RG arguments. For the regions in parameter
space not accessible within our framework, we provided spec-
ulative conjectures including a possible multicriticality.
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APPENDIX A: DERIVATION OF RG FLOW EQUATIONS

In the following we are going to sketch the derivation of
the flow equations (4.5)—(4.8) from the action (4.4), where,

. . ”
for convenience, we shift B¢ — B¢ — 7

1/1
S = / dr dy [ g)‘(ax + E(E(afqb)z - c(axfp)z)

So

—1cos2Bp + g;zx sin ﬂ¢:|. (A1)

Sint

To this end, we employ a Wilson RG and choose a scheme
in which the bosonic velocity ¢ flows while the fermionic
one v stays fixed. Following the standard approach [38,39],
the fields are split into slow (w?/v? + ¢> < A%/b*) and fast
(A?/1? < w*/v? + ¢* < A?%) components (with v replaced by
¢ for the bosonic fields), x = x; + x5, ¢ = ¢5 + ¢r, and b =
¢!, 1 « 1. For the partition function one then has

7 — / DsDf e~ Sols1=Solf1=Sine[s+/1
— Z(J; / Dy e S0ls1 (e_sint[5+f])f (A2)

where (O), = zlf [ Df O e %1 denotes averaging over the
0
fast fields and Zg = [Df e~S]. With this, an effective
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action only containing slow modes can be obtained via
Ser[s] = Sols] — In (e~ mb*/)
= Sols] + SV[s] — 3[SPLs] = (sV[s1)’]
+06’, &, g ug’)

where S™[s] = ((Siuls + f1)") -
The first-order contributions evaluate to

(A3)

2
(cos2B¢),; = cos 2,3¢>S(1 — ﬂ—l),
T

2
(% 5in ) = Roxs sin m(l - f—ﬂl) (A4)

such that the flow equations at this level read

du ﬂ2 dg ﬂz

—=2ull——), —=g(l——).

dl 21 dl 4
Note that the mass and self-interaction of the bosonic field
become irrelevant for ﬂ2 > 27, while the fermion-boson in-

teraction becomes irrelevant for 2 > 4.
For the second order terms, one needs the fact that

(cos 2Bp(r) cos 2B¢(r)) y — (cos 2B¢(r)) s (cos 2Bp (1))

(AS5)

= % Z 08 2B(s(r) + o b (1 ))e 21/
o=t

dzp cosp-(r—r')
: [eXp <_4052/f @y P ) ) 1}’
(A6)

where r = (y, ct), p = (¢, w/c), and ff d?p implies integra-
tion over the fast momenta only. Since the integral over p
only includes values |p| >~ A, the main contribution to it stems
from |r — r’| < A~'. To follow, we can introduce the center of
mass R = (r + r')/2 and relative coordinates §r = r — " and
expand in small A 7.

For 0 = +1 then, the resulting operator is proportional to
cos 4B¢,, which we have seen to be irrelevant if g2 > /2.
Since we will focus on the region where either u or g are
marginal, i.e., 2r < B2 < 4, we discard this term and only
keep the 0 = —1 contribution.

Performing a gradient expansion of the cosine

c0s 2B (r) — ¢,(r")] = const. — 28%(Sr - 3p;)’, (A7)
we finally find
/ d*rd*r'[{cos 2B¢(r) cos 2B¢(r)) ;
— (03 2B¢(r) f (cos 28 (1)) /]
_Z’i: a / d°R (s ), (A8)

where we introduced the numerical constant C; = fooo dp

p*F(p) >0 with [, (‘2’;{';2 WP = SLF(Alr]) + O(@?). For

the plots in the main text we used C; = 8§, as follows from
employing a Gaussian cutoff fOA dp — [ dpe /N,

We proceed similarly for the remaining second-order
terms, discarding the generated 4-Majorana and j x sin38¢
terms as irrelevant in the region of interest. We find

/ d*r dr' (g (xp(OX () x () sin Bp(r) sin (),

lc

~ —— [ d°R cos2B¢s(R)
TV
1B%c? 1 2 2
_ T oIAL fd‘[ dy |:;(BI¢V) + v(a}’(pS) i| (A9)
as well as

/ & d®r' 3, x(r){sin B (r) cos 26(r)),
— (sin fp(r) ; (cos 2¢(r)) ]

2C
= _IBAzzlfdzR Xs(R) xs(R) sin Bos(R)

(A10)

with the numerical constant C, = fooo dp pF(p) > 0 and
C, = 2 for the Gaussian cutoff.

Plugging these results into (A3) yields the flow equa-
tions (4.5)—(4.8) given in the main text.

APPENDIX B: RG FLOW TAKING
INTO ACCOUNT A’A% > (—B)

Even though the parameter A" in Eq. (4.3) is strongly irrele-
vant, in the case A’A? > (—B) it is not immediately clear how
the (at least initially not neglectable) influence of A’ affects
the flow. Let us therefore rederive the RG equations at lowest
order in & and g taking A’ into account. We can write the
relevant action as

A'q*/B

1 [dgdw o
Sy =8+ — lpgol>, (B
2) @n)? g1l —Aqg?/BT"”
Lo 200" §=0.01,A" =100
3.5
3.0 4
2.5
<
&, 20
=3
1.5
1.0 4
0.5 4
0.0 T T T T T T T
0.00 0.05 0.10 0.15 (J.g() 0.25 0.30 0.35 0.40

FIG. 8. Same phase diagram as in Fig. 6, but with A’ = 100 taken
into account. Note the different scale compared to Fig. 6.
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where S is the action given in Eq. (4.4) and ¢y = ¢(I = 0) will
not be renormalized. With that, one finds

dA" ~ dﬁ ~ i 132

= A, — =2ul1-TAY— ),

dl di 21

dp -, B

2 —z(1-rA)= B2
dl g( ( )477) ®2

with
B 1 27
rdy=— / do
2 0

1+ A cos?6

(£sin*6 + £ cos? 0) (1 + A’ cos” ) — ”C—/i' sin? 6 cos2

(B3)

where A’ = A’A?/(—B). Note that I'(0) = 1. Let us here
for simplicity consider the Lorentz symmetric situation
v = ¢ = ¢p. Then

T'(A) = (14 A)"* cos (4 arctan \/X) (B4)

Generating in Fig. 8 as an example the same phase diagram
as shown in Fig. 6 of the main text while taking I'(A") into
account, with a value of A’(0) as large as A’(0) = 100, clearly
shows that quantitative, but no qualitative corrections occur.
Considering A" in second order in it and g makes the constants
Ci,> become dependent on A’. We do not expect this either to
lead to any qualitative changes to our findings.
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