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Abstract

The first part of this thesis deals with the numerical solution of semilinear parabolic stochastic
partial differential equations on general two-dimensional C 2-bounded domains. The existing
exponential Euler time stepping scheme is used on two-dimensional domains, using a
spectral approximation in space. Since the base functions are not given analytically, they
are numerically approximated using a boundary element method combined with a contour
integral method to solve nonlinear eigenvalue problems. An error analysis is given, and
numerical experiments conclude the investigation of the method.
The second part of the thesis compares the performance of non-intrusive and intrusive
polynomial chaos expansion methods based on exponential time differencing schemes for a
range of random ordinary and partial differential equations. It is shown in comprehensive
numerical experiments that the two approaches are competitive for a range of different
equations, but intrusive polynomial chaos becomes less efficient for polynomial nonlinearities
of degree greater than two and breaks down for a reaction-diffusion equation exhibiting
complex pattern formation behavior.

Zusammenfassung

Im ersten Teil der vorliegenden Arbeit wird die numerische Lösung semilinearer parabolis-
cher stochastischer Differentialgleichungen auf zweidimensionalen C 2-berandeten Gebieten
untersucht. Das exponential Euler-Verfahren aus der Literatur wird auf zweidimensionale
Gebiete angewandt, wobei eine spektrale Approximation im Raum benutzt wird. Da die Basis-
funktionen nicht analytisch gegeben sind, müssen sie numerisch approximiert werden, wofür
eine Randelementmethode in Kombination mit einer Konturintegralmethode zur Lösung
nichtlinearer Eigenwertprobleme benutzt wird. Nach der Durchführung einer Fehleranal-
yse wird die Untersuchung dieser Methode mit numerischen Experimenten abgeschlossen.
Der zweite Teil der Arbeit vergleicht die Leistungsfähigkeit nicht-intrusiver und intrusiver
polynomieller Chaos-Methoden unter Benutzung exponentieller Integratoren für eine Reihe
zufälliger ordinärer und partieller Differentialgleichungen. Es wird in umfangreichen nu-
merischen Experimenten demonstriert, dass die zwei Methoden für die Lösung verschiedener
Gleichungen vergleichbar performant sind. Die intrusive polynomielle Chaos-Methode ist
jedoch weniger effizient für polynomielle Nichtlinearitäten vom Grad größer als zwei und
liefert keine korrekten Ergebnisse für Reaktions-Diffusionsgleichungen, deren Lösungen
komplexe Musterbildung aufweisen.
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Chapter 1

Scope of the thesis

This thesis will be concerned with two different kinds of partial differential equations (PDEs)
which involve randomness: Stochastic partial differential equations (SPDEs) in the first part
and initial value problems with random coefficients in the second part.
The first part of the thesis comprises Chapters 2 and 3. Parts of the chapters make up the paper
[21] which has been accepted for publication. In this part, we deal with a stochastic PDE
(SPDE) which contains a noise term defined as a Hilbert space-valued Wiener process. The
novelty in this work is the numerical solution of an SPDE on a two-dimensional domain with
a general C 2 boundary. Most works in the literature on SPDEs assume simple spatial domains
such as one-dimensional intervals or two-dimensional rectangles. In other theoretical works,
a general domain in a Euclidean space is assumed with Dirichlet boundary conditions (see for
example [12, 31, 32]). However, there are few works actually numerically solving an SPDE
on a spatial domain which is more complicated than an interval or a rectangle using a spectral
approach. The numerical solution of SPDEs on complicated domains was pointed out in [86]
as a topic for future research. Two- or higherdimensional spatial domains have barely been
investigated because they require more strict assumptions on the smoothness of the Wiener
process to guarantee existence and uniqueness of a solution. Also, they combine difficulties
arising in one spatial dimension, such as irregularity of the solutions and high or infinite
dimension of the noise, with problems related to the curse of dimensionality, i.e. massively
increased computational effort for higher dimensions. While recent works (see [22, 69]) deal
with solving stochastic wave and heat equations on a two-dimensional sphere, we focus in
this work on general two-dimensional planar domains which have a C 2 boundary.
The necessary mathematical preliminaries on SPDEs are provided in Chapter 2. In Chapter
3, we demonstrate how to apply a spectral approach for SPDEs to C 2-bounded domains by
numerically approximating the necessary base functions using a boundary element method.
We show how the accuracy of the approximated base functions depends on the number
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of used boundary elements. The numerical approximation of the base functions poses an
additional error source for the used time stepping scheme. An error bound is also derived,
and it is shown that it depends critically on the accuracy of the base function, reiterating the
need for a highly accurate set of numerically approximated base functions.
The second part of the thesis consists of Chapters 4 and 5. The main results of the chapters
have been submitted for publication, see also the preprint [20]. This part is concerned with the
use of exponential time differencing schemes for non-intrusive and intrusive polynomial chaos
methods. Exponential time differencing (ETD) schemes have turned out to be highly efficient
and stable for solving a wide range of initial value problems such as reaction-diffusion
problems – for an overview, see [54]. We investigate in this work to what extent these
benefits also apply to random initial value problems, and a reaction-diffusion system with a
random parameter. Both non-intrusive PCE (niPCE) and intrusive PCE (iPCE) have been
applied to a variety of problems in fluid dynamics [79], sensitivity analysis [93], modeling of
transport in porous media [43], reacting flow simulations [87] and many others. Intrusive
polynomial chaos requires a significant modification of the underlying program code, since
the PCE is inserted into the governing equation. Non-intrusive, sampling-based polynomial
chaos methods rely on using deterministic solvers to repeatedly solve the deterministic
problem resulting from sampling the input random variables. Given the program code of
solvers for deterministic problems, niPCE is straightforward to implement. Its performance
has been compared favorably to Monte Carlo methods [93]. Direct comparisons between
an iPCE and niPCE can be found in [83, 92], indicating that intrusive methods can compete
with non-intrusive methods as long as no strong nonlinearities and no long-term integration
is involved. These problems with intrusive methods, as well as difficulties dealing with sharp
dependencies in the stochastic parameter space, have also been noted in [34, p. 1] and [65,
pp. 1], as well as in [42, 70, 100].
The necessary mathematical preliminaries on PCE are given in Chapter 4. In Chapter 5,
we develop and implement niPCE and iPCE schemes based on three different schemes:
A simple explicit Euler scheme and two ETD schemes. We compare the performance of
iPCE and niPCE, for which naive Monte Carlo sampling, Quasi-Monte Carlo sampling and
Gaussian quadrature is used. It is seen that niPCE and iPCE yield similar errors for random
ordinary and partial differential equations involving a random linear or quadratic function.
For a cubic random nonlinear function, however, iPCE becomes unstable, and for a random
reaction-diffusion system only niPCE is viable. This reiterates the aforementioned problems
of iPCE dealing with sharp dependencies in the stochastic parameter space and with complex
behavior in random dynamical systems.
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Chapter 2

Stochastic partial differential equations -
Mathematical preliminaries

This chapter provides the theoretical framework for the first work of this thesis in Chapter 3,
where we solve stochastic partial differential equations of the form

dU(t) = [AU(t)+F(U(t))]dt +dW Q(t) (2.0.1)

(see also (2.2.7)). In the course of this chapter, we explain the components of this equation
part by part, we then define what a mild solution of the equation is and we then show
existence and uniqueness of a mild solution.
The structure of this chapter is as follows. Firstly, we will recall in Section 2.1 normal
distributions, Wiener processes and stochastic integrals in a Hilbert space setting. Gaussian
measures and Q-Wiener processes W Q are introduced in Sections 2.1.1 and 2.1.2 and the
Hilbert space-valued stochastic integral is recalled in Section 2.1.3. The linear operator A
in (2.0.1) is required to be a generator of a C0-semigroup as well as an analytic semigroup.
We give an introduction to semigroup theory and mild solutions in Section 2.2 and recall
the concepts of C0-semigroups (Section 2.2.1) and analytic semigroups (Section 2.2.2). It is
then explained in Section 2.2.3 what a mild solution of equation (2.0.1) is and the existence
and uniqueness of a mild solution is discussed under suitable assumptions on the operator
A and the nonlinearity F . We then give an overview in Section 2.3 on how to numerically
approximate solutions for the SPDE. An overview of the literature is given in 2.3.1 and in
2.3.2 we recall the exponential Euler scheme which we are going to use. Finally, in Section
2.4 it is explained how to numerically compute Dirichlet eigenvalues and eigenfunctions for
a given domain. This is a necessary prerequisite for applying the exponential Euler scheme
to a general two-dimensional domain, which we will do in Chapter 3.
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2.1 Wiener processes and stochastic analysis on Hilbert
spaces

It is well-known that the distribution of a real-valued, normally distributed random variable
X is uniquely determined by its mean µ ∈ R and its variance σ2 > 0. In this case we write
X ∼ N (µ,σ2). Generalizing this to a vector-valued setting, the distribution of a normally
distributed, Rd-valued random variable is uniquely determined by its mean µ ∈ Rd and
its covariance matrix Σ ∈ Rd×d . If we want to generalize normally distributed random
variables to take values in a Hilbert space H, we would therefore expect their distribution to
be determined by a mean µ ∈ H and a covariance operator Q : H → H. This is exactly the
case and will be made precise in Section 2.1.1.

2.1.1 Normal distributions on Hilbert spaces

First, we define Gaussian measures on a separable Hilbert space H, which will lead us to a
generalization of the real-valued normal distribution. We denote by L(H) the space of linear,
bounded operators on H.

Definition 2.1.1 [72, 2.1.1]. Let H be a Hilbert space and B(H) the Borel σ -algebra on
H. A probability measure µ on (H,B(H)) is called Gaussian if for all u ∈ H, the linear
mapping

v′ : H → R

u 7→ ⟨u,v⟩H

has a Gaussian law: For all v ∈ H, there are m = m(v) and σ = σ(v)≥ 0 such that, if σ > 0,

(µ ◦ (v′)−1)(A) = µ(v′ ∈ A) =
1√

2πσ2

∫
A

e−
(x−m)2

2σ2 dx

for all A ∈ B(R).

Theorem 2.1.2 [72, Theorem 2.1.2] Let {en}n∈N be an orthonormal basis of H and let L(H)

be the space of linear, bounded operators on H. A measure on (H,B(H)) is Gaussian if and
only if

µ̂(u) :=
∫

H
ei⟨u,v⟩H µ(dv) = ei⟨m,u⟩H− 1

2 ⟨Qu,u⟩H , u ∈ H,
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where m ∈ H and Q ∈ L(H) is nonnegative, self-adjoint, and has finite trace

tr(Q) =
∞

∑
k=1

⟨Qek,ek⟩H . (2.1.1)

Remark 2.1.3 The trace (2.1.1) is independent of the chosen orthonormal basis {en}n∈N.
Note that since Q is a nonnegative and self-adjoint operator, the condition tr(Q) < ∞ is
equivalent to Q being a trace class operator. An operator Q is a trance class operator if
tr(|Q|)< ∞, where |Q| is the unique bounded positive operator on H such that |Q| ◦ |Q|=
Q∗Q.

We denote the measure µ in Theorem 2.1.2 by N (m,Q) where m is called the mean and Q is
called the covariance operator. The following proposition shows how the normal distribution
on a Hilbert space and its mean and covariance relate to their finite-dimensional counterparts.

Proposition 2.1.4 [72, Proposition 2.1.4] Let X be an H-valued Gaussian random variable
on a probability space (Ω,F ,P), i.e. there exist m ∈ H and Q ∈ L(H) nonnegative, self-
adjoint and with finite trace such that P ◦ X−1 = N (m,Q). Then ⟨X ,u⟩H is normally
distributed for all u ∈ H and the following hold:

• E(⟨X ,u⟩H) = ⟨m,u⟩H

• E(⟨X −m,u⟩H · ⟨X −m,v⟩H) = ⟨Qu,v⟩H

for all u,v ∈ H.

We now use the normal distribution on a Hilbert space H to define the H-valued Wiener
process.

2.1.2 Hilbert space valued Wiener processes

Definition 2.1.5 [72, Definition 2.1.9]. Let H be a Hilbert space and let Q : H → H be an
operator with finite trace. A H-valued stochastic process W Q(t), t ∈ [0,T ], on a probability
space (Ω,F ,P) is called a (standard) Q-Wiener process if

• W Q(0) = 0,

• W Q has P-a.s. (almost surely) continuous trajectories

• W Q has independent increments

• The increments are normally distributed:

P◦
(

W Q(t)−W Q(s)
)−1

= N (0,(t − s)Q)

13



for all 0 ≤ s < t ≤ T .

We will make use of a series representation of the Q-Wiener process given in the following
proposition.

Proposition 2.1.6 [72, Proposition 2.1.10] Let {en}n∈N, be an orthonormal basis of U
consisting of eigenvectors of Q with corresponding eigenvalues λk, k ∈ N. Then a U-valued
stochastic process (W Q(t))t∈[0,T ] is a Q-Wiener process if and only if

W Q(t) =
∞

∑
k=1

√
λkβk(t)ek, t ∈ [0,T ] (2.1.2)

with equality in distribution, where βk, k ∈N, are independent real-valued Brownian motions
on a probability space (Ω,F ,P). The series converges in L2(Ω,F ,P;C ([0,T ],U)) (where
C ([0,T ],U) is equipped with the sup norm) and thus always has a P-a.s. continuous version.
In particular, for every self-adjoint, nonnegative Q ∈ L(U) with finite trace there exists a
Q-Wiener process on U.

The series (2.1.2) will be crucial in the numerical treatment of SPDEs, for which the Q-
Wiener process is simulated by the truncated series (2.1.2).

2.1.3 The stochastic integral on Hilbert spaces

For real-valued Wiener processes, a definition of the stochastic (Itô) integral can for example
be found in [82, Chapter III.]. Since we work exclusively with stochastic processes taking
values in a Banach space E, we will need the stochastic integral with respect to a Banach
space-valued Q-Wiener process introduced in Section 2.1.2. We will define the stochastic
integral in this section, leaning on [72, Section 2.3].
Let U and H be separable Hilbert spaces, Q ∈ L(U) a symmetric, nonnegative covariance
operator with finite trace, and (W Q(t))t∈[0,T ] a Q-Wiener process with respect to a normal
filtration (Ft)t∈[0,T ]. The construction of the stochastic integral proceeds in four steps:

1. A class E of L(U,H)-valued elementary processes (Φ(t))t∈[0,T ] is considered and a
mapping

Int : E → M 2
T (H)

Φ 7→
∫ t

0
Φ(s) dW Q(s), t ∈ [0,T ]

is defined, where M 2
T (H) denotes the Banach space of all H-valued, continuous,

square-integrable martingales (M(t))t∈[0,T ].
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2. It is shown that there exists a certain norm on E such that the mapping Int is an isom-
etry. The mapping Int can then be uniquely extended to the (sequential) completion
E , and the extension is also an isometry.

3. An explicit representation of E is given.

4. The definition of the stochastic integral is extended by a process called localization.

Step 1: The definition of elementary processes and the mapping Int.

Definition 2.1.7 [72, Definition 2.3.1]. An L(U,H)-valued stochastic process (Φ(t))t∈[0,T ]
on a probability space (Ω,F ,P) with normal filtration (F )t∈[0,T ] is said to be elementary if
there exist 0 = t0 < · · ·< tk = T , k ∈ N, such that

Φ(t) =
k−1

∑
m=0

Φm1(tm,tm+1](t), t ∈ [0,T ],

where Φm : Ω → L(U,H) is Ftm-measurable w.r.t. the Borel σ -algebra on L(U,H), and Φm

only takes a finite number of values in L(U,H), 0 ≤ m ≤ k−1.

Now we define

Int(Φ)(t) :=
∫ t

0
Φ(s) dW Q(s) :=

k−1

∑
m=0

Φm(W Q(tm+1 ∧ t)−W Q(tm ∧ t)), t ∈ [0,T ]

for all Φ ∈ E . Then it follows (see [72, Proposition 2.3.2]) that for Φ ∈ E the stochastic
integral

∫ t
0 Φ(s) dW Q(s), t ∈ [0,T ], is a square integrable martingale.

Step 2: Verifying that Int is an isometry.

Definition 2.1.8 . Let {ek}k∈N be a orthonormal basis of U . An operator A ∈ L(U,H) is
called Hilbert–Schmidt if

∑
k∈N

⟨Aek,Aek⟩H < ∞.

For an orthonormal base {ek}k∈N, we can define the Hilbert–Schmidt norm

∥A∥L2 :=

(
∑
k∈N

∥Aek∥2

)1/2

, (2.1.3)

which is independent of the choice of the orthonormal base {ek}k∈N, and we denote

L2(U,H) := {A ∈ L(U,H) | ∥A∥L2 < ∞}.
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(Note the difference to L2 spaces of square-integrable functions, which we denote with
a superscript.) It is a fact (see [72, Proposition 2.3.4]) that for Q ∈ L(U) nonnegative
and symmetric, there is exactly one nonnegative and symmetric operator Q1/2 ∈ L(U)

such that Q1/2 ◦Q1/2 = Q. If Q has finite trace, then in addition for any A ∈ L(U,H),
L◦Q1/2 ∈ L2(U,H).
With that, we can define a norm on E with the following Proposition:

Proposition 2.1.9 [72, Proposition 2.3.5] Let Φ = ∑
k−1
m=0 Φm1(tm,tm+1] be an elementary

L(U,H)-valued process. Then we have the Itô isometry for Q-Wiener processes:∥∥∥∥∫ ·

0
Φ(s) dW Q(s)

∥∥∥∥2

M 2
T

= E
(∫ T

0
∥Φ(s)◦Q1/2∥2

L2
ds
)
=: ∥Φ∥2

T .

As defined above, ∥ · ∥T is only a seminorm, but becomes a norm after we consider E ′ to be
the space of equivalence classes in E with respect to ∥ ·∥T . We will in the following keep the
notation unchanged, i.e. we denote E := E ′.
Step 3: Providing an explicit representation of E . We introduce the subspace U0 := Q1/2(U)

with the inner product

⟨u0,v0⟩0 := ⟨Q−1/2u0,Q−1/2v0⟩U ,

u0, v0 ∈ U0, where in case Q is not one-to-one, Q−1/2 is the pseudo inverse as defined in
[72, Definition C.0.1]. Then, (U0,⟨·, ·⟩0) is again a separable Hilbert space. We denote
L2(U0,H) =: L0

2 with the norm ∥A∥L0
2
= ∥A◦Q1/2∥L2 for A ∈ L0

2.

It can then be shown (see [72, p. 33]) that an explicit representation of E is given by

N 2
W (0,T ;H) := {Φ : [0,T ]×Ω → L0

2 | Φ is predictable and ∥Φ∥T < ∞}

Step 4: Generalization of the stochastic integral. The stochastic integral is extended to the
linear space

NW (0,T ;H) :=
{

Φ : [0,T ]×Ω → L0
2

∣∣∣∣ Φ is predictable with P
(∫ T

0
∥Φ(s)∥2

L0
2

ds
)
= 1
}
,

which is called the class of stochastically integrable processes on [0,T ]. From this point
onward, all processes in stochastic integrals will be of this nature. For details on this extension
process called localization, we refer to [72, pp. 36-37].
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2.2 Analytic semigroups and parabolic SPDEs

When dealing with SPDEs, there are different kinds of solutions in the literature: Strong
(or classical) solutions, weak solutions and mild solutions. Strong solutions are, in many
cases, nonexistent, while weak solutions require a variational setting and are more frequently
employed for elliptic and hyperbolic equations (see e.g. [72, 75]). The kind of solution we
want to focus on here are mild solutions, which are used frequently to treat parabolic SPDEs.
For a rigorous understanding of mild solutions, we will have to introduce concepts from
semigroup theory.
The semigroup method is a powerful tool for solving evolution equations, and has been
developed and widely used to show the existence of solutions on a range of differential
equations on Banach spaces (for an overview, see e.g. [103, 36]). Likewise, for parabolic
SPDEs the semigroup method has been of vital importance (see e.g. [19, 26, 27, 39, 41, 95]).
Since classical solutions are often not available, using the notions of C0-semigroups and
analytical semigroups it is possible to define the weaker notion of mild solutions, which we
recall in this chapter and which we use later in Chapter 3.
To give a motivation on why semigroups are a useful tool, consider that the initial value
problem [36, Problem 1.1]  d

dt S(t) = aS(t), t ≥ 0,

S(0) = 1

for a constant a ∈ C is uniquely solved by the function S(t) := eta. At the same time,
this family of exponential functions is unique up to the constant a in its property that
S(t + s) = S(t)S(s) and S(0) = 1 for all s, t ≥ 0.
Likewise, the differential equation [36, Proposition 2.8] d

dt S(t) = AS(t), t ≥ 0,

S(0) = In

for S(t) ∈ Cn×n, the identity matrix In ∈ Cn×n and a matrix A ∈ Cn×n is (among all dif-
ferentiable functions) uniquely solved by S(t) := etA, i.e. the matrix exponential of tA,
and again these functions are unique in their property of satisfying the functional equation
S(t + s) = S(t)S(s), S(0) = I for s, t ≥ 0.
In the setting of a Banach space E with a linear operator A ∈ L(E), there exists an associated
one-parameter semigroup (S(t))t≥0 which is generated by A (for details, see [36, Chapter
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I.3]) and satisfies S(t + s) = S(t)S(s) for s, t ≥ 0. Then, the E-valued initial value problem d
dt u(t) = Au(t), t ≥ 0,

u(0) = x

is uniquely solved by u(t) = S(t)x [36, p. 145].
These Banach space-valued one-parameter semigroups can, if they are C0-semigroups (see
Section 2.2.1) also be defined for unbounded operators A defined on a dense subset D(A)⊂ E
(see [36, p. 47 ff.]). The operator A will, in our case, be the Laplacian ∆ on D(A) =
H1

0 (D)∩H2(D)⊂ E = L2(D) with Dirichlet boundary conditions for a domain D ⊂R2 with
a C 2 boundary. We will see that the collection (S(t))t≥0 generated by ∆ can be formalized as
an analytic semigroup (see Section 2.2.2.
In the case where A is bounded, the family of operators (S(t))t≥0 making up a semigroup
can be given as the series expansion of the exponential function [36, p. 52]. Juxtaposing the
exponential series for real numbers x and for a bounded operator A, it is

ex =
∞

∑
n=0

xn

n!
, S(t) =

∞

∑
n=0

tnAn

n!
, t ≥ 0.

