001     1043283
005     20250917202326.0
024 7 _ |a 10.1016/j.xcrp.2025.102658
|2 doi
024 7 _ |a 10.34734/FZJ-2025-02809
|2 datacite_doi
024 7 _ |a WOS:001540265100001
|2 WOS
037 _ _ |a FZJ-2025-02809
082 _ _ |a 530
100 1 _ |a Eberst, Alexander
|0 P:(DE-Juel1)178007
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Performance improvements through gradient layers in transparent passivating contact solar cells
260 _ _ |a Maryland Heights, MO
|c 2025
|b Cell Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1752831602_19934
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Transparent passivating contact solar cells using hydrogenated n-type nanocrystalline silicon carbide (nc-SiC:H(n)) utilize a double-layer stack consisting of one passivation-optimized and one conduction-optimized nc-SiC:H(n) layer. This double-layer configuration limits the fill factor (FF) due to the passivating layer’s low electrical conductivity. This study enhances this structure by introducing a gradient layer that transitions from passivating-like to conducting-like properties. While replacing the passivating layer alone does not improve performance, when combining it with an ultrathin passivating seed layer, the gradient layer effectively balances voltage and FF trade-offs. This results in higher device voltage and FF. Microstructural analysis shows hydrogen content near the crystalline Si interface similar to the double-layer approach but with increased electrical conductivity earlier in the layer stack. These improvements boost both FF and open-circuit voltage by 0.6% absolute and over 4 mV, respectively.
536 _ _ |a 1212 - Materials and Interfaces (POF4-121)
|0 G:(DE-HGF)POF4-1212
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Xu, Binbin
|0 P:(DE-Juel1)191390
|b 1
|u fzj
700 1 _ |a Bittkau, Karsten
|0 P:(DE-Juel1)130219
|b 2
|u fzj
700 1 _ |a Lambertz, Andreas
|0 P:(DE-Juel1)130263
|b 3
|u fzj
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)130285
|b 4
|u fzj
700 1 _ |a Ding, Kaining
|0 P:(DE-Juel1)130233
|b 5
|u fzj
773 _ _ |a 10.1016/j.xcrp.2025.102658
|g p. 102658 -
|0 PERI:(DE-600)3015727-4
|p 102658
|t Cell reports / Physical science
|v 6
|y 2025
|x 2666-3864
856 4 _ |u https://www.cell.com/cell-reports-physical-science/fulltext/S2666-3864(25)00257-7
856 4 _ |u https://juser.fz-juelich.de/record/1043283/files/1-s2.0-S2666386425002577-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1043283
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178007
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)191390
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130219
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130263
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130285
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130233
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1212
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL REP PHYS SCI : 2022
|d 2024-12-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CELL REP PHYS SCI : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:54:40Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:54:40Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:54:40Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Elsevier 09/01/2023
|2 APC
|0 PC:(DE-HGF)0125
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IMD-3-20101013
|k IMD-3
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-3-20101013
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21