001043283 001__ 1043283
001043283 005__ 20250917202326.0
001043283 0247_ $$2doi$$a10.1016/j.xcrp.2025.102658
001043283 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02809
001043283 0247_ $$2WOS$$aWOS:001540265100001
001043283 037__ $$aFZJ-2025-02809
001043283 082__ $$a530
001043283 1001_ $$0P:(DE-Juel1)178007$$aEberst, Alexander$$b0$$eCorresponding author$$ufzj
001043283 245__ $$aPerformance improvements through gradient layers in transparent passivating contact solar cells
001043283 260__ $$aMaryland Heights, MO$$bCell Press$$c2025
001043283 3367_ $$2DRIVER$$aarticle
001043283 3367_ $$2DataCite$$aOutput Types/Journal article
001043283 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1752831602_19934
001043283 3367_ $$2BibTeX$$aARTICLE
001043283 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001043283 3367_ $$00$$2EndNote$$aJournal Article
001043283 520__ $$aTransparent passivating contact solar cells using hydrogenated n-type nanocrystalline silicon carbide (nc-SiC:H(n)) utilize a double-layer stack consisting of one passivation-optimized and one conduction-optimized nc-SiC:H(n) layer. This double-layer configuration limits the fill factor (FF) due to the passivating layer’s low electrical conductivity. This study enhances this structure by introducing a gradient layer that transitions from passivating-like to conducting-like properties. While replacing the passivating layer alone does not improve performance, when combining it with an ultrathin passivating seed layer, the gradient layer effectively balances voltage and FF trade-offs. This results in higher device voltage and FF. Microstructural analysis shows hydrogen content near the crystalline Si interface similar to the double-layer approach but with increased electrical conductivity earlier in the layer stack. These improvements boost both FF and open-circuit voltage by 0.6% absolute and over 4 mV, respectively.
001043283 536__ $$0G:(DE-HGF)POF4-1212$$a1212 - Materials and Interfaces (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001043283 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001043283 7001_ $$0P:(DE-Juel1)191390$$aXu, Binbin$$b1$$ufzj
001043283 7001_ $$0P:(DE-Juel1)130219$$aBittkau, Karsten$$b2$$ufzj
001043283 7001_ $$0P:(DE-Juel1)130263$$aLambertz, Andreas$$b3$$ufzj
001043283 7001_ $$0P:(DE-Juel1)130285$$aRau, Uwe$$b4$$ufzj
001043283 7001_ $$0P:(DE-Juel1)130233$$aDing, Kaining$$b5$$ufzj
001043283 773__ $$0PERI:(DE-600)3015727-4$$a10.1016/j.xcrp.2025.102658$$gp. 102658 -$$p102658$$tCell reports / Physical science$$v6$$x2666-3864$$y2025
001043283 8564_ $$uhttps://www.cell.com/cell-reports-physical-science/fulltext/S2666-3864(25)00257-7
001043283 8564_ $$uhttps://juser.fz-juelich.de/record/1043283/files/1-s2.0-S2666386425002577-main.pdf$$yOpenAccess
001043283 8767_ $$8E-2025-00774-b$$92025-08-28$$a1200217077$$d2025-09-17$$eAPC$$jZahlung erfolgt
001043283 909CO $$ooai:juser.fz-juelich.de:1043283$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001043283 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178007$$aForschungszentrum Jülich$$b0$$kFZJ
001043283 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191390$$aForschungszentrum Jülich$$b1$$kFZJ
001043283 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130219$$aForschungszentrum Jülich$$b2$$kFZJ
001043283 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130263$$aForschungszentrum Jülich$$b3$$kFZJ
001043283 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130285$$aForschungszentrum Jülich$$b4$$kFZJ
001043283 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130233$$aForschungszentrum Jülich$$b5$$kFZJ
001043283 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001043283 9141_ $$y2025
001043283 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-27
001043283 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-27
001043283 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-27
001043283 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001043283 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL REP PHYS SCI : 2022$$d2024-12-27
001043283 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCELL REP PHYS SCI : 2022$$d2024-12-27
001043283 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T08:54:40Z
001043283 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T08:54:40Z
001043283 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-27
001043283 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-27
001043283 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-27
001043283 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001043283 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T08:54:40Z
001043283 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-27
001043283 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-27
001043283 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-27
001043283 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-27
001043283 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001043283 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001043283 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001043283 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001043283 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001043283 920__ $$lyes
001043283 9201_ $$0I:(DE-Juel1)IMD-3-20101013$$kIMD-3$$lPhotovoltaik$$x0
001043283 9801_ $$aFullTexts
001043283 980__ $$ajournal
001043283 980__ $$aVDB
001043283 980__ $$aUNRESTRICTED
001043283 980__ $$aI:(DE-Juel1)IMD-3-20101013
001043283 980__ $$aAPC