In the general case where A is unbounded, for example for the Laplace operator A = ∆, this
series need not converge, so a different way to generalize the exponential function has to be
found. Another approach is to make use of Cauchy’s integral formula. Let f1 be a scalar
holomorphic function and let f2 be a operator-valued holomorphic function on U ⊂ C. Let γ

be a closed contour in U and let A be an operator such that σ(A) is contained in the interior
of γ . There is a generalization of Cauchy’s integral formula to the operator-valued function
f2 (see [33, p. 568]). Juxtaposing the traditional Cauchy’s formula and the operator-valued
Cauchy’s formula, we have for some point a in the interior of γ that

f1(a) =
1

2πi

∫
γ

f1(z)
z−a

dz, f2(A) =
1

2πi

∫
γ

f2(λ )R(λ ;A) dλ (2.2.1)

with the resolvent operator R(λ ;A) = (λ I −A)−1 (for details and well-definedness, see
Section 2.2.2). Using f2(x) = etx later gives rise to the definition of an analytic semigroup
(see (2.2.3)).
In the following, for a Banach space E, integrals of E-valued functions will denote the
so-called Bochner integral, which is a generalization of the Lebesgue integral to E-valued
functions. For an introduction, see [36, Appendix C].
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2.2.1 C0–semigroups

As explained above, initial value problems (scalar as well as Banach space-valued) can be
solved by a family of functions or operators (S(t))t≥0 satisfying the property S(t + s) =
S(t)S(s), S(0) known as the semigroup property. The idea being that families (S(t))t≥0 might
solve many more different evolution equations, this gives rise to the following definition of a
C0-semigroup.

Definition 2.2.1 [26, p. 406–407]. A C0-semigroup is a family (S(t))t≥0 of bounded opera-
tors on a Banach or Hilbert space H satisfying

1. S(0) = I, the identity operator.

2. S(t + s) = S(t)S(s) for all s, t ≥ 0.

3. S(·)u is continuous in [0,∞) for all u ∈ H.

The infinitesimal generator A of S(·) is defined as

Au = lim
h↘0

S(h)u−u
h

for all u ∈ H where this limit exists.

ℜ(z)

ℑ(z)

γ
+

ε,
θ

γ −
ε,θ

γ0
ε,θ

ε

ω θ

Sω,θ

ℜ(z)

ℑ(z)

γ +
ε,θ

γ
−

ε,
θ

γ0
ε,θ

Sω,θ

σ(A)

Figure 2.2.1: For a given ω ∈ R, θ ∈ (0,π) and ε > 0, the curves γ
+
ε,θ , γ

−
ε,θ and γ0

ε,θ and the
sector Sω,θ (left-hand side). In this work, it is assumed that θ ∈ (π

2 ,π) and ρ(A)⊂ Sω,θ or,
equivalently, σ(A)⊂ C\Sω,θ (right-hand side).
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Definition 2.2.2 . The resolvent set ρ(L) of the operator L is the set of complex numbers λ

for which λ I −L is bijective. For λ ∈ ρ(L), the operator

R(λ ,L) = (λ I −L)−1

is called the resolvent operator of L. The complement of ρ(L) in C is called the spectrum
σ(L) of L.

For an ω ∈ R and θ ∈ (0,π), we denote by Sω ,θ the sector in C (see also Figure 2.2.1)

Sω,θ = {λ ∈ C\{ω} | |arg(λ −ω)| ≤ θ}.

Assumption 2.2.3 1. There exist ω ∈ R and θ0 ∈ (π

2 ,π) such that ρ(A)⊃ Sω,θ0 .

2. There exists M > 0 such that

∥R(λ ,A)∥ ≤ M
|λ −ω|

∀λ ∈ Sω,θ0 .

An operator A ∈ L(H) satisfying Assumption 2.2.3 is called sectorial operator.
The first part of Assumption 2.2.3 is illustrated in Figure 2.2.1, along with the definitions of
Sω,θ , γ

±
ε,θ and γ0

ε,θ .
The following theorem by Hille and Yosida gives a characterization of C0-semigroups in
terms of so-called Yosida approximations, which will be needed in Section 2.2.3 on the
existence of solutions of the treated SPDEs.

Theorem 2.2.4 (Hille-Yosida) [26, Theorem A.4] Let A : D(A)⊂ E → E be a linear closed
operator on the Banach space E. The following statements are equivalent:

(i) A is the infinitesimal generator of a C0-semigroup S(·) such that

∥S(t)∥ ≤ Meωt for all t ≥ 0.

(ii) D(A) is dense in E, ρ(A)⊃ (ω,+∞) and it is

∥Rk(λ ,A)∥ ≤ M
(λ −ω)k for all k ∈ N.

Moreover, if either (i) or (ii) holds, then

R(λ ,A)x =
∫

∞

0
e−λ tS(t)x dt for all x ∈ D(A), λ > ω.
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Also, for all x ∈ E, S(t)x = limn→∞ etAnx and

∥etAn∥ ≤ Me
ωnt
n−ω . (2.2.2)

where An = nAR(n,A). The operators An, n > ω , are called the Yosida approximations of A.

2.2.2 Analytic semigroups

Suppose that A ∈ L(E) is sectorial, i.e. Assumption 2.2.3 holds. In the beginning of Section
2.2.1, we remarked that the formal series expansion of the exponential function need not
converge when applied to unbounded operators. Another possible way is to make use of the
contour integral expression (2.2.1), which is done to define analytic semigroups.
For ε > 0 and θ ∈ (π

2 ,θ0), we denote by γε,θ the path (see also Figure 2.2.1)

γε,θ = γ
+
ε,θ ∪ γ

−
ε,θ ∪ γ

0
ε,θ ,

γ
±
ε,θ = {z ∈ C | z = ω + re±iθ , r ≥ ε},

γ
0
ε,θ = {z ∈ C | z = ω + εeiθ̃ , θ̃ ∈ (−θ ,θ)}.

Then, we define a semigroup S(·) of bounded linear operators in E by setting S(0) = I and

S(t) =
1

2πi

∫
γε,θ

eλ tR(λ ,A) dλ , t > 0. (2.2.3)

This integral converges absolutely and uniformly in L(E), so the operators S(t) are well-
defined (for details, see [36, pp. 97-98]). Then the following theorem gives rise to the
definition of an analytic semigroup:

Theorem 2.2.5 [26, Theorem A.9] (i) The mapping

S : (0,∞)→ L(E)

t 7→ S(t)

with S(t) given in (2.2.3) is analytic. Moreover, for any x ∈ E, t > 0 and n ∈ N,
S(t)x ∈ D(An) and

Sn(t)x = AnS(t)x.

(ii) We have S(t + s) = S(t)S(s) for all s, t ≥ 0.
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(iii) S(·)x is continuous at 0 if and only if x ∈ D(A).

(iv) There exist M,N > 0 such that for all t ≥ 0

∥S(t)∥ ≤ Meωt ,

∥AS(t)∥ ≤ eωt
(

N
t
+ωM

)

(v) S(·) can be extended to an analytic L(E)-valued function in S0,θ0− π

2
.

The semigroup defined by (2.2.3) and having these properties is called analytic semigroup.

(A,D(A)) (R(λ ,A))λ∈ρ(A)

(S(t))t≥0

R(λ ,A) = (λ I −A)−1

S(t) = 1
2πi
∫

γε,θ
eλ tR(λ ,A) dλ

A = λ I −R(λ ,A)−1

Ax = limt↘0
S(t)x−x

t R(λ ,A) =
∫

∞

0 e−λ tS(t) dt

Figure 2.2.2: Diagram from [36, p. 108] showing the relations between a sectorial operator
A with domain D(A), its resolvent R(λ ,A) and its generated analytic semigroup (S(t))t≥0.

In Section 2.2.3 and Chapter 3, we will use the Dirichlet Laplacian ∆ on C 2-bounded
domains. It is therefore important to mention that ∆ generates a C0-semigroup and an
analytic semigroup, which we explain in the following remarks.

Remark 2.2.6 (The Dirichlet Laplacian on a C 2-bounded domain generates an analytic
semigroup) It is shown in [74, Theorem 2.5.1] that if D ⊂ Rd has a C 2 boundary, then the
Laplace operator on D(∆) = H1

0 (D)∩H2(D) is sectorial in L2(D) and that D(∆) is dense in
L2(Ω). Hence, the Laplace operator generates an analytic semigroup (S(t))t≥0.

Remark 2.2.7 (Dirichlet Laplacian on a C 2-bounded domain generates a C0-semigroup) An
analytic semigroup is a C0-semigroup if and only if the domain D(A) is dense in the Banach
space E (see e.g. [90]). Given that C ∞

0 (Ω)⊂ H1
0 (Ω)∩H2(Ω)⊂ L2(Ω) and C ∞

0 (Ω) is dense
in L2(Ω), so is D(∆) and therefore ∆ generates a C0-semigroup in L2(Ω) as well.
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2.2.3 Existence and uniqueness of mild solutions

In the introduction of this chapter, we noted that exponential functions can be generalized to
a semigroup setting in Banach spaces to solve Banach space-valued initial value problems.
We recall the initial value problem d

dt u(t) = Au(t), t > 0,

u(0) = x
(2.2.4)

for u an E-valued function, A ∈ L(E) and f ∈ E the initial value. If A generates a C0-
semigroup (S(t))t≥0, then u(t) = S(t)x is the unique classical solution for this initial value
problem [36, Proposition II.6.2]. In general, classical solutions might not exist and especially
in the case where the solution is not differentiable, it is useful to introduce a different, more
general concept of a solution called the mild solution.

Definition 2.2.8 [36, Definition II.6.3]. A continuous function u : R+ → E is called a mild
solution of (2.2.4) if

∫ t
0 u(s) ds ∈ D(A) for all t ≥ 0 and

u(t) = A
∫ t

0
u(s) ds+ x.

Similarly, we consider the inhomogeneous abstract initial value problem d
dt u(t) = Au(t)+F(t), t > 0,

u(0) = x.
(2.2.5)

If a function u : R+ → E is continuously differentiable with u(t) ∈ D(A) and satisfies (2.2.5),
it is called a classical solution.

Definition 2.2.9 [36, Definition VI.7.2]. Let (A,D(A)) be the generator of a C0-semigroup
(S(t))t≥0 on E and let x ∈ E and f ∈ L1(R+,E). Then the function u defined by

u(t) := S(t)x+
∫ t

0
S(t − s) f (s) ds (2.2.6)

is called the mild solution of (2.2.5).

Every classical solution is also a mild solution. We now turn our attention to stochastic
evolution equations with additive noise. For a Hilbert space H, consider the nonlinear
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stochastic differential equation dU(t) = [AU(t)+F(U(t))] dt +dW (t).

U(0) = u0 ∈ E
(2.2.7)

for linear operators A : D(A) ⊂ H → H, F an H-valued stochastic process and ξ an F0-
measurable H-valued random variable. It is assumed again that A generates a C0-semigroup.

Definition 2.2.10 . An H-valued stochastic process (U(t))t∈[0,T ] is called a mild solution of
(2.2.7) if

P
(∫ T

0
|U(s)| ds < ∞

)
= 1

and for t ∈ [0,T ],

U(t) = S(t)ξ +
∫ t

0
S(t − s)F(s) ds+

∫ t

0
S(t − s) dW (s). (2.2.8)

For this equation, U , A and F are defined in a Banach space E ⊂ H which is continuously
and densely embedded in H as a Borel subset. We denote by AE the restriction of A to E and
introduce the following assumption:

Assumption 2.2.11 [26, Hypothesis 7.3] Either

(i) AE generates a C0-semigroup S(·) on E or

(ii) A generates an analytic semigroup SE(·) on E.

Moreover, the stochastic convolution WA has an E-continuous version.

Before we specify assumptions on the nonlinear function F in Assumption 2.2.13, we need
to introduce subdifferentials.

Definition 2.2.12 [26, Section D.1]. Suppose that E is a Banach space and x,y ∈ E. The
mapping

R\{0}→ R, h 7→ φ(h) = ∥x+hy∥

is convex and nondecreasing and, for any y ∈ E, has the limits

D+∥x∥ · y := lim
h→0+

∥x+hy∥−∥x∥
h

, D−∥x∥ · y := lim
h→0−

∥x+hy∥−∥x∥
h

.
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The subdifferential ∂∥x∥ of ∥x∥ is defined as:

∂∥x∥= {x∗ ∈ E∗ | D−∥x∥ · y ≤ ⟨y,x∗⟩E×E∗ ≤ D+∥x∥ · y for all y ∈ E}

where E∗ is the dual of E and ⟨y,x∗⟩E×E∗ := x∗(y) the dual pairing. The set ∂∥x∥ ⊂ E∗ is
nonempty, closed and convex and can be shown to be given by

∂∥x∥= {x∗ ∈ E∗ | ⟨x,x∗⟩= ∥x∥, ∥x∗∥= 1}.

Now, the assumptions for Theorem 2.2.14 on existence and uniqueness of mild solutions can
be stated.

Assumption 2.2.13 [26, Hypothesis 7.4] (i) D(F) ⊃ E, F(E) ⊂ E and the restriction
FE := F |E is locally Lipschitz continuous and bounded on bounded subsets of E.

(ii) There is an increasing function a : R1
+ → R1

+ such that

⟨AE,nx+F(x+ y),x∗⟩E×E∗ ≤ a(∥y∥E)(1+∥x∥E) (2.2.9)

for all x,y ∈ E, x∗ ∈ ∂∥x∥E , n ∈ N, and AE,n denote the Yosida approximations of AE ,
⟨·, ·⟩E×E∗ is the duality form on E ×E∗ and ∂∥x∥E is the subdifferential of the E-norm
∥ · ∥E at x ∈ E.

We now state the existence and uniqueness theorem for mild solutions.

Theorem 2.2.14 [26, Theorem 7.7] Suppose that A generates a C0-semigroup and Assump-
tion 2.2.13 holds.

(i) If Assumption 2.2.11 (i) holds, then equation (2.2.7) has a unique mild solution in
C([0,∞);E).

(ii) If Assumption 2.2.11 (ii) holds, then equation (2.2.7) has a unique mild solution in
C([0,∞);E)∩L∞

loc(0,∞;E).

In order to show that (2.2.7) has a solution by using Theorem 2.2.14, we follow [26, Example
7.8], and show that Assumption 2.2.11 (i) as well as Assumption 2.2.13 both hold.
We start with Assumption 2.2.11 (i): Let the operator A be the Dirichlet Laplacian on a
domain D ⊂ Rd , i.e. Ay = ∆y for y ∈ D(A) = H2(D)∩H1

0 (D), and let E = C (D) equipped
wit hthe supremum norm ∥ ·∥E . As we noted in Section 2.2.2, A is the infinitesimal generator
of an analytic semigroup S(·) which is also of class C0.
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For the restriction AE , we note that the Laplacian is understood in the weak sense, so that∫
D
(∆u(x̂))φ(x̂) dx̂ =

∫
D

u(x̂)∆φ(x̂) dx̂

for any test function φ ∈C ∞
0 (D) provided that u∈ L1

loc(D), i.e. u is integrable on any compact
subset of D (see e.g. [38, §5.2]). Since C (D)⊂ L1

loc(D) (on a compact subset, any continuous
function must be bounded and therefore integrable), the domain of the restricted Laplacian
can be given as

D(AE) = {y ∈ C (D) | ∆y ∈ C (D) and y = 0 on ∂D}, AEy = ∆y, y ∈ D(AE).

In Remark 2.2.6, we noted that the Dirichlet Laplacian generates an analytic semigroup on
L2(D). It is easily checked that by restricting to E = C (D), it also generates an analytic
semigroup on E, so Assumption 2.2.11 (i) is satisfied (after restricting to a subspace, it can
easily be verified that the conditions in Assumption 2.2.3 for a sectorial operator still hold).
We noted in Remark 2.2.7 that the semigroup S(·) is of class C0 if and only if D(AE) is dense
in E. However, since D(AE) ⊂ {y ∈ C (D) | y = 0 on ∂D} (the limit y of any convergent
sequence (yn)n∈N in D(AE) must satisfy y = 0 on ∂D since yn = 0 on ∂D for all n ∈ N),
D(AE) cannot be dense in E and Assumption 2.2.11 (ii) is not satisfied. We therefore rely on
point (i) in Theorem 2.2.14.
We now continue with Assumption 2.2.13: We first note that ∥S(t)∥E ≤ 1 for t ≥ 0 (see [26,
inequality (A.53)]). By (2.2.2) with M = 1 and ω = 0, it follows that ∥etAE,n∥E ≤ 1 and (see
[26, Example D.8]) that ⟨AE,nx,x∗⟩E×E∗ ≤ 0 for all x ∈ E, x∗ ∈ ∂∥x∥. Hence, in order to
prove that inequality (2.2.9) holds, it is sufficient to show

⟨F(x+ y),x∗⟩E×E∗ ≤ a(∥y∥E)(1+∥x∥E), for all x,y ∈ E, x∗ ∈ ∂∥x∥. (2.2.10)

In Proposition 2.2.18, which shows under which assumption (2.2.10) holds and equation
(2.2.7) has a unique mild solution, we will make use of a representation of the dual space
(C (D))∗ which uses Radon measures, the definition of which we recall now.

Definition 2.2.15 . Let D be a Hausdorff topological space and let A be a σ -algebra on D
(for example, the Borel σ -algebra). A measure µ on (D,A ) is called inner regular if for any
open set U ∈ A ,

µ(U) = sup
K⊂U

K compact

µ(K).
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A measure µ is called locally finite if every point in E has a neighborhood U for which µ(U)

is finite. The measure µ is called Radon measure if it is inner regular and locally finite.

We also need a special case of the following theorem (see e.g. [88, Theorem 2.14]) which
identifies functionals on C (D) with Radon measures:

Theorem 2.2.16 (Riesz-Markov-Kakutani representation theorem.) Let D be a compact
Hausdorff space and let ψ be a positive linear functional on C (D). Then there exists a Borel
σ -algebra A on E and a unique Radon measure µ with the identification

ψ(x) =
∫

D
x(ξ ) dµ(ξ ), x ∈ C (E), ξ ∈ D. (2.2.11)

Conversely, every Radon measure defines a linear functional on C (E) via the identification
(2.2.11), so the dual space (C (D))∗ can be identified with M (D), the space of Radon
measures on D.

For the subdifferential ∂∥x∥ ⊂ E∗, we have the following, more specific characterization
given in [26, p. 441]:

Remark 2.2.17 Let E = D and x be a nonzero element of E. Set

Mx = {ξ ∈ D | |x(ξ )|= ∥x∥E}

and let B(D) be the Borel σ -algebra on D. Then, in the sense of the identification (2.2.11),
µ ∈ ∂∥x∥ if and only if

(i) The Radon measure µ on D satisfies ∥µ∥ := |µ|(D) = 1,

(ii) The support of µ is included in Mx,

(iii)
∫

A sgn(x(x̂)) µ(x̂)≥ 0, ∀A ∈ B(D)

where sgn denotes the sign function.

The nonlinear operator F in many SPDEs in the literature can be thought of as concatenation
operators with an associated real-valued function; for example, one might want the nonlinear
operator F to map every function x(x̂) ∈ C (D) to its squared function (x(x̂))2. This kind of
operator is called Nemytskii operator.

Proposition 2.2.18 Let F = Fφ be a Nemytskii operator defined as

Fφ (x)(x̂) = φ(x(x̂)), x ∈ E, x̂ ∈ D,
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with an associated function φ ∈ C 1(R). If there exists an increasing function a : R+ → R+

such that

φ(ξ +η)sgn(ξ )≤ a(|η |)(1+ |ξ |) for all ξ ,η ∈ R. (2.2.12)

Then inequality (2.2.10) and therefore Assumption 2.2.13 (ii) holds.

