001043284 001__ 1043284
001043284 005__ 20250724210254.0
001043284 0247_ $$2URN$$aurn:nbn:de:kobv:co1-opus4-70206
001043284 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02810
001043284 037__ $$aFZJ-2025-02810
001043284 041__ $$aEnglish
001043284 1001_ $$0P:(DE-Juel1)184646$$aClausnitzer, Julian$$b0$$eCorresponding author
001043284 245__ $$aNumerical solution of SPDEs on a class of two-dimensional domains and of random differential equations using PCE with exponential time differencing$$f2020-05-01 - 2023-10-31
001043284 260__ $$c2025
001043284 300__ $$a129 p.
001043284 3367_ $$2DataCite$$aOutput Types/Dissertation
001043284 3367_ $$2ORCID$$aDISSERTATION
001043284 3367_ $$2BibTeX$$aPHDTHESIS
001043284 3367_ $$02$$2EndNote$$aThesis
001043284 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1753339409_4439
001043284 3367_ $$2DRIVER$$adoctoralThesis
001043284 502__ $$aDissertation, Brandenburgische Technische Universität Cottbus-Senftenberg, 2024$$bDissertation$$cBrandenburgische Technische Universität Cottbus-Senftenberg$$d2024$$o2024-12-04
001043284 520__ $$aThe first part of this thesis deals with the numerical solution of semilinear parabolic stochastic partial differential equations on general two-dimensional C²-bounded domains. The existing exponential Euler time stepping scheme is used on two-dimensional domains, using a spectral approximation in space. Since the base functions are not given analytically, they are numerically approximated using a boundary element method combined with a contour integral method to solve nonlinear eigenvalue problems. An error analysis is given, and numerical experiments conclude the investigation of the method.The second part of the thesis compares the performance of non-intrusive and intrusive polynomial chaos expansion methods based on exponential time differencing schemes for a range of random ordinary and partial differential equations. It is shown in comprehensive numerical experiments that the two approaches are competitive for a range of different equations, but intrusive polynomial chaos becomes less efficient for polynomial nonlinearities of degree greater than two and breaks down for a reaction-diffusion equation exhibiting complex pattern formation behavior.
001043284 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001043284 588__ $$aDataset connected to DataCite
001043284 8564_ $$uhttps://doi.org/10.26127/BTUOpen-7020
001043284 8564_ $$uhttps://juser.fz-juelich.de/record/1043284/files/Clausnitzer_Julian.pdf$$yOpenAccess
001043284 909CO $$ooai:juser.fz-juelich.de:1043284$$popenaire$$popen_access$$purn$$pdriver$$pVDB$$pdnbdelivery
001043284 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184646$$aForschungszentrum Jülich$$b0$$kFZJ
001043284 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001043284 9141_ $$y2025
001043284 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001043284 920__ $$lyes
001043284 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001043284 980__ $$aphd
001043284 980__ $$aVDB
001043284 980__ $$aUNRESTRICTED
001043284 980__ $$aI:(DE-Juel1)JSC-20090406
001043284 9801_ $$aFullTexts