Proof. Following Remark 2.2.17, the element x∗ ∈ ∂∥x∥ can be identified with a Radon mea-
sure µ for which µ(D) = 1 holds, using the identification (2.2.11). Using this identification,
we have

⟨Fφ (x+ y),x∗⟩E×E∗ = x∗(φ ◦ (x+ y))

=
∫

D
φ(x(x̂)+ y(x̂)) dµ(x̂)

≤
∫

D
a(|y(x̂)|)(1+ |x(x̂)|) dµ(x̂)

≤ a(∥y∥E)(1+∥x∥E),

where in the last step it was used that µ(D) = 1 and hence, with the supremum norm ∥ · ∥E ,∫
D

a(|y(x̂)|) dµ(x̂)≤
∫

D
a(∥y∥) dµ(x̂) = a(∥y∥).

The other term involving x is treated analogously. This proves that inequality (2.2.10)
holds.

2.3 Numerical solution of parabolic SPDEs

2.3.1 Different schemes in the literature

The numerical solution of SPDEs has attracted much attention, and many different methods
for temporal as well as spatial discretization have been developed (for a comprehensive
overview, see e.g. [86, Section 1.2]). However, due to the irregular behavior of SPDEs,
strong regularity conditions have to be imposed on either the noise or the spatial domain.
Some publications focused on a one-dimensional spatial domain and potentially space-time
white noise [2, 3, 11, 14, 28, 47, 60, 59, 64, 98], while others have worked with trace-class or
smooth noise and a potentially two-dimensional domain [19, p. 43][49, 52, 57, 58, 73]. We
intend to use the latter approach by considering additive noise that has sufficiently quickly
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decaying modes, but in exchange being able to consider a much larger class of general
two-dimensional domains D ⊂ R2 with a C 2 boundary. This broadening of the class of
spatial domains has been pointed out in [86, p. 260] as a subject of future research. Also,
while there has been some theoretical treatment of SPDEs on domains with a C 2 boundary
of dimension two or more with homogeneous Dirichlet boundary conditions [12, 31, 32], to
our knowledge no solutions of SPDEs have been numerically approximated in such domains.
Spectral methods have been widely used for the solution of semilinear parabolic SPDEs
[11, 49, 60, 89] and are straightforward to implement in cases where the base functions
are known explicitly. If this is not the case, the spectrum of the linear differential operator
as well as its eigenfunctions have to be numerically approximated. This can be achieved
using boundary element methods (BEM) resulting in a nonlinear eigenvalue problem. The
advantage of this method is that any bounded domain with a C 2 boundary can be considered,
and the eigenfunction can be computed pointwise at any desired point in the interior of the
domain, making it possible to store the functions on a uniform grid. Another possibility
to compute the base functions are finite element methods (FEM), and for the Dirichlet
Laplacian this has been done in [94]. The difference to BEM is that instead of domains with
a C 2 boundary, FEM can deal with polygons with a Lipschitz boundary in R2. Since FEM
requires the triangulation of the domain, if the functions are to be stored on a uniform grid,
an additional error would be introduced by evaluating the functions on the triangularization
at the required grid points. In this work, we focus on BEM and domains with C 2 boundaries.
We specify in Section 2.3.2 a precise mathematical framework, including the conditions
placed on each component of the equations which can be solved. We also discuss in Section
2.3.2 the discretization in space and time of the mild solutions which are given as a Galerkin
projection in space and the exponential Euler scheme in time as described by Jentzen and
Kloeden [59]. The boundary integral equation method is recalled in Section 2.4, including
the necessary discretization steps turning the Helmholtz equation into a nonlinear eigenvalue
problem. The algorithm developed by Beyn [9], which allows for the solution of nonlinear
eigenvalue problems, is also recalled in Section 2.4, also sketching the discretization steps
necessary for the implementation. We will make some remarks on assembling the first
elements of an orthonormal basis and it is shown how many boundary elements are needed
to compute the eigenfunctions to a given accuracy. In Section 3.3, we prove a result on
the strong error of the spectral Galerkin-exponential Euler scheme with eigenvalues and
eigenfunctions which are approximated to a given accuracy. In Section 3.4, we demonstrate
the convergence on an asymmetric shape and present a few solutions for different nonlinear
functions. The MATLAB program code, including the data and programs to generate the
plots shown in the figures, is available at GitHub https://github.com/JulianSPDE/2D-SPDE.
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2.3.2 The exponential Euler scheme

The exponential Euler scheme was developed by Jentzen and Kloeden in [59]. It is a spectral
scheme which allows for the solution of general H-valued SPDEs for a Hilbert space H
under certain conditions. In the following, we will specify those conditions and derive the
numerical scheme.
Let D ⊂ R2 be a bounded domain whose boundary is of class C 2 and can be described by a
parametrization γ such that ∥γ ′(t)∥2 > 0, t ∈ [0,2π), γ(0) = γ(2π) and γ is nonintersecting,
i.e. γ(s) ̸= γ(t) for distinct s, t ∈ [0,2π). Let T > 0 be fixed. We consider SPDEs of the form

dU(t) = [AU(t)+F(U(t))]dt +dW Q(t), U(0) = u0, t ∈ [0,T ] (2.3.1)

where (U(t))t∈[0,T ] is a stochastic process taking values in a Hilbert space H, u0 ∈ H,
A : D(A) ⊂ H → H is a linear sectorial operator, i.e. it generates an analytic semigroup
(eAt)t∈[0,T ], and F : H → H is a nonlinear operator. The process (W Q(t))t∈[0,T ] is a cylindri-
cal Q-Wiener process taking values in H, where Q : H → H is a trace-class operator. We
will consider the Laplacian A = ∆ : D(∆)⊂ H → H with homogeneous Dirichlet boundary
conditions on the domain D, so that we have H = L2(D) and D(A) = H1

0 (D)∩H2(D). It is
also assumed that ∆ and the covariance operator Q commute, so that they have a complete
set consisting of the same orthonormal eigenfunctions ei, i ∈ N.
The SPDE (2.3.1) can be rigorously understood as an integral equation involving a stochastic
dW Q integral [26, Chapter 4]. It is interpreted in the mild sense [26, p. 161], meaning that an
H-valued process (U(t))t∈[0,T ] is a solution of (2.3.1) if

U(t) = eAtu0 +
∫ t

0
eA(t−s)F(U(s)) ds+

∫ t

0
eA(t−s) dW Q(s). (2.3.2)

We now give some details on the properties of each component of the SPDE (2.3.1).
The linear sectorial operator A = ∆.
It is known that for Dirichlet, Neumann and mixed boundary conditions, the Laplacian has a
complete set of orthonormal smooth eigenfunctions ei, i ∈ N. Also, the eigenvalues −λi are
all negative and real having exactly one accumulation point at −∞ (see e.g. [8, Appendix W];
we use a notation where λi > 0, i ∈ N). Hence, it is possible to give a spectral representation

∆ f (x) = ∑
∞
i=1−λi⟨ f ,ei⟩Hei(x)

for f ∈ D(∆). We assume Dirichlet boundary conditions, so we call the λi Dirichlet eigenval-
ues and the ei Dirichlet eigenfunctions.
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The nonlinear operator F .
In our setting, the operator F on H is a Nemytskii operator, i.e. there is an associated function
uF : R→ R such that the operator F can be defined as [F(g)](x) = uF(g(x)) for g ∈ H. For
F , we adopt the assumption from [59, Assumption 2.4] and require that F be two times
continuously Fréchet differentiable, and that its derivatives satisfy

∥F ′(u)−F ′(v)∥H ≤ L̃∥u− v∥H , (2.3.3)

∥(−∆)−rF ′(u)(−∆)rw∥H ≤ L̃∥w∥H (2.3.4)

for all u,v ∈ H and w ∈ D((−∆)r) for r ∈ {0, 1/2, 1} and

∥∆
−1F ′′(u)(v,w)∥H ≤ L̃∥(−∆)−1/2v∥H · ∥(−∆)−1/2w∥H (2.3.5)

for all u,v,w ∈ H and L̃ > 0 a constant.
Furthermore, to ensure existence and uniqueness of a mild solution, we require that the
associated function uF satisfies the inequality (2.2.12) discussed in Section 2.2.3.
The Wiener process W Q.
The process W Q = (W Q(t))t∈[0,T ] is a Q-cylindrical Wiener process [26, §4.1.2][75, §3.2.35],
i.e. a collection

{W Q
u (t), u ∈ H, t ∈ [0,T ]}

of zero-mean Gaussian random variables that satisfy

E(W Q
u (t)W Q

v (s)) = ⟨Qu,v⟩H ·min(t,s)

for s, t ∈ [0,T ], u,v ∈ H. Then, for an orthonormal basis {eQ
n }n∈N of eigenfunctions of Q

with corresponding eigenvalues {qk}k∈N, the process W Q has the series expansion in H (see
Proposition 2.1.6)

W Q(t) = ∑
∞
n=1

√
qnβn(t)e

Q
n , (2.3.6)

where βi, i ∈ N, are independent real-valued standard Brownian motions. We assume that
Q and the operator ∆ both have a joint eigenbasis consisting of the same functions. The
stochastic integral with respect to the cylindrical Q-Wiener process is defined in a similar
way to the classical Itô integral (for details, see [72, 2.5]).
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2.3.2.1 Approximation in space.

For the spectral approximation in space, we use a projection

PN : H → HN := span(e1, . . . ,eN)

f =
∞

∑
i=1

⟨ f ,ei⟩Hei 7→
N

∑
i=1

⟨ f ,ei⟩Hei

with the inner product

⟨ f ,ei⟩H =
∫

D
f (x) · ei(x) dx

and denote UN := PNU , FN := PNF , AN := PNA, uN
0 := PNu0 and

W Q
N := PNW Q =

N

∑
i=1

√
qieiβi(t).

The projected SPDE

dUN(t) = (ANUN(t)+FN(UN(t)))dt +dW Q
N (t)

has the mild solution satisfying for t ∈ [0,T ]

UN(t) = eANtuN
0 +

∫ t

0
eAN(t−s)FN(UN(s)) ds+

∫ t

0
eAN(t−s) dW Q

N (s). (2.3.7)

2.3.2.2 Approximation in time.

We introduce the equidistant time steps ti = h · i, i = 0, . . . ,M, with h = T/M, and denote
uN,M

k =UN(tk). Equation (2.3.7) can be rewritten in one time step from tk to tk+1 as

uN,M
k+1 = eANhuN,M

k +
∫ tk+1

tk
eAN(tk+1−s)FN(uN,M(s))ds+

∫ tk+1

tk
eAN(tk+1−s)dW Q

N (s).

We now make the approximation FN(uN,M(s))≈ FN(uN,M(tk)). Let ŨN be the process after
this approximation and let vN,M

k := ŨN(tk). We denote the inner products by

vN,M
k, j := ⟨vN,M

k ,e j⟩H , F j
N(v

N,M
k ) := ⟨FN(v

N,M
k ),e j⟩H .
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Taking the inner product with e j on both sides and applying the above approximation, we
obtain for the approximate Fourier-Galerkin coefficients

vN,M
k+1, j = ⟨eANhvN,M

k ,e j⟩H + ⟨
∫ tk+1

tk
eAN(tk+1−s)FN(v

N,M
k ) ds,e j⟩H

+ ⟨
∫ tk+1

tk
eAN(tk+1−s) dW Q

N (s),e j⟩H

= e−λ jhvN,M
k, j +F j

N(v
N,M
k ) ·

∫ tk+1

tk
e−λ j(tk+1−s) ds

+
∫ tk+1

tk
e−λ j(tk+1−s)√q j dβ j(s),

using linearity of the inner product and the fact that ANhei = −λihei and hence eANhei =

e−λihei for h > 0. The dβ j(s) integral is normally distributed with mean zero and its variance
can be computed using the Itô isometry Proposition 2.1.9 (which holds not only for elementary
processes, but for general stochastically integrable processes). With this, we finally obtain
the exponential Euler scheme shown in Algorithm 2.1 and first developed in [59, Section
3]. The random variables R j

k are independently and identically distributed with a standard
normal distribution.

Algorithm 2.1: Exponential Euler scheme

vN,M
k+1, j = e−λ jhvN,M

k, j +
1− e−λ jh

λ j
F j

N(v
N,M
k )+

(
q j

2λ j
(1− e−2λ jh)

)1/2

R j
k,

j = 1, . . . ,N, k = 0, . . . ,M−1.

2.4 Numerically approximating Dirichlet eigenvalues and
eigenfunctions: The boundary integral method and
Beyn’s contour integral algorithm

Let D ⊂ R2 be a bounded domain which has a C 2 boundary. In this section, we explain how
the eigenvalue problem for the Helmholtz equation

−∆u+κ
2u = 0 in D, u = 0 on ∂D, (2.4.1)
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with κ ∈ R>0 and homogeneous Dirichlet boundary conditions can be solved by rewriting it
in terms of boundary integral layer operators, discretizing the resulting boundary integral
equation and solving the resulting nonlinear eigenvalue problem with Beyn’s contour integral
algorithm.
Let Φκ(x,y), for x,y ∈ R2 and x ̸= y be the fundamental solution

Φκ(x,y) = iH(1)
0 (κ∥x− y∥)/4

of the Helmholtz operator ∆+ κ2I in two dimensions, where H(1)
0 denotes the first-kind

Hankel function of order zero (see [23, p. 66]) and let κ ∈ C\{0} be fixed. For a point y
on the boundary ∂D, we denote the exterior normal by ν(y) and we use the double layer
potential

DLκ [ψ](x) =
∫

∂D
ψ(y) ·∂ν(y)Φκ(x,y) ds(y), x ∈ R2\∂D, (2.4.2)

where ψ ∈C(∂D) is the unknown density function. We also define

Dκ [ψ](x) =
∫

∂D
ψ(y) ·∂ν(y)Φκ(x,y) ds(y), x ∈ ∂D.

For x ∈ ∂D, it is known [23, Theorem 3.1] that the so-called jump relations

lim
h→0

∫
Γ

ψ(y)∂ν(y)Φκ(x±hν(x),y) ds(y) =∫
Γ

ψ(y)∂ν(y)Φκ(x,y) ds(y)± 1
2

ψ(x)
(2.4.3)

hold. Since the fundamental solution Φκ satisfies the Helmholtz equation (2.4.1), so does
the double-layer potential (2.4.2). Conversely, every solution of (2.4.1) can be written as a
double-layer potential [23, p. 39]. We use the double layer ansatz

u(x) = DLκ [ψ](x), x ∈ D (2.4.4)

which, after letting x tend towards the boundary ∂D, with the jump relation (2.4.3) becomes

−1
2

ψ(x)+Dκ [ψ](x) = 0, x ∈ ∂D. (2.4.5)

Writing M(κ) :=−1
2 I+Dκ , (2.4.5) becomes M(κ)ψ = 0, which is a nonlinear eigenvalue

problem. First, the boundary is subdivided into n f curved elements called ∆1, . . . ,∆n f , and
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(2.4.5) becomes

−1
2

ψ(x)+
n f

∑
j=1

∫
∆ j

ψ(y)∂ν(y)Φκ(x,y) ds(y) = 0, x ∈ ∂D. (2.4.6)

Let m j : [0,1]→ ∆ j, j = 1, . . . ,n f , be bijective, continuous maps. With a change of variables,
(2.4.6) becomes

−1
2

ψ(x)+
n f

∑
j=1

∫ 1

0
ψ(m j(s))∂ν(m j(s))Φκ(x,m j(s))∥∂sm j(s)∥ ds(s) = 0, x ∈ ∂D. (2.4.7)

We now denote by Li(s) the quadratic Lagrange polynomials and by L̂i(s) the generalized
Lagrange basis functions, i = 1,2,3:

L1(s) = (1− s)(1−2s), L2(s) = 4s(1− s), L3(s) = s(2s−1),

L̂1(s) =
1− s−α

1−2α

1−2s
1−2α

, L̂2(s) = 4
s−α

1−2α

1− s−α

1−2α
, L̂3(s) =

sα

1−2α

2s−1
1−2α

and we fix a parameter

α ∈ (0,1/2). (2.4.8)

Each m j(s) is approximated by a quadratic interpolation polynomial

m j(s)≈ m̃ j(s) =
3

∑
i=1

v( j)
i Li(s),

where v( j)
i , i = 1,3 are the end points of the j-th boundary element and v( j)

2 is its midpoint.
We define the collocation nodes ṽ j,k := m̃ j(qk) for j = 1, . . . ,n f , k = 1,2,3 and q1 = α, q2 =

1/2, q3 = 1−α . The unknown function ψ(m̃ j(s)) is approximated on each piece ∆ j by a
quadratic interpolation polynomial

3

∑
k=1

ψ(m̃ j(qk))L̂k(s) =
3

∑
k=1

ψ(ṽ j,k)L̂k(s).

Equation (2.4.7) then becomes

−1
2

ψ(x)+
n f

∑
j=1

3

∑
k=1

∫ 1

0
∂ν(m̃ j(s))Φκ(x, m̃ j(s))∥∂sm̃ j(s)∥L̂k(s) ds(s)ψ(ṽ j,k) = r(x),
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with a residue r(x) which results from the various approximations. For the boundary element
collocation method, we require r(ṽi,ℓ) = 0 [7, p. 50] and obtain the linear system of size
3n f ×3n f

−1
2

ψ(ṽi,ℓ)+
n f

∑
j=1

3

∑
k=1

ai, j,k,ℓψ(ṽ j,k) = 0 (2.4.9)

with i = 1, . . . ,n f , ℓ= 1,2,3 and with the integrals

ai, j,k,ℓ =
∫ 1

0
∂ν(m̃ j(s))Φκ(ṽi,ℓ, m̃ j(s))∥∂sm̃ j(s)∥L̂k(s) ds(s)

which are approximated using a Gauß-Kronrod quadrature. We write (2.4.9) abstractly as the
nonlinear eigenvalue problem M(κ)φ = 0, where

φ = (ψ(v1,1),ψ(v1,2),ψ(v1,3),ψ(v2,1), . . . ,ψ(vn f ,3))
⊤. (2.4.10)

This leaves us with a nonlinear eigenvalue problem that needs to be solved, which is done
using Beyn’s contour integral algorithm [9, p. 3849], which makes use of Keldysh’s theorem
and is based on complex contour integrals of the resolvent M−1(κ), whose poles are the
Dirichlet eigenvalues.

Theorem 2.4.1 (Keldysh’s Theorem. [66]) Let D ⊂ C be a domain, and let v∗ = v⊤ denote
the conjugate transpose of a vector or matrix. Suppose that C ⊂ D is a compact subset
containing only simple eigenvalues λn, n = 1, . . . ,n(γ) with eigenvectors vn, wn satisfying

M(λn)vn = 0, w∗
nM(λn) = 0, w∗

nM′(λn)vn = 1.

Then there exists some neighborhood U of C in D and a holomorphic function R : U →
C3n f×3n f such that

M(z)−1 =
n(γ)

∑
n=1

1
z−λn

vnw∗
n +R(z), z ∈U\{λ1, . . . ,λn(γ)}. (2.4.11)

Let σ(M) denote the spectrum of M and let γ ⊂ D be a contour which satisfies γ ∩σ(M) = /0
and containing n(γ) eigenvalues λ1, . . . ,λn(γ). Let f : D→C be holomorphic. Then, applying
the residue theorem to (2.4.11) we have

1
2πi

∫
γ

f (z)M(z)−1 dz =
n(γ)

∑
n=1

f (λn)vnw∗
n.
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Algorithm 2.2: Beyn contour integral algorithm
For a specified contour γ(t) = µ +Rcos(t)+ iRsin(t), µ ∈ R, t ∈ [0,2π), R ∈ R>0
and the number n(γ) of eigenvalues enclosed in γ (with multiplicity), we pick a
random matrix V̂ ∈ C3n f×ℓ with 3n f ≫ ℓ≥ n(γ). We compute the contour integrals

A0 =
1

2πi

∫
γ

M−1(κ)V̂ ds(κ) =
1

2πi

∫ 2π

0
M−1(γ(t))V̂ γ

′(t) ds(t)

=
n(γ)

∑
n=1

vnw∗
nV̂ =VW ∗V̂ ,

A1 =
1

2πi

∫
γ

κM−1(κ)V̂ ds(κ) =
1

2πi

∫ 2π

0
γ(t)M−1(γ(t))V̂ γ

′(t) ds(t)

=
n(γ)

∑
n=1

λnvnw∗
nV̂ =V ΛW ∗V̂ ,
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Algorithm 2.3: Beyn contour integral algorithm (continued)
with Λ = diag(λ1, . . . ,λn(γ)). These integrals are approximated using the trapezoidal

rule:

A0,K =
1

iK

K−1

∑
j=0

M−1(γ(t j))V̂ γ
′(t j), A1,K =

1
iK

K−1

∑
j=0

γ(t j)M−1(γ(t j))V̂ γ
′(t j),

(2.4.12)

with t j =
2π j
K , j = 0, . . . ,K. Next, we compute a singular value decomposition

A0,K =V ΣW ∗ with V ∈ C3n f×ℓ, Σ ∈ Cℓ×ℓ and W ∈ Cℓ×ℓ. For
Σ = diag(σ1,σ2, . . . ,σℓ) and a given tolerance εsing, we find n(γ) such that

σ1 ≥ ·· · ≥ σn(γ) > εsing > σn(γ)+1 ≥ ·· · ≥ σℓ. (2.4.13)

The singular values σn(γ)+1 ≥ ·· · ≥ σℓ which are below the tolerance are likely to
be different from zero only due to rounding errors and are discarded. With the
matrices V0 := (Vi j)1≤i≤m,1≤ j≤n(γ), Σ0 := (Σi j)1≤i≤n(γ),1≤ j≤n(γ) as well as
W0 := (Wi j)1≤i≤ℓ,1≤ j≤n(γ) there is a regular matrix S ∈ Cn(γ)×n(γ) such that
V =V0S, and after rewriting some matrices, we have that

SΛS−1 =V ∗
0 A1W0Σ

−1
0 .

The matrix on the right-hand side therefore has the same eigenvalues and
eigenvectors as Λ. We compute the n(γ) eigenvalues and eigenvectors si of the
matrix V ∗

0 A1,NW0Σ
−1
0 ∈ Cn(γ)×n(γ). The i-th eigenfunction ui is then approximated

by inserting φ =V0si (see (2.4.10)) into

ui(x) = DLκ [ψ](x)≈
n f

∑
j=1

3

∑
k=1

â j,k(x) ·ψ(ṽ j,k),

where

â j,k(x) =
∫ 1

0
∂ν(m̃ j(s))Φκ(x, m̃ j(s))∥∂sm̃ j(s)∥L̂k(s) ds(s),

which again are approximated using a Gauß-Kronrod quadrature.
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Chapter 3

Solving semilinear parabolic SPDEs on
two-dimensional domains with a C 2

boundary

This chapter deals with solving SPDEs of the type shown in (2.2.7) on general bounded
two-dimensional domains with a C 2 boundary and with Dirichlet boundary conditions. For
this, the exponential Euler scheme recalled in Section 2.3.2 as well as Beyn’s algorithm to
numerically approximate Dirichlet eigenvalues and eigenfunctions, recalled in Section 2.4,
are used. Most of this chapter can also be found in the paper [21].

3.1 The exponential Euler scheme for two-dimensional do-
mains

In the literature on SPDEs, at least one of the two constraints have to be made: Either
a one-dimensional spatial domain is considered, where white noise as well as trace-class
noise can be considered, or the covariance operator Q cannot be allowed to be Q = I, i.e.
space-time white noise cannot be considered. This is due to the fact that a solution of an
SPDE on a multidimensional domain (i.e. D ⊂ Rn, n ≥ 2) with space-time white noise (i.e.
W Q is a cylindrical Wiener process with Q = I) does not exist even for F = 0, since vital
regularity properties of the stochastic convolution

W Q
A (t) =

∫ t
0 eA(t−s) dW Q(s), t ∈ [0,T ],
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in (2.3.2) are violated. See [26, Example 5.7] [97, p. 329] for discussions of these failures
in spatial dimensions of two and higher. The deciding factor is the asymptotic behavior
of Dirichlet eigenvalues, which has been described by Weyl’s law [48, 4.1]: If 0 < λ1 <

λ2 ≤ λ3 ≤ . . . are the Dirichlet eigenvalues of the negative Laplacian for an arbitrary domain
D ⊂ Rd , then

λn ∝
4π2

(ωd µd(D))2/d n2/d, n → ∞, (3.1.1)

where µd(D) is the d-dimensional Lebesgue measure of D and ωd is the volume of the
d-dimensional unit ball. The regularity condition [59, Assumption 2.2] for the exponential
Euler scheme which we will use requires

∞

∑
n=1

(λn)
2γ−1qn < ∞ (3.1.2)

for some γ ∈ (0,1), which for space-time white noise, i.e. qn = 1 for all n ∈N, is not fulfilled
in two dimensions. Instead, we assume that qn = O(n−α) for some α > 0, in which case
(3.1.2) holds if γ < α/2. In our numerical experiments, we will use qn = n−2 so that γ can
be arbitrarily close to 1.

3.2 Preprocessing: Computation of the orthonormal basis

The analytical expressions of the Dirichlet eigenfunctions are known for some shapes. In
the following, we will consider a shape which we call the Peanut shape (see Figure 3.2.2),
whose Dirichlet eigenvalues and eigenfunctions are not known analytically and whose
parametrization for t ∈ [0,2π) is given by(

0.06 · ((cos(t)+2) · (cos(t +0.6)+2) · (0.1 · cos(3t)+2))−0.1
0.06 · (sin(t)+2) · (sin(t −0.5)+2) · (0.4 · cos(2t)+2) · (0.1 · sin(4t)+1))−0.06

)
.

For the boundary element collocation method as described in Section 2.4, we choose
α = (1−

√
3/5)/2 (see (2.4.8)). Note that while any α ∈ (0, 1

2) ensures at least cubic
convergence, empirically it was seen [67, Section 4.6] that the choice α = (1−

√
3/5)/2

yielded superconvergence for domains with a C 2 boundary. Whenever the Beyn integral al-
gorithm is used to compute its Dirichlet eigenvalues and eigenfunctions, we use εsing = 10−4

as singular value tolerance (see (2.4.13)) and K = 24 for the periodic trapezoidal rule (see
(2.4.12)).
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3.2.1 Convergence and accuracy of base functions.

In previous work, the Beyn integral algorithm was used to compute Neumann eigenvalues,
and a convergence with rates up to three for a fixed wavenumber could be observed [67].
However, the eigenvalues and eigenfunctions become less accurate for higher wavenumbers,
so that more boundary elements are needed for higher wavenumbers. Previous publications
from high-frequency scattering theory using boundary element collocation methods to solve
the Helmholtz equation have pointed out that this effort rises linearly with the wavenumber
[16, 18], which we could confirm for the case of the Dirichlet eigenfunctions and eigenvalues
(see Figure 3.2.5). For the Peanut shape, we have conducted a convergence analysis for the
first 200 eigenfunctions. For each wavenumber, we computed a reference function for 600
boundary elements which we compare to functions with lower accuracy (computed with 500,
400, 300, 200, 150, 100, 75 and 50 boundary elements, respectively). For speeding up the
computations, these functions were stored only on an equidistant 81×81 grid inside [0,1]2,
while the final functions making up the ONB are stored on a 301×301 grid to obtain results
with better resolution (for the error analysis in Section 3.3, we will denote the grid resolution
as R and will use R = 301). The pointwise storage on the equidistant grid means that the inner
products, i.e. the integrals in the scheme (2.1) can be approximated numerically. As it is easy
to implement and has a convergence order of four [37, p. 21 f.] (and hence, a convergence
order of two for two-dimensional functions), we use the composite two-dimensional Simpson
rule and set the numerically integrated function to be zero outside the boundary, so that
the Simpson rule can be applied on the unit square. The application of the Simpson rule is
possible since eigenfunctions of the Laplacian are always smooth [48, §2.(i)].
Suppose that we use n(i)f boundary elements for eigenfunction number i, i = 1, . . . ,N. We fix
error tolerances

ε
(λ ) := max

i=1,...,N
|λ̃i

(n(i)f )
− λ̃

(600)
i |, ε

(η) := max
i=1,...,N

∥ẽ
(n(i)f )

i − ẽ(600)
i ∥H ,

where the tilde denotes approximation and the superscript denotes that the approximation is
done with n(i)f boundary elements. Depending on which ε(λ ) and ε(η) we choose, different
wavenumber dependent amounts of boundary elements are needed (see Figure 3.2.5). We
will later observe (see Example 1) that for the error bound derived in Theorem 3.3.4 it is
crucial to reduce ε(λ ) and ε(η) as much as possible.
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3.2.2 Computation of the orthonormal basis.

After precomputing the necessary numbers of boundary elements for each function (see
Section 3.2.1) and the spectrum of −∆ on D is known up to a few digits, the eigenvalues
and eigenfunctions can be computed by applying the Beyn algorithm to each eigenvalue by
enclosing it by a contour which does not enclose any other eigenvalue (see Figure 3.2.1). The
Peanut shape analyzed here is asymmetric and does not appear to have any multiple Dirichlet
eigenvalues. If multiple eigenvalues occur, it can happen that the different eigenfunctions
belonging to one eigenvalue are not returned by the algorithm as orthogonal functions, but as
linear combinations of them. This would necessitate an additional orthogonalization routine
applied to those eigenfunctions, which would pose another error source.
Based on the convergence results for the Peanut shape, our base functions for the Peanut
have been computed such that the error to a reference function with nref

f = 600 boundary
elements stays below the tolerances ε(λ ) = 2 ·10−4 and ε(η) = 5 ·10−6. In addition, we have

R

C

0
λ1 λ2 λ3 . . .× × ×

γ̂1 γ̂2 γ̂3 γ̂4

R

C

0
λ1 λ2 λ3 . . .× × ×
γ1 γ2 γ3

Figure 3.2.1: In the first step, the eigenvalues are still unknown, so the real axis up to a certain
point is covered with contours γ̂i which cover the real axis up to the point where the desired
number N of eigenvalues has been found. For the subsequent, more precise computation,
contours γi, i = 1, . . . ,N around the found eigenvalues are chosen.

computed some errors to even more accurate wavenumbers and eigenfunctions computed
with nref

f = 1,200 boundary elements. A comparison of the reference errors is shown in
Figure 3.2.2 for two wavenumbers. It can be seen that there is a slight discrepancy for the
wavenumber error at n f = 500, but the reference error for the eigenfunctions is almost the
same for both reference functions, so it can be assumed that the reference functions are
sufficiently accurate.
On the computational cost, we note that for an orthonormal basis of a certain number N of
eigenvalues and eigenfunctions the computational time with our implementation behaved
asymptotically as O(N2). In more detail, it is shown in Figure 3.2.3 that, with growing
number n f of used boundary elements, the computation times for an eigenvalue rises as O(n2

f ),
and for an eigenfunction as O(n f ) (although it is more costly for low n f ). The computation
time is very similar for different eigenvalues and the corresponding eigenfunctions, and
neither increases nor decreases as the eigenvalue increases. Figure 3.2.4 shows an estimate
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of the total computational cost to compute an orthonormal basis of N eigenvalues and
eigenfunctions, i.e. the sum

N

∑
i=1

ev(n f (λi))+ ef(n f (λi)), (3.2.1)

where n f (λ ) is the needed number of boundary elements for a given set of error tolerances,
and ev(n f ) and ef(n f ) are the computation times for eigenvalue and eigenfunction using n f

boundary elements. Based on empirical tests such as shown in Figure 3.2.3, we assumed
that ev(n f ) = 0.15 · n2

f and ef(n f ) = 50 · n f . Since λi ∼ i, n f (i) ∼
√

i (see Figure 3.2.5),
ev(i)∼ i2 and ef(i)∼ i, the sum (3.2.1) contains a term behaving as i and one behaving as

√
i,

so that the whole sum is made up of two terms (one each for eigenvalues and eigenfunctions)
behaving as O(N2)+O(N3/2).
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Figure 3.2.2: Convergence results for two eigenfunctions of the Peanut shape (on the left, the
first one, on the right, the 56th one), in red, the error is measured with respect to reference
eigenvalues and eigenfunctions computed for nref

f = 600 boundary elements, in green, the
reference data is computed for nref

f = 1200 boundary elements.
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for the 300th eigenvalue and its corresponding eigenfunction in green (left axis) as well as
CPU time for their computation in seconds (right axis). It can be seen that the CPU time
for the eigenvalues behaves like O(n2

f ), while the time for the eigenfunctions is O(n f ). The
computing times are very similar for other eigenvalues and eigenfunctions.
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Figure 3.2.4: The total computation time on our machine for an orthonormal basis consisting
of N eigenvalues and eigenfunctions. Scenarios 1 to 3 correspond, from top to bottom, to the
three pairs of error tolerances shown in Figure 3.2.5.
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Figure 3.2.5: The number of boundary elements to approximate wavenumbers and their
respective eigenfunctions to stay below certain error tolerances ε(λ ) and ε(η). For
each base function, we computed a reference solution with nref

f = 600 boundary ele-
ments and compared the same function with less boundary elements to it, with n f ∈
{50,75,100,150,200,300,400,500} boundary elements used. The plots on the left show
raw data, with the least number of required boundary elements. The plots on the right show
linearly interpolated numbers of needed boundary elements based off the data from the plots
on the left. We can observe the linear relationship between wavenumber and needed boundary
elements n f , and that the needed n f increases as the error tolerances decrease (in red are the
values which exceed the error tolerance for every tested n f ). The blue reference slopes are
functions f (x) = mx+b, for m ∈ {7,8.5,10}, b ∈ {80,65,70}, from top to bottom.
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3.3 Error analysis

We present an error analysis for the strong error in the Galerkin exponential Euler scheme
from [59] with approximated eigenfunctions and eigenvalues. We denote ⟨·, ·⟩ := ⟨·, ·⟩H and
∥ · ∥ := ∥ · ∥H , and the exact solution at time t by U(t).
Its approximation by the spectral Galerkin exponential Euler scheme is denoted by V (1)

k .
The approximation of V (1)

k by computing the inner products as numerical integrals over D
is denoted by V (2)

k . The approximation of V (2)
k using approximate eigenvalues is denoted

by V (3)
k . Finally, the approximation of V (3)

k using approximate eigenfunctions is denoted by
V (4)

k .
Throughout the section, let L = ∥ f ′∥∞ be the optimal Lipschitz constant of the Nemytskii
function f of the nonlinearity in the SPDE (i.e. the infimum of all Lipschitz constants,
yielding the best estimate). Also, we denote with R the resolution of the spatial grid along
each spatial dimension, used for computing the numerical integrals whose error is dealt with
in Lemma 3.3.1.
We denote

V (i)
k, j := ⟨V (i)

k ,e j⟩, i = 1,2,3,4, ε
(i)
k, j := E|V (i−1)

k, j −V (i)
k, j |, i = 2,3,4,

with k = 0, . . . ,M (time step) and j = 1, . . . ,N (eigenfunction number). First, error estimates
for ∥V (i)

k −V (i+1)
k ∥ are given for i = 1,2,3 in Lemmas 3.3.1, 3.3.2 and 3.3.3 which are then

combined to give a general result on the error ∥U(tk)−V (4)
k ∥ in Theorem 3.3.4. Note that

V (4)
k is the output of the computer programs, so the error estimate in Theorem 3.3.4 contains

Fourier-Galerkin coefficients of V (4)
k which can then either be inserted for a run-specific

bound, or be bounded by an empirically found constant which is generally found to be an
upper bound (which we have done in Example 1).

Lemma 3.3.1 We have

E∥V (1)
k −V (2)

k ∥ ≤
N

∑
j=1

ε
(2)
k, j (3.3.1)

and, for a constant C > 0,

ε
(2)
k+1, j ≤ e−λ jhε

(2)
k, j +

1− e−λ jh

λ j
·

[
L ·

N

∑
i=1

ε
(2)
k,i +C ·R−2

]
. (3.3.2)
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Proof. We compute, distinguishing f j
N(V

(2)
k ) computed as an integral and

˜
f j
N(V

(2)
k ) computed

as a numerical integral,

E∥V (1)
k −V (2)

k ∥= E

∥∥∥∥∥ N

∑
j=1

V (1)
k, j · e j −

N

∑
j=1

V (2)
k, j · e j

∥∥∥∥∥= E

∥∥∥∥∥ N

∑
j=1

(V (1)
k, j −V (2)

k, j ) · e j

∥∥∥∥∥
≤

N

∑
j=1

E|V (1)
k, j −V (2)

k, j |=
N

∑
j=1

ε
(2)
k, j

(3.3.3)

and

ε
(2)
k+1, j = E

∣∣∣∣∣e−λ jhV (1)
k, j +

1− e−λ jh

λ j
f j
N(V

(1)
k )+

(
q j

2λ j
(1− e−2λ jh)

)1/2

R j
k

−

[
e−λ jhV (2)

k, j +
1− e−λ jh

λ j

˜
f j
N(V

(2)
k )+

(
q j

2λ j
(1− e−2λ jh)

)1/2

R j
k

]∣∣∣∣∣
≤ e−λ jhε

(2)
k, j +

1− e−λ jh

λ j
E| f j

N(V
(1)
k )− ˜

f j
N(V

(2)
k )|.

E| f j
N(V

(1)
k )− ˜

f j
N(V

(2)
k )| ≤ E| f j

N(V
(1)
k )− f j

N(V
(2)
k )|+E| f j

N(V
(2)
k )− ˜

f j
N(V

(2)
k )|

≤ E
∫

D

[
fN(V

(1)
k (x))− fN(V

(1)
k (x)+ηk(x))

]
e j(x) dx+C ·R−2

≤ E
[∫

D
C[L ·ηk(x)]2 dx

]1/2

+C ·R−2 = L · ∥ηk∥+C ·R−2

≤ L ·
N

∑
i=1

ε
(2)
k,i +C ·R−2,

where the Hölder inequality and the Lipschitz continuity of fN were used. In total, we have

ε
(2)
k+1, j ≤ e−λ jhε

(2)
k, j +

1− e−λ jh

λ j
·

[
L ·

N

∑
i=1

ε
(2)
k,i +C ·R−2

]
.

Lemma 3.3.2 We have

E∥V (2)
k −V (3)

k ∥ ≤
N

∑
j=1

ε
(3)
k, j (3.3.4)
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and

ε
(3)
k+1, j ≤ e−λ jhε

(3)
k, j + e−λ jh|1− e−ε

(λ )
j h| · (ε(4)k, j +E|V (4)

k, j |) (3.3.5)

+L · 1− e−λ jh

λ j
·

N

∑
j=1

ε
(3)
k, j

+
1

λ jλ̃ j

[
ε
(λ )+ |e−λ̃ jhλ j − e−λ jhλ̃ j|

]
·

[
L ·

N

∑
j=1

ε
(4)
k, j +E| f j

N(V
(4)
k )|

]

+

∣∣∣∣∣∣
√

q j

2λ j
(1− e−2λ jh)−

√
q j

2(λ j + ε
(λ )
j )

(1− e−2(λ j+ε
(λ )
j )h)

∣∣∣∣∣∣ .
Proof. Suppose that we have approximate eigenvalues λ̃ j = λ j + ε

(λ )
j , j = 1, . . . ,N. Then by

the same steps as in (3.3.3), the resulting error of the whole function is

E∥V (2)
k −V (3)

k ∥ ≤
N

∑
j=1

ε
(3)
k, j .

The coefficient errors after the next time step are given by

ε
(3)
k+1, j = E

∣∣∣∣∣e−λ jhV (2)
k, j +

1− e−λ jh

λ j
f j
N(V

(2)
k )+

(
q j

2λ j
(1− e−λ jh)

)1/2

R j
k

−

e−λ̃ jhV (2)
k, j +

1− e−λ̃ jh

λ̃ j
f j
N(V

(3)
k )+

(
q j

2λ̃ j
(1− e−2λ̃ jh)

)1/2

R j
k

∣∣∣∣∣∣
≤ E|e−λ jhV (2)

k, j − e−λ̃ jhV (3)
k, j |

+E

∣∣∣∣∣1− e−λ jh

λ j
f j
N(V

(2)
k )− 1− e−λ̃ jh

λ̃ j
f j
N(V

(3)
k )

∣∣∣∣∣
+E

∣∣∣∣∣∣
( q j

2λ j
(1− e−2λ jh)

)1/2

−

(
q j

2λ̃ j
(1− e−2λ̃ jh)

)1/2
R j

k

∣∣∣∣∣∣ .
Going through this term by term, we have that

E|e−λ jhV (2)
k, j − e−λ̃ jhV (3)

k, j |

≤ E|e−λ jhV (2)
k, j − e−λ jhV (3)

k, j |+E|e−λ jhV (3)
k, j − e−λ̃ jhV (3)

k, j |

= e−λ jhE|V (2)
k, j −V (3)

k, j |+ |e−λ jh − e−(λ j+ε
(λ )
j )h| ·E|V (3)

k, j |
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≤ e−λ jhε
(3)
k, j + e−λ jh|1− e−ε

(λ )
j h| ·E|V (3)

k, j |

≤ e−λ jhε
(3)
k, j + e−λ jh|1− e−ε

(λ )
j h| · (E|V (3)

k, j −V (4)
k, j |+E|V (4)

k, j |)

≤ e−λ jhε
(3)
k, j + e−λ jh|1− e−ε

(λ )
j h| · (ε(4)k, j +E|V (4)

k, j |), (3.3.6)

where we have made the last estimate since unlike E[V (3)
k ], E[V (4)

k ] can be approximated
from the numerical implementation. Next, we have

E

∣∣∣∣∣1− e−λ jh

λ j
f j
N(V

(2)
k )− 1− e−λ̃ jh

λ̃ j
f j
N(V

(3)
k )

∣∣∣∣∣
≤ E

∣∣∣∣∣1− e−λ jh

λ j
f j
N(V

(2)
k )− 1− e−λ jh

λ j
f j
N(V

(3)
k )

∣∣∣∣∣
+E

∣∣∣∣∣1− e−λ jh

λ j
f j
N(V

(3)
k )− 1− e−λ̃ jh

λ̃ j
f j
N(V

(3)
k )

∣∣∣∣∣
=

1− e−λ jh

λ j
E| f j

N(V
(2)
k )− f j

N(V
(3)
k )|+

∣∣∣∣∣1− e−λ jh

λ j
− 1− e−λ̃ jh

λ̃ j

∣∣∣∣∣ ·E| f j
N(V

(3)
k )|

≤ L · 1− e−λ jh

λ j
·

N

∑
j=1

ε
(3)
k, j

+
1

λ jλ̃ j

[
ε
(λ )+ |e−λ̃ jhλ j − e−λ jhλ̃ j|

]
·
[
E| f j

N(V
(3)
k )− f j

N(V
(4)
k )|+E| f j

N(V
(4)
k )|

]
(3.3.7)

≤ L · 1− e−λ jh

λ j
·

N

∑
j=1

ε
(3)
k, j (3.3.8)

+
1

λ jλ̃ j

[
ε
(λ )+ |e−λ̃ jhλ j − e−λ jhλ̃ j|

]
·

[
L ·

N

∑
j=1

ε
(4)
k, j +E| f j

N(V
(4)
k )|

]
.

Finally, we have (using that E|X | ≤ [E|X |2]1/2)

E

∣∣∣∣∣∣
( q j

2λ j
(1− e−2λ jh)

)1/2

−

(
q j

2λ̃ j
(1− e−2λ̃ jh)

)1/2
R j

k

∣∣∣∣∣∣
=

∣∣∣∣∣∣
√

q j

2λ j
(1− e−2λ jh)−

√
q j

2(λ j + ε
(λ )
j )

(1− e−2(λ j+ε
(λ )
j )h)

∣∣∣∣∣∣E|(R j
k)

2|1/2, (3.3.9)

and E|(R j
k)

2|= Var(R j
k) = 1. Summing (3.3.6), (3.3.8) and (3.3.9), we obtain (3.3.5).

Lemma 3.3.3 We have
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E∥V (3)
k −V (4)

k ∥ ≤
N

∑
j=1

[
ε
(4)
k, j + ε

(η)E|V (4)
k, j |
]

(3.3.10)

and

ε
(4)
k+1, j ≤ e−λ̃ jhε

(4)
k, j + e−λ̃ jhε

(η)
j E∥V (4)

k ∥

+
1− e−λ̃ jh

λ̃ j

[
L ·

N

∑
j=1

ε
(4)
k, j + ε

(η)
j ·E∥ fN(V

(4)
k )∥

]
.

(3.3.11)

Proof. Suppose that we have approximate eigenfunctions

ẽ j = e j +η j, ∥η j∥ ≤ ε
(η)
j .

Then, the Fourier-Galerkin expansion of V (4)
k also involves the approximate eigenfunctions,

i.e. V (4)
k = ∑

N
j=1(e j +η j)V

(4)
k, j , and the error for the function is

E∥V (3)
k −V (4)

k ∥

= E

∥∥∥∥∥ N

∑
j=1

e jV
(3)
k, j −

N

∑
j=1

(e j +η j)V
(4)
k, j

∥∥∥∥∥= E

∥∥∥∥∥ N

∑
j=1

e j(V
(3)
k, j −V (4)

k, j )−
N

∑
j=1

η jV
(4)
k, j

∥∥∥∥∥
≤

N

∑
j=1

ε
(4)
k, j +

N

∑
j=1

ε
(η) ·E|V (4)

k, j | =
N

∑
j=1

[
ε
(4)
k, j + ε

(η)E|V (4)
k, j |
]
.

The error for the next coefficient errors is (with the wide tilde denoting inner products with
e j +η j instead of with e j)

ε
(4)
k+1, j = E

∣∣∣∣∣∣e−λ̃ jhV (3)
k, j +

1− e−λ̃ jh

λ̃ j
f j
N(V

(3)
k )+

(
q j

2λ̃ j
(1− e−2λ̃ jh)

)1/2

R j
k

−

e−λ̃ jhṼ (4)
k, j +

1− e−λ̃ jh

λ̃ j

˜
f j
N(V

(4)
k )+

(
q j

2λ̃ j
(1− e−2λ̃ jh)

)1/2

R j
k

∣∣∣∣∣∣
= E

∣∣∣∣∣e−λ̃ jh(V (3)
k, j −Ṽ (4)

k, j )+
1− e−λ̃ jh

λ̃ j
[ f j

N(V
(3)
k )− ˜

f j
N(V

(4)
k )]

∣∣∣∣∣ .
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Dealing with these terms separately, we have

e−λ̃ jhE|V (3)
k, j −V (4)

k, j |+ e−λ̃ jhE|V (4)
k, j −Ṽ (4)

k, j |

≤ e−λ̃ jhε
(4)
k, j + e−λ̃ jhE|⟨V (4)

k ,e j⟩−⟨V (4)
k ,e j +η j⟩|

= e−λ̃ jhε
(4)
k, j + e−λ̃ jhE|⟨V (4)

k ,−η j⟩|

≤ e−λ̃ jhε
(4)
k, j + e−λ̃ jhε

(η)
j E∥V (4)

k ∥ (3.3.12)

and

1− e−λ̃ jh

λ̃ j

[
E| f j

N(V
(3)
k )− f j

N(V
(4)
k )|+E| f j

N(V
(4)
k )− ˜

f j
N(V

(4)
k )|

]
≤ 1− e−λ̃ jh

λ̃ j

[
E| f j

N(V
(3)
k )− f j

N(V
(4)
k )|+E|⟨ fN(V

(4)
k ),e j⟩−⟨ fN(V

(4)
k ),e j +η j⟩|

]
≤ 1− e−λ̃ jh

λ̃ j

[
E| f j

N(V
(3)
k )− f j

N(V
(4)
k )|+E|⟨ fN(V

(4)
k ),−η j⟩|

]
≤ 1− e−λ̃ jh

λ̃ j

[
L ·

N

∑
j=1

ε
(4)
k, j + ε

(η)
j ·E∥ fN(V

(4)
k )∥

]
. (3.3.13)

Summing (3.3.12) and (3.3.13), we obtain (3.3.11).

Theorem 3.3.4 Suppose that we have fixed parameters T , N eigenfunctions, M time steps,
a grid resolution R, Dirichlet eigenvalues 0 < λ1 < λ2 ≤ λ3 ≤ ·· · ≤ λn, eigenvalue error
tolerance ε(λ ), and eigenfunction error tolerance ε(η). We denote the Fourier coefficients
V (4)

k, j of the approximated solution V (4)
k and the Fourier coefficients f j

N(V
(4)
k ) of fN(Utk) in

the matrices V̄ = (V (4)
k, j ), fN(V̄ ) = ( f j

N(V
(4)
k )), k = 1, . . . ,M, j = 1, . . . ,N. Then, for any

ε ∈ (0,1), we have a bound for the strong error of the complete scheme at time T

E∥U(T )−V (4)
M ∥ ≤ E s(T,N,M,R,L,λ1,λN ,ε

(λ ),ε(η),V̄ , fN(V̄ )) =

E
(1)
M (T,N,M,λN)+E

(234)
M (T,N,M,R,L,λ1,λN ,ε

(λ ),ε(η),V̄ , fN(V̄ )),
(3.3.14)

where, for a constant CT > 0,

E
(1)
M (T,N,M,λN)≤CT

(
λ

ε−1
N +

log(M)

M

)
(3.3.15)

and

E
(234)
M (T,N,M,R,L,λ1,ε

(λ ),ε(η),V̄ , fN(V̄ ))
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≤ aM
2 · ε(2)0 +b2 ·

1−aM
2

1−a2
+aM

2 · ε(3)0 +b3 ·
1−aM

2
1−a2

+ ãM
2 · ε(4)0 +b4 ·

1− ãM
2

1− ã2
+b5

(3.3.16)

→ b2

1−a2
+

b3

1−a2
+

b4

1− ã2
+b5 as M → ∞, if a2 < 1 (since ã2 ≤ a2).

where, for some constant C > 0,

a2 = e−λ1h +L ·N · 1− e−λ1h

λ1
, ã2 = e−λ̃1h +L ·N · 1− e−λ̃1h

λ̃1
,

b2 =
1− e−λ1h

λ1
·N ·C ·R−2,

b3 = e−λ1h|1− e−ε(λ )h| · sup
k=0,...,M

[
N

∑
j=1

(ε
(4)
k, j +E|V (4)

k, j |)

]

+
1

λ1λ̃1

[
ε
(λ )+ |e−λ̃1h

λ1 − e−λ1h
λ̃1|
]

· sup
k=0,...,M

[
N ·L ·

N

∑
j=1

ε
(4)
k, j +

N

∑
j=1

E| f j
N(V

(4)
k )|

]

+N ·

∣∣∣∣∣
√

1
2λ1

(1− e−2λ1h)−

√
1

2(λ1 + ε(λ ))
(1− e−2(λ1+ε(λ ))h)

∣∣∣∣∣
b4 = N · sup

j=1,...,N

{
(1+E|V (4)

M, j|)

·

[
e−λ̃1h · ε(η) · sup

k=0,...,M
E∥V (4)

k ∥+ ε
(η) · 1− e−λ̃1h

λ̃1
· sup

k=0,...,M
E∥ fN(V

(4)
k )∥

]}
,

b5 = ε
(η) ·

N

∑
j=1

E|V (4)
M, j|.

Remark 3.3.5 For the case of the simpler error bound with M → ∞, the condition a2 < 1 is
equivalent to L ·N < λ1. This turns out to be a rather strict condition (see Section 3.4). The
error bound (3.3.14) requires very strict conditions on the parameters in order to be usable,
we address this in Example 1. This strictness stems from some crude estimates in the proofs
to simplify expressions, for example the step of replacing all λn by λ1 in the proof of Theorem
3.3.4.

Proof. The error of the scheme can be split up as

E(∥U(tk)−V (4)
k ∥)
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≤ E(∥U(tk)−V (1)
k ∥)+E(∥V (1)

k −V (2)
k ∥)+E(∥V (2)

k −V (3)
k ∥)+E(∥V (3)

k −V (4)
k ∥)

=: E(∥U(tk)−V (1)
k ∥)+ ε

(2)
k + ε

(3)
k + ε

(4)
k ≤ E

(1)
k +E

(2)
k +E

(3)
k +E

(4)
k , k = 1, . . . ,M,

where the error bound E
(1)
M in (3.3.15) is from [59]. The other terms relate to the second

error term above as

E
(234)
k = E

(2)
k +E

(3)
k +E

(4)
k , k = 1, . . . ,M.

The error bounds E
(i)
k , i = 2,3,4, are established in Lemmas 3.3.1, 3.3.2 and 3.3.3 as

ε
(2)
k ≤

N

∑
j=1

ε
(2)
k, j =: E

(2)
k , ε

(3)
k ≤

N

∑
j=1

ε
(3)
k, j =: E

(3)
k , ε

(4)
k ≤

N

∑
j=1

(1+ |V (4)
k, j |)ε

(4)
k, j =: E

(4)
k .

Furthermore, the inequalities (3.3.2), (3.3.5) and (3.3.11) establish relations between ε
(i)
k, j and

ε
(i)
k+1, j for k = 0, . . . ,M−1, j = 1, . . . ,N and i = 2,3,4. First, we consider in each time step

the sum of all errors (summing over index j) and their bounds given by

N

∑
j=1

ε
(2)
k+1, j ≤

N

∑
j=1

e−λ jhε
(2)
k, j +

N

∑
j=1

1− e−λ jh

λ j

[
L ·

N

∑
i=1

ε
(2)
k,i +D ·R−2

]
,

N

∑
j=1

ε
(3)
k+1, j ≤

N

∑
j=1

e−λ jhε
(3)
k, j +

N

∑
j=1

e−λ jh|1− e−ε(λ )h| · (ε(4)k, j +E|V (4)
k, j |)

+
N

∑
j=1

L · 1− e−λ jh

λ j
·

N

∑
i=1

ε
(3)
k,i

+
N

∑
j=1

1
λ jλ̃ j

[
ε
(λ )+ |e−λ̃ jhλ j − e−λ jhλ̃ j|

]
·

[
L ·

N

∑
i=1

ε
(4)
k,i +E| f j

N(V
(4)
k )|

]

+
N

∑
j=1

∣∣∣∣√ q j

2λ j
(1− e−2λ jh)−

√ q j

2(λ j + ε(λ ))
(1− e−2(λ j+ε(λ ))h)

∣∣∣∣ ,
N

∑
j=1

ε
(4)
k+1, j ≤

N

∑
j=1

e−λ̃ jhε
(4)
k, j +

N

∑
j=1

e−λ̃ jhε
(η)E∥V (4)

k ∥

+
N

∑
j=1

1− e−λ̃ jh

λ̃ j

[
L ·

N

∑
i=1

ε
(4)
k,i + ε

(η) ·E∥ fN(V
(4)
k )∥

]
.
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Since the terms in the above expressions involving λ j like e−λ jh, 1−e−λ jh

λ j
,

1
λ jλ̃ j

[
ε(λ )+ |e−λ̃ jhλ j − e−λ jhλ̃ j|

]
and

∣∣∣∣√ q j
2λ j

(1− e−2λ jh)−
√

q j

2(λ j+ε(λ ))
(1− e−2(λ j+ε(λ ))h)

∣∣∣∣
are monotone decreasing in λ j, we can bound all the above terms from above by replacing
all λ j by λ1. We obtain

N

∑
j=1

ε
(2)
k+1, j ≤ e−λ1h

N

∑
j=1

ε
(2)
k, j +N ·L · 1− e−λ1h

λ1

N

∑
j=1

ε
(2)
k, j +

1− e−λ1h

λ1
·N ·D ·R−2

=

[
e−λ1h +N ·L · 1− e−λ1h

λ1

]
·

N

∑
j=1

ε
(2)
k, j +

1− e−λ1h

λ1
·N ·D ·R−2, (3.3.17)

N

∑
j=1

ε
(3)
k+1, j ≤ e−λ1h

N

∑
j=1

ε
(3)
k, j + e−λ1h|1− e−ε(λ )h|

N

∑
j=1

(ε
(4)
k, j +E|V (4)

k, j |)

+N ·L · 1− e−λ1h

λ1
·

N

∑
j=1

ε
(3)
k, j

+
1

λ1λ̃1
(3.3.18)

·
[
ε
(λ )+ |e−λ̃1h

λ1 − e−λ1h
λ̃1|
]
·

[
N ·L ·

N

∑
j=1

ε
(4)
k, j +

N

∑
j=1

E| f j
N(V

(4)
k )|

]

+N ·

∣∣∣∣∣
√

1
2λ1

(1− e−2λ1h)−

√
1

2(λ1 + ε(λ ))
(1− e−2(λ1+ε(λ )h))

∣∣∣∣∣
≤

[
e−λ1h +N ·L · 1− e−λ1h

λ1

]
·

N

∑
j=1

ε
(3)
k, j (3.3.19)

+ e−λ1h|1− e−ε(λ )h| · sup
k=0,...,M

[
N

∑
j=1

(ε
(4)
k, j +E|V (4)

k, j |)

]

+
1

λ1λ̃1

[
ε
(λ )+ |e−λ̃1h

λ1 − e−λ1h
λ̃1|
]

· sup
k=0,...,M

[
N ·L ·

N

∑
j=1

ε
(4)
k, j +

N

∑
j=1

E| f j
N(V

(4)
k )|

]

+N ·

∣∣∣∣∣
√

1
2λ1

(1− e−2λ1h)−

√
1

2(λ1 + ε(λ ))
(1− e−2(λ1+ε(λ )h))

∣∣∣∣∣ ,
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N

∑
j=1

ε
(4)
k+1, j ≤ e−λ̃1h

N

∑
j=1

ε
(4)
k, j + e−λ̃1h ·N · ε(η) ·E∥V (4)

k ∥

+N · 1− e−λ̃1h

λ̃1

[
L ·

N

∑
j=1

ε
(4)
k, j + ε

(η) ·E∥ fN(V
(4)
k )∥

]

≤

[
e−λ̃1h +N ·L · 1− e−λ̃1h

λ̃1

]
·

N

∑
j=1

ε
(4)
k, j (3.3.20)

+ e−λ̃1h ·N · ε(η) · sup
k=0,...,M

E∥V (4)
k ∥ (3.3.21)

+N · ε(η) · 1− e−λ̃1h

λ̃1
· sup

k=0,...,M
E∥ fN(V

(4)
k )∥.

We can now see that the error sum at tk+1 can be bounded by an expression which is the
image of the affine map

ψa,b : R→ R, ψa,b(x) = ax+b

for a > 0, b ∈ R. For a given start value, the behavior of the iteration ψM
a,b(x0), M > 0,

depends on whether a < 1, a = 1 or a > 1. We have the following cases:

ψ
M
a,b(x0) =


aMx0 +b

M−1

∑
i=1

ai = aMx0 +b · 1−aM

1−a
M→∞−→ b

1−a
a < 1, (3.3.22)

x0 +Mb, a = 1,

aM
(

x0 +
b

a−1

)
− b

a−1
, a > 1. (3.3.23)

For our three error sums, the constant a is given by a2 and ã2, and the constant b is given by
b2, b3 and b4, respectively. Applying the behavior of the iterated affine map ψa,b as shown in
(3.3.22) to (3.3.23) to the maps (3.3.17), (3.3.19) and (3.3.20) with the constants a2, ã2, b2,
b3 and b4, as well as the bounds (3.3.1), (3.3.4) and (3.3.10) shown in the three lemmas, we
obtain the terms shown in (3.3.16).

3.4 Numerical experiments

For the case where the function f associated to the operator F in equation 2.3.1 is linear
and given by f (x) = x, we can compute an exact solution by taking the function inside the
linear operator A, so that we consider the eigenvalues of the operator A+ I which are given
by −λ j +1, j ∈ N. For the linear function f1(x) = x, we present convergence plots in Figure
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3.4.1 and compare the approximated solution to the exact solution. For the nonlinear function
f2(x) = 1

1+x2 , we additionally compare the approximate solution to a reference solution
with N = 400 and M = 100 and show the convergence with respect to N in the second plot.
Since the constant for the noise term scales nonlinearly with the step size (see the final term
in (2.1)), we cannot compute a reference solution to compare the other approximations to,
as we cannot sensibly merge the finer random increments into more rough ones. For the
convergence plots with f = f1, the error was averaged over 100 independent realizations,
while for f = f2, 10 independent realizations were computed. We can see in all cases that the
convergence with respect to M and N is of order one. We note at this point that we were not
able to verify that the nonlinear function f2 indeed satisfies the conditions (2.3.3) to (2.3.5),
but convergence to a reference solution is observed nevertheless. We also remark that if
strictly nonlinear f is used, the computational effort is substantially higher since in every
time step N two-dimensional numerical integrals have to be computed.
We now shed some light on how the error bound from Theorem 3.3.4 behaves here: We
first note that for the Peanut shape it is λ1 ≈ 6.5155, so in order for the condition a2 < 1 to
be fulfilled we would need L ·N < 6.5155. This is a very strict condition as either N or L
needs to be quite small; for instance, if N = 100, only nonlinearities with L < 0.065155 are
covered by the case M → ∞ in Theorem 3.3.4. But as this is not a necessary condition to use
Theorem 3.3.4, we can still give bounds also if a2 > 1.

Example 1 We give a concrete example for an error bound resulting from Theorem 3.3.4.
Suppose T = 0.1, N = 100, M = 50, R = 301, L = 0.01, λ1 = 6.5155, |V (4)

k, j | ≤ 1 for all
k = 0, . . . ,M, j = 1, . . . ,N (we have observed in practice that this has always been the
case). We also assume C = 1 (as Simpson’s rule is very accurate for smooth functions)
and ε

(4)
k, j ≤ 1 for all k, j (which is a very loose assumption, but does not matter much as the

corresponding terms in b3 are small anyway). We assume error tolerances ε(λ ) = 2 ·10−4

and ε(η) = 5 · 10−6. We also assume ε
(2)
0 = ε

(3)
0 = ε

(4)
0 = 10−4 (as the initial condition is

smooth, its approximation can be assumed to be accurate). With the above assumptions on
the parameters, we obtain a2 ≈ 0.98904 (with ã2, b2 ≈ 2.19316 ·10−6, b3 ≈ 1.96257 ·10−4,
b4 ≈ 1.83156 · 10−4 and b5 = 5 · 10−5 and Theorem 3.3.4 yields a total error bound of
E
(234)
M ≤ 0.2234. While this is clearly not a satisfactory bound especially compared to E

(1)
M ,

we note that this bound depends critically on the error tolerances ε(λ ) and ε(η). For example,
for ε(λ ) = 2 ·10−5 and ε(η) = 5 ·10−7, leaving all other parameters unchanged, we obtain
E
(234)
M ≤ 0.02257. This shows that the error bound is usable in practice, but only with an as

yet infeasible effort of computation (see Figure 3.2.4).

In the plots in Figure 3.4.2, we give a visual impression of a solution of an SPDE (2.3.1) on
the Peanut shape by showing realizations of the approximated solution again for noise with
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qn = n−2, A = ∆, N = 400, M = 100 on the asymmetric Peanut shape introduced in Section
3.2. For each simulation, the initial condition was picked to be the bump function

Bx1,x2,y1,y2(x,y) =

 exp
(
− 1

1−r2

)
, r2 =

(
x− x1+x2

2

)2
+
(
y− y1+y2

2

)2
< 1,

0, r2 ≥ 1

supported on an ellipse within the rectangle [x1,x2]× [y1,y2], where we picked [x1,x2] =

[0.4,0.6], [y1,y2] = [0.3,0.5]. The random input, i.e. the realizations of the Wiener increments
was also the same for each simulation. Only the nonlinear function was changed for the
different simulations: It was chosen to be a function

bp(x) = exp(−10 · (x− p)2), (3.4.1)

with one maximum at p ∈ {−0.4,−0.2,0.2,0.4}.

101 102

10−4

10−5

M

∥Ũ
M

re
f,

N
T

−
Ũ

M
,N

T
∥

101 102

1 ·10−2

1 ·10−3

2 ·10−4

N

∥Ũ
M
,N

re
f

T
−

Ũ
M
,N

T
∥ f = f1

f = f2

Figure 3.4.1: Convergence tests for the Peanut shape. The first plot shows the convergence
with respect to M for the linear function f1(x) = x, the second plot shows the convergence
with respect to N for f1(x) = x as well as f2(x) = 1

1+x2 . The dashed lines in blue are reference
lines for an order of convergence equal to one.
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Figure 3.4.2: The approximated solution of the SPDE (2.3.1) on the Peanut shape for N = 400,
T = 0.1, M = 100 and the nonlinear functions (3.4.1) for p ∈ {−0.4,−0.2,0.2,0.4} from
top-left to bottom-right. It appears that the process is ‘dimmed down’ from using nonlinear
functions with a peak of higher absolute value.
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Chapter 4

Polynomial chaos and exponential time
differencing - Mathematical preliminaries

The second part of the thesis will be about PDEs with random inputs, rather than SPDEs
which are driven by noise. More precisely, for a given probability space (Ω,F ,P) and ω ∈ Ω,
we will not deal with SPDEs of the form

dU(t,ω) = [AU(t,ω)+F(U(t,ω))]+dW (t,ω), (4.0.1)

but rather with random PDEs of the form

∂u(t,ω)

∂ t
= Au(t,ω)+F(ω,u(t,ω)), (4.0.2)

so that F(ω) is a (potentially nonlinear) function which has a random input. Hence, the
solution U of (4.0.1) as well as the solution u of (4.0.2) are stochastic processes, but the
randomness is introduced via the Wiener process W in (4.0.1) (see Chapter 2) and via a
random function F in (4.0.2), usually by introducing a random coefficient. For instance, the
Gray-Scott system

∂u(x,t)
∂ t = Du∆u(x, t)−u(x, t)v(x, t)2 + F̃(1−u(x, t)),

∂v(x,t)
∂ t = Dv∆v(x, t)+u(x, t)v(x, t)2 − (F̃ + k)v(x, t),

(4.0.3)

with x ∈ (−1,1)d , t ∈ (0,T ] and with some initial conditions u(x,0) = uinit, v(x,0) = vinit

constants F̃ ,k,Du,Dv > 0 considered in Section 5.2.6 takes the form in (4.0.2) by making
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the constants F̃ ,k > 0 random variables F̃(ω), k(ω):
∂u(x,t,ω)

∂ t = Du∆u(x, t,ω)−u(x, t,ω)v(x, t,ω)2 + F̃(ω)(1−u(x, t,ω)),
∂v(x,t,ω)

∂ t = Dv∆v(x, t,ω)+u(x, t,ω)v(x, t,ω)2 − (F̃(ω)+ k(ω))v(x, t,ω).

The method used in this work to deal with the random PDEs is the polynomial chaos method,
which makes use of the polynomial chaos expansion (PCE). We give an introduction to
non-intrusive and intrusive PCE (niPCE and iPCE) and give an overview of the literature on
how PCE has been used for quantifying uncertainties in random PDEs like (4.0.2). Apart
from the random Gray-Scott model (4.0.3) with periodic boundary conditions, we will mostly
deal with random differential equations of the form

∂u(x, t,ω)

∂ t
= D∆u(x, t,ω)+F(ω,u(x, t,ω)), u(x,0,ω) = uinit(x), (4.0.4)

where x ∈ (−1,1)d , d ∈ {1,2}, t ∈ (0,T ] for some T > 0, D = 0 (so that (4.0.4) is an ODE)
or D = 1 (so that (4.0.4) is a PDE) and F(ω,u(x, t,ω)) = K(ω)uκ(x, t,ω) where K is a
uniformly distributed constant and κ = 1 (Sections 5.2.1 and 5.2.4), κ = 2 (Section 5.2.2)
or κ = 3 (Section 5.2.3). We assume periodic boundary conditions for every differential
equation considered in Chapters 4 and 5.

4.1 The polynomial chaos expansion

The term chaos in polynomial chaos was first used by Norbert Wiener in 1938 to denote a
kind of random process. The general definition given in [101, §2] is that a chaos is a real- or
vector-valued function F(S;α), where S is taken from a sufficiently rich class of subsets of
Rn, and α ∈ [0,1] is a representative point of an underlying probability space (see also [77,
p. 480]). The modern term chaos in the context of chaos theory, which has nothing to do
with polynomial chaos, came into use only in 1977 in a paper by mathematicians Tien-Yien
Li and James A. Yorke [71]. From that point onwards it became associated with the high
sensitivity of certain nonlinear dynamical systems to changes in their initial condition.
Wiener’s original work described a stochastic process, i.e. a collection of random variables
depending on a certain kind of random input. The PCE for a general second-order random
process u(ω) for a Gaussian random vector ξξξ (ω) = (ξ1(ω),ξ2(ω), . . . ,ξn(ω)) of possibly
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infinite dimension n is given by (see [102, (3.1)])

u = a0H0 +
∞

∑
i1=1

ai1H1(ξi1)+
∞

∑
i1=1

i1

∑
i2=1

ai1,i2H2(ξi1 ,ξi2) (4.1.1)

+
∞

∑
i1=1

i1

∑
i2=1

i2

∑
i3=1

ai1,i2,i3H3(ξi1 ,ξi2 ,ξi3)+ . . . (4.1.2)

+
∞

∑
i1=1

i1

∑
i2=1

. . .
in−1

∑
in=1

ai1,i2,...,inHn(ξi1 ,ξi2 , . . . ,ξin)+ . . . , (4.1.3)

where the ai1 , ai1,i2 , . . . ,ai1,...,in are real coefficients and the Hn(ξi1 , . . . ,ξin) are n-dimensional
Hermite polynomials. We provide more details on these polynomials below.
In the early 1990s, Roger Georges Ghanem and Pol Dimitrios Spanos used the PCE as an
alternative to Monte Carlo simulations and Karhunen-Loève expansions [44, 45], from where
research on PCE in numerical mathematics rapidly gained momentum.
While the original PCE is a spectral expansion of Gaussian random variables or random
fields in terms of Hermite polynomials, expansions for other probability distributions are
also possible. Dongbin Xiu and George Em Karniadakis showed in 2002 that this is the
case for a class of probability distributions associated with families of orthogonal polyno-
mials belonging to the Askey scheme of polynomials [6, 102]. Examples for continuous
distributions and their respective polynomials are the normal distributions with Hermite
polynomials, the uniform distribution with Legendre polynomials, the Gamma distribution
with Jacobi polynomials and the Beta distribution with Laguerre polynomials. An overview
of the different polynomial families and their corresponding distributions is given in Table
4.1.1. Each family {Pn(ζ )}n∈N0 , ζ ∈ S ⊂ R of orthogonal polynomials can be obtained by
applying Gram-Schmidt orthogonalization to the set of monomials {ζ n}n∈N0 with respect to
the inner product

⟨ f ,g⟩w =
∫

S
f (ζ )g(ζ )w(ζ ) dζ . (4.1.4)

on the probability space L2(S,µw), where w(x) is a weight function which is supported on
a subset S ⊂ R and A1 is the σ -algebra generated by a random variable ξ with the given
probability distribution (Gaussian, uniform, etc.). As a result, the orthogonality property∫

S
Pm(ζ )Pn(ζ )w(ζ ) dζ = h2

nδmn, m,n ∈ N0,
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Distribution ξξξ Polynomial Pn Weight function w(ζ ) Support S

Gaussian Hermite Hn e−ζ 2
(−∞,∞)

Uniform Legendre Ln
1
2 [−1,1]

Gamma Jacobi J(α,β )
n (1−ζ )α(1+ζ )β [−1,1]

Beta Laguerre La(α)
n e−ζ ζ α [0,∞)

Table 4.1.1: Continuous probability distributions associated with families of orthogonal
polynomials, table from [102, Table 4.1], with α > −1, β > −1. Note that Legendre and
Jacobi polynomials can be linearly rescaled so that they are supported on an arbitrary closed
interval [a,b]⊂ R (see also Section 4.1.1).

holds, where the hn are nonzero constants. Also, {Pn(ζ )}n∈N0 is a complete orthogonal
system in L2(S,µw), which is a generalization of the Cameron-Martin theorem [17, Theorem
1]. Each family of orthogonal polynomials satisfies a recurrence relation

Pn+1(ζ ) = (Anζ +Bn)Pn−1(ζ )−CnPn−2(ζ ), n ≥ 1, (4.1.5)

which, together with P−1(ζ ) := 0 and P0(ζ ) = 1 uniquely determines all polynomials Pn(ζ ),
n ≥ 1. Furthermore, {Pn(ζ )}n∈N0 satisfies the generalized Rodriguez formula

Pn(ζ ) =
1

w(ζ )
dn

dζ n [w(ζ )s
n(ζ )], (4.1.6)

where s(ζ ) is a polynomial of at most second degree which, together with a polynomial τ(ζ )

of at most first degree, satisfies the differential equation

s(ζ )y′′+ τ(ζ )y′+λy = 0; λ = λn =−nτ
′− 1

2
n(n−1)s′′.

For d ∈ N, we define the multiindex set

Id :=

{
nnn = (n1,n2, . . .), n1,n2, · · · ≥ 0, |nnn| :=

∞

∑
i=1

ni = d

}
.

For a dimension Sd ⊂ Rd and the d-fold product µd
w := µw ⊗·· ·⊗µw, the multidimensional

base for L2(Sd,µd
w) is, for xxx = (x1, . . . ,xd) ∈ Sd , given by

{P(d)
nnn (xxx)}nnn∈Id =

{
d

∏
i=1

Pni(xi)

}
nnn∈Id

. (4.1.7)
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Distribution ξξξ Gaussian Uniform

Polynomial Pn Hermite Legendre
Weight function w(x) e−x2

1
Support S R [−1,1]

Recurrence coefficients An, Bn, Cn 2, 0, 2(n+1) 2n+1
n+1 , 0, n

n+1

Rodriguez formula polynomial s(x) (−1)n (x2−1)n

2nn!

Table 4.1.2: Weight function, support, recurrence coefficients occurring in (4.1.5) and
the term occuring in the Rodriguez formula (4.1.6) for different families of orthogonal
polynomials

Note that the space (Sd,µd
w) is a probability space whose σ -algebra is generated by d i.i.d.

random variables that have the given probability distribution ξ (normal, uniform, etc.). A
random process u(ω) can be understood as an element of a space L2(Ω,A ,µw) where
(Ω,A ,µw) is a probability space whose σ -algebra A is generated by a countable number of
i.i.d. random variables {ξi}i∈N0 with density w. It is also a result of Cameron and Martin
(see e.g. [75, Theorem 5.1.12]) that

L2(Ω,A ,µw) =
∞⊗

i=0

L2(Sd,µd
w). (4.1.8)

Let ξξξ (d) := (ξ1, . . . ,ξd). Combining (4.1.7) and (4.1.8), we obtain that as in the PCE (4.1.1),
the gPCE for a general random process u(ω) for a multidimensional random input ξξξ (ω) =

(ξ1(ω),ξ2(ω), . . . ,ξn(ω)) of possibly infinite dimension n is

u(ξξξ ) = a0P0 + ∑
nnn1∈I1

an1n1n1P(1)
n1n1n1 (ξξξ (1))+ ∑

nnn2∈I2

an2n2n2P(2)
n2n2n2 (ξξξ (2))+ ∑

nnn3∈I3

an3n3n3P(3)
n3n3n3 (ξξξ (3))+ . . . (4.1.9)

= a0P0 +
n

∑
i1=1

ai1P1(ξi1)+
n

∑
i1=1

i1

∑
i2=1

ai1,i2P2(ξi1 ,ξi2) (4.1.10)

+
n

∑
i1=1

i1

∑
i2=1

i2

∑
i3=1

ai1,i2,i3P3(ξi1 ,ξi2 ,ξi3)+ ... (4.1.11)

For convenience of notation, we will later use a series expansion in which the multi-indices
in (4.1.9) are replaced by a term-based index, with a one-to-one correspondence between aninini

and u j and between P(i)
nnni (ξξξ

(i)) and Pj(ξξξ ), so that

u(ξξξ ) =
∞

∑
j=0

u jPj(ξξξ ). (4.1.12)
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In this thesis, we will be mostly concerned with cases where the random input is one-
dimensional, i.e. ξξξ = ξ , and the gPCE simplifies to

u(ξ ) =
∞

∑
j=0

u jPj(ξ ). (4.1.13)

4.1.1 Using shifted Legendre polynomials

In this section, we provide a few details on how Legendre polynomials can be used for
a general uniformly distributed random variable ξ ∼ U [a,b] for a < b, a,b ∈ R and how
to adjust the inner product (4.1.4) accordingly, as we will later in this work use Legendre
polynomials supported on different intervals [a,b]⊂ R.
We denote the canonical Legendre polynomials as Ln, n∈N0. Define the affine transformation

φ
(a,b) : [a,b]→ [−1,1], φ

(a,b)(ζ ) =
2

b−a
ζ +

a+b
a−b

, (4.1.14)

(φ (a,b))−1 : [−1,1]→ [a,b], (φ (a,b))−1(ζ ) =
b−a

2
ζ −

[
b−a

2
−b
]
. (4.1.15)

Using the canonical Legendre polynomials

Ln(ζ ) =
1
2n

⌊ n
2⌋

∑
k=0

(−1)k
(

n
k

)(
2n−2k

n

)
ζ

n−2k, n ∈ N0,

defined on [−1,1], we define the Legendre polynomials L(a,b)
n defined on the interval [a,b]

by L(a,b)
n (ζ ) := Ln(φ

(a,b)(ζ )). The polynomials {L(a,b)
n }n∈N then form an orthogonal basis

of L2(Ω, [a,b],µ) of square-integrable random variables X : (Ω,A ,µ)→ [a,b] where µ is
the uniform measure with µ([a,b]) = 1.
It is known that there is the orthogonality relation

∫ 1

−1
Lm(ζ )Ln(x) dζ =

2
2n+1

δnm (4.1.16)

between the canonical Legendre polynomials. We are using the inner product (with the
density function 1

21[−1,1] for a random variable ξ ∼ U [−1,1] in L2(Ω, [−1,1],µ)

⟨Ln(ξ ),Lm(ξ )⟩= E[Ln(ξ )Lm(ξ )] =
1
2

∫ 1

−1
Ln(ζ )Lm(ζ ) dζ . (4.1.17)
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In order to obtain an orthonormal basis, we can use the normalized canonical Legendre
polynomials defined as (using (4.1.16))

L̂n =

√
2n+1

2
Ln, n ∈ N0.

We then apply the affine transformations (4.1.14) to create normalized Legendre polynomials
L̂(a,b)

i defined on the interval [a,b]. The polynomials defined on [a,b] will still be normalized
because

1
b−a

∫ b

a
L̂(a,b)

n (ζ )L̂(a,b)
n (ζ ) dζ

=
1

b−a

∫ b

a
L̂n(φ

(a,b)(ζ ))L̂n(φ
(a,b)(ζ )) dζ

=
1

b−a

∫ 1

−1
L̂n(ζ )L̂n(ζ )

1
(φ (a,b))′

dζ

=
1
2

∫ 1

−1
L̂n(ζ )L̂n(ζ ) dζ = 1

since (φ (a,b))′ = 2
b−a , and using (4.1.16). We will henceforth always denote the normalized

Legendre polynomials by Ln and L(a,b)
n .

We will have to compute integrals of the form

∫ b

a
L(a,b)

n (ζ )L(a,b)
m (ζ ) ·g(ζ ) dζ (4.1.18)

later, but it will be easier to stick with the canonical Legendre polynomials since we have an
addition theorem for them (see (5.1.2)). Therefore, we will express (4.1.18) in terms of an
integral involving Ln and Lm. Let g(ζ ) = 1

b−a1[a,b](ζ ) ·ζ be the density function multiplied
with ζ which is needed in the integral. It is

∫ b

a
L(a,b)

n (ζ )L(a,b)
m (ζ ) ·g(ζ ) dζ (4.1.19)

=
∫ b

a
Ln(φ

(a,b)(ζ ))Lm(φ
(a,b)(ζ )) ·g(ζ ) dζ (4.1.20)

=
∫

φ (a,b)(b)

φ (a,b)(a)
Ln(ζ )Lm(ζ ) ·g((φ (a,b))−1(ζ )) · b−a

2
dζ (4.1.21)

=
∫ 1

−1
Ln(ζ )Lm(ζ ) ·

[
g
(

b−a
2

ζ −
(

b−a
2

−b
))]

· b−a
2

dζ (4.1.22)

=

(
b−a

2

)∫ 1

−1
Ln(ζ )Lm(ζ ) ·g

(
b−a

2
ζ −

(
b−a

2
−b
))

dζ (4.1.23)
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=

(
b−a

2

)∫ 1

−1
Ln(ζ )Lm(ζ ) ·

1
b−a

·
(

b−a
2

ζ −
(

b−a
2

−b
))

dζ (4.1.24)

=
1
2

∫ 1

−1
Ln(ζ )Lm(ζ ) ·

(
b−a

2
ζ −

(
b−a

2
−b
))

dζ (4.1.25)

where in the second step integration by substitution and the fact that (φ (a,b)(ζ ))′ = 2
b−a was

used (the inverse of this term appears in the next integral) and in the next to last step (4.1.29)
was used. We have thus expressed the integral involving L(a,b)

n in terms of one involving
canonical Ln.
We note additionally that if we use a uniform distribution on [a,b], we have the density
g(ζ ) = 1

b−a1[a,b](ζ ) and we have

b−a
2

ζ −
(

b−a
2

−b
)
∈ [a,b] (4.1.26)

⇔ b−a
2

ζ ∈
[
−b−a

2
,
b−a

2

]
(4.1.27)

⇔ ζ ∈ [−1,1], (4.1.28)

so that

1[a,b]

(
b−a

2
ζ −

(
b−a

2
−b
))

= 1[−1,1](ζ ). (4.1.29)

4.2 Numerical treatment of PDEs with uncertainties using
PCE

In the following, we recall the two main methods of using the PCE (4.1.9). For the rest of
the thesis, we will assume that all orthogonal polynomials in the family {Pn}n∈N are normed,
i.e. ⟨Pn,Pn⟩= 1, n ∈ N0. We will also occasionally use the shorthand ⟨Pn⟩ := ⟨Pn,Pn⟩.

4.2.1 Non-intrusive PCE

An overview of niPCE approaches can be found in [35]. In niPCE, one treats the simulation
of the solution of a PDE as a black box and the computation of properties of the random
solution process is based on sampling the random input in a certain way. Concretely, the
computation of moments of the solution like the mean or variance involves the computation
of inner products, i.e. the numerical approximation of integrals, which can be done using
different sampling methods. To this end, we will consider the classical Monte Carlo (MC)
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method, a quasi Monte Carlo method (QMC) and Gaussian quadrature.
We use the expansion (4.1.13) and truncate it to N +1 terms:

u(ξ )≈
N

∑
j=0

u jPj(ξ ).

The PCE coefficients u j can be retrieved by performing a spectral projection: Using the
inner product

⟨Pi(ξ ),Pj(ξ )⟩w =
∫

S
Pi(ζ )Pj(ζ )w(ζ ) dζ = E[Pi(ξ )Pj(ξ )] (4.2.1)

it follows

u j = ⟨R,Pj⟩w =
∫

S
R(ζ )Pj(ζ )w(ζ ) dζ , (4.2.2)

where w is the weight function corresponding to the underlying probability distribution of
the gPCE (see Section 4.1). The idea of niPCE is to compute the coefficient functions ui in
(4.2.2) as numerical integrals

ui(x, t) =
∫ b

a
u(x, t,ξ )Pi(ξ )w(ξ ) dξ ≈

q

∑
j=1

w ju(x, t,ξ j)Pi(ξ j)w j, (4.2.3)

(with ⟨P2
i ⟩ = 1, see above) where the integral in (4.2.3) is a Banach space-valued integral

(for example a Bochner integral, see [36, Appendix C]) and the points ξ j and weights w j,
j = 1, . . . ,q are chosen according to the used method. In this work, we use three different
methods: A naive Monte Carlo (MC) method (see Section 4.2.1.1), a quasi-Monte Carlo
(QMC) method (see Section 4.2.1.2) and Gaussian quadrature (see Section 4.2.1.3). An
illustration of these three methods with the different quadrature points x j and weights wi is
shown in Figure 4.2.1.
We will mainly be interested in computing the expected value E[u(x, t,ξ )] and the variance
Var[u(x, t,ξ )] of the solution. It is

E[u(x, t,ξ )] = u0(x, t), Var[u(x, t,ξ )] =
∞

∑
i=1

|ui(x, t)|2 (4.2.4)

due to E[P0(ξ )] = 1, E[Pi(ξ )] = 0 for i> 0 (P0 is equal to one, so E[Pi(ξ )] =E[P0(ξ )Pi(ξ )] =

0 for i > 0 due to orthogonality with the inner product (4.2.1)). The variance formula follows
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due to

Var[u(x, t,ξ )] = E

( ∞

∑
i=0

uiPi(ξ )

)2
−[E( ∞

∑
i=0

uiPi(ξ )

)]2

= E

[
∞

∑
i=0

∞

∑
j=0

uiu jPi(ξ )Pj(ξ )

]
−u2

0

= E

[
∞

∑
i=0

u2
i Pi(ξ )

2

]
−u2

0 =
∞

∑
i=1

|ui(x, t)|2.

We also note that the periodic boundary conditions for u are transferred directly to the PCE
base functions: Inserting the periodic boundary condition u(−1, t) = u(1, t), t ∈ [0,T ], into
(4.1.12) and then multiplying with Pj(ξ ) and taking E[·] yields

∞

∑
i=0

ui(−1, t)Pi(ξ ) =
∞

∑
i=0

ui(1, t)Pi(ξ ) ⇒ u j(−1, t) = u j(1, t), j ∈ N0, t ∈ [0,T ] (4.2.5)

due to the orthonormality of {Pi}i∈N0 . In higher spatial dimensions, the above argument can
easily be replicated by applying (4.2.5) to any pair of points x1, x2 on the boundary for which
u(x1, t) = u(x2, t) holds.

4.2.1.1 The classical Monte Carlo method

A classical way to compute the integral (4.2.2) is the Monte Carlo method: The random
vector ξξξ is sampled independently MMC times according to its probability distribution,
yielding random realizations (ξξξ 1, . . . ,ξξξ MMC). The central limit theorem guarantees that this
approximation is convergent with an error of O(M−1/2

MC ) independent of the dimension of
the random vector ξξξ . While Pj and w are easily evaluated at ξξξ i, the computation of R(ξξξ i) is
more expensive, since an ODE or PDE might have to be solved. Therefore, it is beneficial to
use methods which obtain a good accuracy with as few samples ξξξ i as possible.

4.2.1.2 The quasi-Monte Carlo method

One drawback of classical MC is that the randomly sampled points can cluster in certain
areas, while leaving gaps in other areas, so that the parameter space is unevenly covered, as
can be seen on the left-hand side in Figure 4.2.1. Quasi-Monte Carlo methods use so-called
low-discrepancy sequences, which aim to cover the space more evenly. Examples for such
sequences are Sobol sequences [91] (see the second plot in Figure 4.2.1) or Halton sequences
[51].
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Given a sequence x1, . . . ,xM̂ of M̂ points in the s-dimensional unit cube Is, the Koksma-
Hlawka inequality [53, Satz 1] states that∣∣∣∣∣

∫
Is

f (x) dx− 1
M̂

M̂

∑
i=1

f (xi)

∣∣∣∣∣≤V ( f )D∗
M̂,

where V ( f ) is the variation of f in the sense of Hardy and Krause (see e.g. [81, p. 967]).
With the counting function A(E;M̂) := ∑

M̂
i=11E(xi) and the s-dimensional Lebesgue measure

|E| of a set E,

D∗
M̂ = sup

E∈A

∣∣∣∣A(E;M̂)

M̂
−|E|

∣∣∣∣ , A := {[0, t1)×·· ·× [0, ts) | t1, . . . , ts ∈ (0,1)}

is the discrepancy of the set {x1, . . . ,xM̂} ⊂ Is. It has been shown [50] that for any dimension
s ≥ 1, there exists an infinite sequence of points in Is such that (even for DM; it is D∗

M ≤ DM)

D∗
M = O(M−1(logM)s),

which can be shown to hold for Sobol sequences and Halton sequences [81, p. 980]. A
drawback compared to classical MC is that sampling the low-discrepancy sequences can
become infeasible if the dimension d of ξξξ is very high.

4.2.1.3 Gaussian quadrature

As opposed to the MC and QMC methods shown above, numerical integration with Gaussian
quadrature is done by taking a weighted sum of function values at specified points, rather
than an average where every function value has the same weight. Gauss quadrature aims to
approximate integrals of the form

∫
S

f (x)w(x) dx ≈
q

∑
i=1

wi f (xi),

where S ⊂R is the support of f and the weight function w, wi are called the weights and xi are
called the quadrature nodes or abscissas for i= 1, . . . ,q, q∈N. The weights and nodes depend
on the choice of the weight function, which can be chosen as a weight function associated
with a family of orthogonal polynomials {Pn}n∈N0 (see Section 4.1). The quadrature nodes
x1, . . . ,xn are then the roots of the polynomial Pn and the weights are given by the formula

wi =
an

an−1

⟨Pn−1,Pn−1⟩w

P′
n(xi)Pn−1(xi)

,
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where ai is the coefficient of xi in Pn. For later numerical computations, we will use an
efficient and numerically stable way to obtain the Gauss quadrature abscissas and weights
called the Golub-Welsch algorithm, devised by Gene H. Welsch and John H. Golub [46]
and explained in [85, p. 188]. Gaussian quadrature rules are known to exhibit spectral
convergence, meaning that the error of a Gauss quadrature rule on I ⊂ R using q ∈ N
quadrature points for a function f ∈ C r(I), r ∈ N, behaves as O(q−r).
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Figure 4.2.1: Three plots showing 100 points sampled in the unit square according to classical
Monte Carlo (left), quasi-Monte Carlo with a Sobol sequence (middle) and Gauss-Legendre
quadrature with different weights (right).

4.2.2 Intrusive PCE

In Section 4.2.1, we explained that in niPCE methods, obtaining samples of the random
quantity of interest R – for example by solving a PDE – is treated as a black box and the PCE
is applied afterwards. Therefore, the main effort lies in sampling R in a ‘good’ way.
Suppose that we aim to solve a given ODE or PDE

∂u(t,x,ξξξ (ω))

∂ t
= Au(t,x,ξξξ (ω))+F(ξξξ (ω))(u(t,x,ξξξ (ω))),

depending on a random quantity ξξξ . In iPCE methods, the gPCE (4.1.12) with time- and
space-dependent coefficients u j(x, t), j ≥ 0, is inserted into (4.0.2) right away, so that we
obtain

∞

∑
j=0

∂

∂ t
u j(x, t)Pj(ξξξ ) =

∞

∑
j=0

Au j(x, t)Pj(ξξξ )+F(ξξξ )

[
∞

∑
j=0

u j(x, t)Pj(ξξξ )

]
.

At this point a Galerkin projection for each η ∈ N0 is performed which involves multiplying
by Pη(ξξξ ) and taking the expected value Ew in the underlying probability space L2(Ω,A ,µw)
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equipped with ⟨ f ,g⟩w = Ew[ f g] :=
∫

S f (x)g(x)w(x) dx. We obtain

E

[
∞

∑
j=0

∂

∂ t
u j(x, t)Pj(ξξξ )Pη(ξξξ )

]

= E

[
∞

∑
j=0

Au j(x, t)Pj(ξξξ )Pη(ξξξ )

]
+E

[
F(ξξξ )

[
∞

∑
j=0

u j(x, t)Pj(ξξξ )

]
Pη(ξξξ )

]
.

We still assume that the polynomials are normed, i.e. ⟨Pm,Pn⟩w = δmn, m,n ∈ N0, so it
follows that

∂

∂ t
uη(x, t) = Auη(x, t)+E

[
F(ξξξ )

[
∞

∑
j=0

u j(x, t)Pj(ξξξ )

]
Pη(ξξξ )

]
, η = 0,1,2, . . . (4.2.6)

Now, the series in the system of equations (4.2.6) is truncated to N +1 terms and only the
equations for η = 0, . . . ,N are considered, so we obtain

∂

∂ t
uη(x, t)≈ Auη(x, t)+E

[
F(ξξξ )

[
N

∑
j=0

u j(x, t)Pj(ξξξ )

]
Pη(ξξξ )

]
, η = 0,1,2, . . . ,N.

(4.2.7)

The system of equations is then discretized, and a potential solver for a PDE system can be
used after it is modified appropriately to deal with the PCE system (4.2.7). The appearance
and further development heavily depends on the chosen discretization in space and time, and
on the nonlinear function F .
As this requires the modification of existing solvers, the implementation of iPCE is more
complicated and also potentially limited as it might interfere with certain characteristics of
the deterministic system which are exploited in solvers (we will discuss one such case in
Remark 5.1.1 where a random diffusion coefficient cannot be handled easily by a spectral
iPCE method).

4.3 Numerical schemes for deterministic equations

We will now recall the deterministic numerical schemes for solving the deterministic initial
value problem 

∂u(x,t)
∂ t = D∆u(x, t)+F(u(x, t)),

u(x,0) = uinit(x)
(4.3.1)
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with x ∈ (−1,1)d , t ∈ (0,T ], T > 0, D ≥ 0, a potentially nonlinear function F and periodic
boundary conditions. These schemes can be used directly for niPCE (see Section 4.2.1)
or modified to be used in iPCE (see Section 5.1). We start with the well-known explicit
Euler scheme in Section 4.3.1, for example as introduced in [55, pp. 240], secondly recall
the ETD-RDP and ETD-RDP-IF schemes in Section 4.3.2 presented in [5], and finally the
ETDRK4 scheme presented in [62]. We will, for the rest of the thesis, denote by k the step
size in time and by h the step size of the spatial grid.

4.3.1 Explicit Euler scheme

The explicit Euler scheme or forward Euler method is one of the oldest numerical procedures
for solving initial value problems. For the explicit Euler scheme and the ETD-RDP-IF scheme
covered in Section 4.3.2, we will use a second-order central finite difference discretization in
space. We denote by p the spatial resolution in each dimension, so that in one dimension we
have the discretized function uuu(t) = (u(x0, t),u(x1, t), . . . ,u(xp, t))⊤ where xi =−1+2i/p,
i = 0, . . . , p, t ∈ [0,T ]. At one given point tn in time, the second-order central finite difference
approximation is given by

u′′(xi, tn)≈
1
k2 [u(xi−1, tn)−2u(xi, tn)+u(xi+1, tn)] .

Applied to the discretized function uuu, the second-order finite difference approximation of the
Laplacian with periodic boundary conditions is given by the matrix

Ap =
1
h2


−2 1 1
1 −2 1

. . . . . . . . .

1 −2 1
1 1 −2

 ∈ Rp×p.

Also, the second-order central finite difference discretization of the two-dimensional Lapla-
cian with periodic boundary conditions is given by A = A1 +A2 with A1 := IN+1 ⊗Ap and
A2 :=Ap⊗IN+1 (see, for example, [5, p. 3]). Denoting uuun =(u(x0, tn),u(x1, tn), . . . ,u(xp, tn))⊤

for n = 0, . . . ,M, tn = n · k, the explicit Euler scheme for solving (4.0.4) relies on taking the
Taylor expansion

uuun+1 = k · ∂uuun

∂ t
+

1
2

k2 ∂ 2uuun

∂ t2 +O(k3)
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and after truncating the expansion after the linear term and substituting ∂uuun

∂ t = DAuuun +F(uuun)

from (4.3.1), we obtain the explicit Euler scheme (for the 2D case, Ap must be replaced with
A)

Algorithm 4.1: Deterministic finite differences explicit Euler scheme

uuun+1 = uuun + k(DApuuun +F(uuun)), n = 0, . . . ,M−1.

4.3.2 ETD and ETD-RDP-IF

The ETD-RDP-IF scheme presented in [5] is a second-order exponential time-differencing
(ETD) scheme which makes use of the approximation of the matrix exponentials by rational
functions having real distinct poles (RDP). Additionally, if the spatial dimension is greater
than one, the scheme uses dimensional splitting with an integrating factor (IF) approach,
making it the ETD-RDP-IF scheme.
Applying the finite difference discretization to (4.3.1), using the matrix A from above, or
using A = Ap in one spatial dimension, yields the system

∂uuu
∂ t

+Auuu = F(uuu), uuu0 = uuuinit. (4.3.2)

In the multidimensional case, an integrating factor approach is used to solve (4.3.2). Consid-
ering the two-dimensional case and A = A1 +A2 (using notation from above), we introduce
the time-dependent function vvv(t) = eA1tuuu and note for the time derivative vvvt that

vvvt = eA1tuuut +A1eA1tuuu. (4.3.3)

Using the fact that A and A1 commute (see [5, Lemma 1]) and therefore A and eA1t commute,
inserting (4.3.3) into (4.3.2) yields

vvvt = eA1t(F(uuu−Auuu)+A1eA1tuuu = eA1t f (uuu)− eA1tAuuu+A1eA1tuuu

= eA1tF(uuu)−AeA1tuuu+A1eA1tuuu = eA1tF(uuu)−A2eA1tuuu

= eA1tF(e−A1tvvv)−A2vvv.
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We obtain

vvvt +A2vvv = G(vvv), vvv0 = uuuinit (4.3.4)

with G(vvv) = eA1tF(e−A1tvvv).
For the time discretization, we consider an exponential integrator or exponential time differ-
encing (ETD) scheme. An overview is given in [54]. They rely on using representations of
the exact solutions of initial value problems by a variation-of-constants formula (similar to
the expressions (2.2.6), (2.2.8) and (2.3.2) from Chapter 2) and subsequently approximating
the integral and the matrix exponentials appearing in the formula. For the semilinear problem
(4.3.4), the variation-of-constants formula (also called Duhamel’s principle) is given by

vvv(tn) = e−tnA2vvv(t)+
∫ tn

0
e−A2(tn−s)G(vvv(s)) ds (4.3.5)

or, restricting the formula to a single time step,

vvv(tn+1) = e−kA2vvv(tn)+
∫ tn+1

tn
e−A2(tn+1−s)G(vvv(s)) ds. (4.3.6)

After a change of variables with s = kτ , τ ∈ [0,1], we obtain

vvv(tn+1) = e−kA2vvv(tn)+ k
∫ 1

0
e−kA3(1−τ)G(vvv(tn + kτ)) dτ. (4.3.7)

This formula is exact, and different ETD schemes stem from different approximations of the
integral and the matrix exponential. We note that the following integral identities hold for a
invertible, non-singlar matrix A [4, Lemma 2.1.1]:

k
∫ 1

0
e−kA(1−τ) dτ = A−1(I − e−kA), (4.3.8)

k
∫ 1

0
e−kA(1−τ)

τ dτ = k−1A−2(kA− I + e−kA). (4.3.9)

Two examples of simple ETD schemes are ETD1 and ETD2: They involve simply ap-
proximating G in (4.3.7) by a constant, i.e. G(vvv(tn + kτ)) ≈ G(vvv(tn)), or linearly, i.e.
G(vvv(tn + kτ)) ≈ G(vvv(tn))+ τ(G(vvv(tn+1))−G(vvv(tn))). After applying (4.3.8) for the con-
stant approximation and (4.3.9) for the linear approximation, this yields the ETD1 and ETD2
schemes

vvvn+1 = e−kA2vvvn +A−1
2 (I − e−kA2)G(vvvn) (4.3.10)
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vvvn+1 = e−kA2vvvn +A−1
2 (I − e−kA2)G(vvvn)+ k−1A−2

2 (kA2 − I + e−kA2)(G(vvvn+1)−G(vvvn)).

(4.3.11)

The fully implicit ETD2 scheme (4.3.11) is then made explicit by using the ETD1 approxi-
mation (4.3.10) for vvvn+1, which we denote by vvvn+1

∗ , so that we obtain

vvvn+1 = e−kA2vvvn +A−1
2 (I − e−kA2)G(vvvn)+ k−1A−2

2 (kA2 − I + e−kA2)(G(vvvn+1
∗ )−G(vvvn)),

(4.3.12)

vvvn+1
∗ = e−kA2vvvn +A−1

2 (I − e−kA2)G(vvvn). (4.3.13)

The next step is the approximation of the matrix exponentials. The second-order rational
approximation with simple real distinct poles (RDP) originally proposed in [96] is given by

e−kA2 ≈ RRDP(kA2) :=
(

I − 5k
12

A2

)[(
I − k

3
A2

)(
I +

k
4

A2

)]−1

(4.3.14)

and is used in (4.3.12). In (4.3.13), the Padé-(0,1) first order approximation is given by

e−kA2 ≈ R01(kA2) := (I + kA2)
−1. (4.3.15)

The scheme with the inserted approximations is now given by

vvvn+1 = RRDP(kA2)vvvn +A−1
2 (I −RRDP(kA2))G(vvvn) (4.3.16)

+ k−1A−2
2 (kA2 − I +RRDP(kA2))(G(vvvn+1

∗ )−G(vvvn)), (4.3.17)

vvvn+1
∗ = R01(kA2)vvvn +A−1

2 (I −R01(kA2))G(vvvn). (4.3.18)

After rearranging and rewriting terms (for the sake of brevity, we refer to [5, pp. 6]), this
scheme called the ETD-RDP scheme can be rewritten as

vvvn+1 =

(
I +

k
3

A2

)−1

[9vvvn +2kG(vvvn)+ kG(vvvn+1
∗ )]

−
(

I +
k
4

A2

)−1[
8vvvn +

3k
2

G(vvvn)+
k
2

G(vvvn+1
∗ )

]
vvvn+1
∗ = (I + kA2)

−1(vvvn + kG(vvvn)).

(4.3.19)

The last step are the substitutions vvvn = eA1nkuuun, vvvn+1 = eA1nkeA1kuuun+1, G(vvvn) = eA1nkF(uuun),
G(vvvn+1) = eA1nkeA1kF(uuun). Applying these on both sides and cancelling the matrix exponen-
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tials yields

uuun+1 =

(
I +

k
3

A2

)−1

[e−kA1{9uuun +2kF(uuun)}+ kF(uuun+1
∗ )]

−
(

I +
k
4

A1

)−1[
e−A1k

{
8uuun +

3k
2

F(uuun)

}
+

k
2

F(uuun+1
∗ )

]
uuun+1
∗ = (I + kA2)

−1e−A1k(uuun + kF(uuun)).

Making use of the identity (see [5, p. 6])(
I − 5

12
A1

)(
I − k

4
A1

)−1(
I − k

4
A1

)−1

= 9
(

I − k
3

A1

)−1

−8
(

I − k
4

A1

)−1

,

and approximating e−A1k with the RDP approximation (4.3.14) in the first term and with the
Padé approximation (4.3.15) in the second term, the ETD-RDP-IF scheme is given by

uuun+1 =

(
I +

k
3

A2

)−1

[e−A1k{9uuun +2kF(uuun)}+ kF(uuun+1
∗ )]

−
(

I +
k
4

A1

)−1[
e−A1k

{
8uuun +

3k
2

F(uuun)

}
+

k
2

F(uuun+1
∗ )

]
uuun+1
∗ = (I + kA2)

−1e−A1k(uuun + kF(uuun)).

(4.3.20)

We conclude this section by repeating the ETD-RDP scheme (4.3.19) for one spatial dimen-
sion in Algorithm 4.2 and the ETD-RDP-IF scheme (4.3.20) for two spatial dimensions in
Algorithm 4.3.

Algorithm 4.2: Deterministic finite differences ETD-RDP scheme

uuun+1 =

(
Ip +

k
3

DAp

)−1

[9uuun +2kF(uuun)+ kF(uuun+1
∗ )] (4.3.21)

−
(

Ip +
k
4

DAp

)−1[
8uuun +

3k
2

F(uuun)+
k
2

F(uuun+1
∗ )

]
, (4.3.22)

uuun+1
∗ = (Ip + kDAp)

−1(uuun + kF(uuun)), n = 0, . . . ,M−1, (4.3.23)

where Ip denotes the p× p identity matrix.
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Algorithm 4.3: Deterministic finite differences ETD-RDP-IF scheme

uuun+1 =

(
Ip2 +

k
3

DA2

)−1
[{

9
(

Ip2 +
k
3

DA1

)−1

−8
(

Ip2 +
k
4

DA1

)−1
}

· {9uuun +2kF(uuun)}+ kF(uuun+1
∗ )

]
−
(

Ip2 +
k
4

DA2

)−1
[{

9
(

Ip2 +
k
3

DA1

)−1

−8
(

Ip2 +
k
4

DA1

)−1
}

·
{

8uuun +
3k
2

F(uuun)

}
+

k
2

F(uuun+1
∗ )

]
,

uuun+1
∗ = (Ip2 + kDAp2)−1(Ip2 + kDA1)

−1(uuun + kF(uuun)), n = 0, . . . ,M−1,

where A1 := Ip ⊗Ap, A2 := Ap ⊗ Ip.

4.3.3 ETDRK4

The ETDRK4 scheme has been shown in [62] to be a powerful method for solving reaction-
diffusion equations which is superior to standard finite difference schemes. Before going
into details on the spatial discretization, we give a few details on the ETDRK4 time stepping
scheme.
Before we apply the time-stepping scheme to the initial value problem (4.3.1), we proceed as
in [25] and first develop the scheme in the scalar case and consider the ordinary differential
equation

du
dt

= cu+F(u, t)

where c is a constant and F is a (potentially nonlinear) function. The starting point is, as in
the previous section for the ETD-RDP scheme, the variation of constants formula (4.3.5)
which we restate here for the n+1-st time step for u:

u(tn+1) = ecku(tn)+
∫ k

0
e−(k−τ)cF(tn + τ) dτ. (4.3.24)

As in Section 4.3.2, the time stepping is derived from approximations applied to (4.3.24).
The ETD1 scheme mentioned in the previous section with the approximation F = F(un)+

O(k) is given by

un+1 = eckun + c−1F(un)(eck −1). (4.3.25)
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In [25], a set of ETD schemes called ETDRK schemes based on Runge-Kutta time stepping
are derived. They rely on the approximation of F(u(t)) at different interpolating points in
time, for which the above schemes such as ETD1 are used. For example, un+1 is approximated
by the ETD1 expression (4.3.25)

an := uneck + c−1F(un)(eck −1) (4.3.26)

and on the interval tn ≤ t ≤ tn+1, the linear approximation

F = F(un)+(t − tn)(F(an)−F(un))/k+O(h2)

is applied and substituted into (4.3.24). After using (4.3.9) we obtain the ETDRK2 scheme
given by

un+1 = an + k−1c−2(F(an)−Fn)(eck −1− ck).

While a direct extension in the same way for a fourth order RK method yields only a third
order scheme, Cox and Matthews show that after some modifications and verification using a
computer algebra system, the fourth-order RK scheme (ETDRK4) is given by Algorithm 4.4.
We now consider again the partial differential equation (4.3.1). In order to apply the ETDRK4
scheme in Algorithm 4.4, the equation first needs to be discretized in space. To this end,
we use a spectral approach, making use of the discrete Fourier transform (DFT) which can
be implemented using the well-known fast Fourier transform (FFT). Using the shorthand
u(xn) =: uuun, n = 0, . . . , p, the DFT and inverse DFT formulae are given by

ûuu j =
p−1

∑
n=0

e−2πi jxnuuun, j =− p
2
+1, . . . ,

p
2
, uuun =

1
p

p/2

∑
j=−p/2+1

e2πi jxnûuu j, n = 0, . . . , p−1.

We will later also denote ûuu =: F (uuu), especially when emphasizing that a transformation from
physical space to Fourier space is performed, rather than a mere manipulation of terms in
Fourier space. The derivatives on the spatial grid can now be approximated conveniently by
noting that differentiation uuu′ = (u′(xn))n=0,...,p in the physical space corresponds to a simple
multiplication in Fourier space: ûuu′ = (i jû j) j=− p

2+1,..., p
2
. In particular, the Laplace operator

in Fourier space ends up being diagonal: ∆̂uuu = L · ûuu for a diagonal matrix L with L j j =− j2,
j =− p

2 +1, . . . , p
2 . For the ETDRK4 scheme, the DFT is applied to the discretized function uuu,

the time stepping using the fourth-order Runge-Kutta method is carried out in Fourier space
and after the last time step the solution is transformed back to physical space. One subtlety
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to note is that in each time step, for each evaluation using the nonlinear function F , the
argument ûuun needs to be transformed to physical space, then F is evaluated, and F(F−1(ûuun))

is transformed back into Fourier space (see the scheme below). Taking this into account, we
introduce the shorthand F̂(ûuun) := F (F(F−1(ûuun))). The ETDRK4 scheme Algorithm 4.4
then becomes the discretized spectral ETDRK4 scheme and it is given by Algorithm 4.5.
A problem with this scheme is that it can lead to numerical instabilities resulting from
cancellation errors in the expressions of an, bn and cn (see Algorithm 4.5, [63, p. 6]). Instead
of evaluating the critical expressions directly, Cauchy’s integral formula

f (L) =
1

2πi

∫
Γ

f (t)(tIp −L)−1 dt (4.3.31)

is used, where Γ is a contour which encloses the eigenvalues of L. The trapezoidal rule
is suitable to evaluate this integral, since it converges exponentially for complex contour
integrals [29]. In our case, L is diagonal and the contours for (4.3.31) to evaluate an, bn and
cn may simply be chosen elementwise, so that for each diagonal element Lii of L, i = 1, . . . , p,
we pick one circle around Lii. The approximated integral (4.3.31) then simplifies to

1
R

R

∑
i=1

f (Lii + ri), (4.3.32)

where r1, . . . ,rR are the complex roots of unity of order R sitting on the unit circle shifted by
Lii.
Furthermore, in order to avoid errors caused by aliasing in Fourier space, anti-aliasing is
needed in the program code. We refer to [62, p. 11] on how to do this properly.
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Algorithm 4.4: Deterministic ETDRK4 time stepping scheme

un+1 = uneck + k−2c−3{F(un)[−4− kc+ eck(4−3ck+ c2k2)]

+2(F(an)+F(bn))[2+ ck+ eck(−2+ ck)]

+F(cn)[−4−3ck−h2c2 + e−ck(4− ck)]},

an = e−ck/2un + c−1
(

e−ck/2 −1
)
,

bn = e−ck/2un + c−1
(

e−ck/2 −1
)

F(an)

cn = e−ck/2an + c−1
(

e−ck/2 −1
)
(2F(bn)−F(un)).

Algorithm 4.5: Deterministic discretized Spectral ETDRK4 scheme

ûuu0 = F (uuu0), (4.3.27)

ûuun+1 = eLhûuun +h−2L−3{[−4 · Ip −Lh+ eLh(4 · Ip −3Lh+(Lh)2)]F̂(ûuun)

+2[2 · Ip +Lh+ eLh(−2 · Ip +Lh)](F̂(an)+ F̂(bn)

+ [−4−3Lh− (Lh)2 + eLh(4 · Ip −Lh)]F̂(cn)},
an = eLh/2ûuun +L−1(eLh/2 − Ip)F̂(ûuun)), (4.3.28)

bn = eLh/2ûuun +L−1(eLh/2 − Ip)F̂(an), (4.3.29)

cn = eLh/2an +L−1(eLh/2 − Ip)(2F̂(bn)− F̂(ûuun)), n = 0, . . . ,M−1, (4.3.30)

uuuM = F−1(ûuuM).
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Chapter 5

Solving random differential equations
using polynomial chaos with exponential
time differencing

Throughout this work, we will be using p points in each spatial dimension, M time steps,
a time step size k = T/M, a spatial step size h = p−1 and N + 1 PCE coefficients (with
the index ranging from 0 to N). For the random equations (4.0.4), we will assume that the
random input is uniformly distributed, so we will always use Legendre polynomials in the
gPCEs. The cases for other random distributions and the corresponding family of orthogonal
polynomials according to Table 4.1.1 work in an analogous fashion.

5.1 Intrusive PCE schemes

We have already given an introduction to intrusive PCE in Section 4.1. The aim is now
to develop the intrusive PCE numerical schemes needed to solve (4.2.7). To demonstrate
how iPCE schemes are developed, we will consider in this section the nonlinear function
F(ω,u(x, t,ω)) = K(ω)u(x, t,ω)3 with a uniformly distributed constant K(ω) = ξ (ω) ∼
U [a,b]. We stress here that we will henceforth use K and ξ interchangably, and the orthogo-
nal polynomials will be the Legendre polynomials supported on [a,b]⊂ R. Among others,
this nonlinear function F will also be treated in Section 5.2. We describe the explicit Euler
scheme in 4.3.1, the ETD-RDP scheme in Section 5.1.2 and the ETDRK4 scheme in Section
5.1.3.
For both schemes, it is a necessary prerequisite to discuss the gPCE for the term u3 given the
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PCE of u. Given the gPCE (4.1.12), we have

u3(x, t,ω) =

(
∞

∑
i=0

ui(x, t)Pi(ξ )

)
·

(
∞

∑
j=0

u j(x, t)Pj(ξ )

)
·

(
∞

∑
k=0

uk(x, t)Pk(ξ )

)

=
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

ui(x, t)u j(x, t)uk(x, t)Pi(ξ )Pj(ξ )Pk(ξ ).

After a Galerkin projection (multiplying with Pη for η ∈ N0 and taking E[·]) and making an
approximation by truncating the series to N +1 terms each, plugging the gPCE into (4.2.7)
we obtain for η = 0, . . . ,N (see also [30, pp. 4])

∂

∂ t uη(x, t) = D∆uη(x, t)+E
[
K ∑

N
i, j,k=0 ui(x, t)u j(x, t)uk(x, t)Pi(ξ )Pj(ξ )Pk(ξ )Pη(ξ )

]
u0(x,0) = uinit(x), uη(x,0) = 0, η > 0.

Extracting the deterministic coefficient functions, we have ∂

∂ t uη(x, t) = D∆uη(x, t)+∑
N
i, j,k=0 ui(x, t)u j(x, t)uk(x, t)E

[
KPi(ξ )Pj(ξ )Pk(ξ )Pη(ξ )

]
u0(x,0) = uinit(x), uη(x,0) = 0, η > 0.

and, using from now on the notation KKKi jkη := E[KPi(ξ )Pj(ξ )Pk(ξ )Pη(ξ )], it is ∂

∂ t uη(x, t) = D∆uη(x, t)+∑
N
i, j,k=0KKKi jkηui(x, t)u j(x, t)uk(x, t)

u0(x,0) = uinit(x), uη(x,0) = 0, η > 0.
(5.1.1)

The tensor KKK will be computed as a pre-processing step and used throughout a simulation.

Remark 5.1.1 In our implementations, we use an equivalent way of computing the gPCE
of u3: We make use of an addition theorem for Legendre polynomials [1] stating that for
α,β ∈ N and α ∧β = min(α,β ),

Pα(x)Pβ (x) = ∑
i≤α∧β

C(α,β , p)Pα+β−2p(x), where (5.1.2)

Cα,β ,p =
ApAα−pAβ−p

Aα+β−p
· 2α +2β −4p+1

2α +2β −2p+1
·

√
(2α +1)(2β +1)
2(α +β −2p)+1

, (5.1.3)

Ar :=
(1/2)r

r!
, (a)r := a · (a+1) · · · · · (a+ r−1), (a)0 = 1. (5.1.4)
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Using (5.1.2) to expand the gPCE of u3 yields, after applying a Cauchy product twice (and
dropping x, t and ω),

uv2 =

[
∞

∑
l=0

ulPl

]
·

[
∞

∑
i=0

viPi

]2

(5.1.5)

=

[
∞

∑
l=0

ulPl

]
·

[
∞

∑
i=0

i

∑
j=0

v jvi− jPjPi− j

]
(5.1.6)

=

[
∞

∑
l=0

ulPl

]
·

[
∞

∑
i=0

i

∑
j=0

v jvi− j

j∧(i− j)

∑
p=0

C j,i− j,pPi−2p

]
(5.1.7)

=:

[
∞

∑
l=0

ulPl

]
·

[
∞

∑
i=0

ai

]
(5.1.8)

=
∞

∑
l=0

l

∑
m=0

amul−mPl−m (5.1.9)

=
∞

∑
l=0

l

∑
m=0

ul−mPl−m

m

∑
j=0

v jvm− j

j∧(m− j)

∑
p=0

C j,m− j,pPm−2p (5.1.10)

=
∞

∑
l=0

l

∑
m=0

m

∑
j=0

j∧(m− j)

∑
p=0

ul−mv jvm− jC j,m− j,pPl−mPm−2p (5.1.11)

=
∞

∑
l=0

l

∑
m=0

m

∑
j=0

j∧(m− j)

∑
p=0

ul−mv jvm− jC j,m− j,p

(l−m)∧(m−2p)

∑
n=0

Cl−m,m−2p,nPl−2p−2n (5.1.12)

=
∞

∑
l=0

l

∑
m=0

m

∑
j=0

j∧(m− j)

∑
p=0

(l−m)∧(m−2p)

∑
n=0

ul−mv jvm− jC j,m− j,pCl−m,m−2p,nPl−2p−2n. (5.1.13)

which after truncating to N +1 terms and performing a Galerkin step with Pη yields

N

∑
ℓ=0

ℓ

∑
m=0

m

∑
j=0

j∧(m− j)

∑
p=0

(ℓ−m)∧(m−2p)

∑
n=0

uℓ−mu jum− jC j,m− j,pCℓ−m,m−2p,n1{η=ℓ−2p−2n}. (5.1.14)

This amounts to a number Ñ of summands shown in Table 5.1.1 for low N, of which Ñ/(N+1)
are nonzero. For equations with a u3 term, this has a severe impact on the runtime of iPCE
for large N (see Remark 5.1.2).

Remark 5.1.2 If the random input ξξξ is multivariate with dimension P ∈ N, the underlying
base of orthogonal polynomial has, for up to degree N, N̂ + 1 := (N+P)!

N!P! elements [102,
Eq. (5.3)] (where N̂ denotes the number of expansion terms corresponding to non-constant
polynomials). This means that the system (5.1.1) is N̂ +1-times bigger than the deterministic
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N 0 1 2 3 4 5 6 7 8

Ñ 1 8 39 124 335 762 1589 3016 5418

Table 5.1.1: Number Ñ of summands in (5.1.14) for low N

system. We pointed out in Remark 5.1.1 that especially equations involving a un term for
n≥ 3 can start to pose problems due to the rapidly increasing number of necessary summands
in the gPCE. Figure 5.1.1 shows how the runtimes increase for iPCE depending on N for
the equations (5.2.1) investigated in Section 5.2. Especially the equation involving a u3 term
shows a rapid increase in computational effort as N grows.
On the other hand, suppose that a one-dimensional quadrature formula (such as Gauss-
Legendre) has an error bound for f ∈ C r([−1,1]) for q ∈ N quadrature nodes

|E1
q f |= O(q−r).

Then, it is known that in d dimensions, the full grid quadrature error |Ẽd
q f | and the error for

Smolyak sparse quadrature |Ed
q f | for f ∈ Hr([−1,1]d) is given by

|Ẽd
q f |= O(q−r/d), |Ed

q f |= O(log(q)(d−1)(r+1)q−r)

(see e.g. [61, p. 39]). This means that in higher dimensions, provided that the integrand is
sufficiently smooth, the number of necessary function evaluations can be drastically reduced
by using a sparse grid, and the curse of dimensionality is much less severe than in the iPCE
case as outlined above.

We will henceforth use the following notation: For η = 0, . . . ,N and n = 0, . . . ,M, it is

uuun
η := (uη(x0, tn),uη(x1, tn), . . . ,uη(xp, tn))⊤.

Also, ∆uuun
η = (∆uη(xi, tn))⊤i=0,...,p refers to ∆uη evaluated at the grid points. We also denote

by

UUUn :=


uuun

0

uuun
1
...

uuun
N

 ∈ R(N+1)·pd
(5.1.15)

the vector of all stacked discretized PCE coefficient functions uuun
0, . . . ,uuu

n
N at time tn.
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5.1.1 Explicit Euler

For a single function uη in the PCE, the explicit Euler scheme for solving (4.0.4) is given by

uuun+1
η = uuun

η + k ·

[
DApuuun

η +
N

∑
i, j,k=0

KKKi jkηuuun
i ⊙uuun

j ⊙uuun
k

]
, n = 0, . . . ,M−1,

where by ⊙ we denote a componentwise product. Combining all coefficient functions
uuu0, . . . ,uuuN , we obtain Algorithm 5.1.

Algorithm 5.1: iPCE Explicit Euler scheme

UUUn+1 =UUUn + k · [(IN+1 ⊗DAp)UUUn +FFF(UUUn)] , (5.1.16)

FFF(UUUn) =

[
N

∑
i, j,k=0

KKKi jkηuuun
i ⊙uuun

j ⊙uuun
k

]
η=0,...,N

, n = 0, . . . ,M−1. (5.1.17)

5.1.2 ETD-RDP and ETD-RDP-IF

Applying the scheme (4.3.21) to the PCE system (4.2.7) with a finite difference discretiza-
tion and making use of the fact that

(
IN+1 ⊗ (Ip +

k
3DAp)

)−1
= IN+1 ⊗ (Ip +

k
3DAp)

−1, the
resulting scheme is

Algorithm 5.2: iPCE ETD-RDP scheme

UUUn+1 =

(
IN+1 ⊗ (Ip +

k
3

DAp)
−1
)
[9UUUn +2kFFF(UUUn)+ kFFF(UUUn+1

∗ )] (5.1.18)

−
(

IN+1 ⊗ (Ip +
k
4

DAp)
−1
)
[8UUUn +

3k
2

FFF(UUUn)+
k
2

FFF(UUUn+1
∗ )],

UUUn+1
∗ =

(
IN+1 ⊗ (Ip + kDAp)

−1) [UUUn + kFFF(UUUn)], n = 0, . . . ,M−1 (5.1.19)

where FFF(UUUn) is given by the column vector (5.1.17).
We now discuss the application of ETD-RDP-IF in the case where the spatial dimension is
greater than one. For simplicity of the presentation, we restrict ourselves here to the case of
two spatial dimensions. In this case, the finite difference discretization of the Laplacian with
periodic boundary conditions is given by A = A1 +A2 := (D · Ip)⊗Ap +Ap ⊗ (D · Ip). We
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use the notation UUUn = (uuu0, . . . ,uuuN)
⊤ from above and denote

AAA := IN+1 ⊗A, AAA1 := IN+1 ⊗A1, AAA2 := IN+1 ⊗A2, III := IN+1 ⊗ Ip2 = Ip2·(N+1),

so in particular it is AAA =AAA1 +AAA2. In order to solve the discretized PCE system

∂UUU
∂ t

+AAAUUU =FFF(UUU), uuu0
0 = uuuinit, (5.1.20)

with FFF as above, we apply a dimensional splitting technique. We introduce the new time-
dependent function VVV = eAAA1tUUU . The term IN+1 ⊗ eAAA1t is called the integrating factor for PCE.
We will also use that AAA and AAA1 commute (see [5, Lemma 1]), and therefore also AAA and eAAA1t

commute. For the dimensional splitting, we define VVV (t) := eAAA1tUUU(t). Carrying out the steps
as in [5, pp. 3] for the PCE case, the time derivative of VVV is

∂VVV
∂ t

= eAAA1t ∂UUU
∂ t

+AAA1eAAA1tUUU

and inserting (5.1.20), we obtain

∂VVV
∂ t

= eAAA1t(FFF(UUU)−AAAUUU)+AAA1eAAA1tUUU = eAAA1tFFF(UUU)− eAAA1tAAAUUU +AAA1eAAA1tUUU

= eAAA1tFFF(UUU)−AAAeAAA1tUUU +AAA1eAAA1tUUU = eAAA1tFFF(UUU)−AAA2eAAA1tUUU = eAAA1tFFF(e−AAA1tVVV )−AAA2VVV ,

so the system

∂VVV
∂ t

+AAA2VVV =GGG(VVV ), vvv0
0 = uuuinit

with GGG(VVV ) := eAAA1tFFF(e−AAA1tVVV ) must be solved. The next step is to apply the ETD-RDP scheme
given in (5.1.19) toVVV . The derivation in the PCE case works analogously as described in [5, p.
5–7]. In addition to the ETD-RDP scheme (5.1.19), the unwinding of the integrating factor is
needed. With the substitutions VVV n = eAAA2nkUUUn, VVV n+1 = eAAA2nkeAAA2kUUUn+1, GGG(VVV n) = eAAA2nkFFF(UUUn)

and GGG(VVV n+1) = eAAA2nkeAAA2kFFF(UUUn+1), (5.1.19) becomes the full ETD-RDP-IF scheme for iPCE
shown in Algorithm 5.3. Note that this scheme looks identical to the one presented in [5, Eq.
(19)], but we have a different notation for AAA1, AAA2 and the function FFF .
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Algorithm 5.3: iPCE ETD-RDP-IF scheme

UUUn+1 =

(
III +

k
3

DAAA2

)−1
[{

9
(

III +
k
3

DAAA1

)−1

−8
(

III +
k
4

DAAA1

)−1
}

· {9UUUn +2kFFF(UUUn)}+ kFFF(UUUn+1
∗ )

]
−
(

III +
k
4

DAAA2

)−1
[{

9
(

III +
k
3

DAAA1

)−1

−8
(

III +
k
4

DAAA1

)−1
}

· {8UUUn +
3k
2

FFF(UUUn)}+ k
2

FFF(UUUn+1
∗ )

]
,

UUUn+1
∗ = (III + kDAAA2)

−1(III + kDAAA1)
−1(UUUn + kFFF(UUUn)), n = 0, . . . ,M−1.

5.1.3 ETDRK4

For η = 0, . . . ,N, we denote ûuuη = F (uuuη) and for the stacked discretized PCE functions, we
write

UUUn =

uuun
0
...

uuun
N

 , ÛUUn = Fcomp(UUUn) :=

F (uuun
0)

...
F (uuun

N)

 , F−1
comp(ÛUUn) :=

F−1(ûuun
0)

...
F−1(ûuun

N)


and we stress the fact that the discrete Fourier transform is taken separately for each base
function. For the vector UUUn of stacked discretized PCE base functions, FFF(UUUn) is understood
in the sense of (5.1.17). We also use the matrix L from Section 4.3.3 and denote LLL := IN+1⊗L.
This matrix is still diagonal and therefore very easy to invert. As before in (4.3.27), we
introduce the shorthand F̂FF(Û̂ÛU) := Fcomp(FFF(F−1

comp(ÛUU))). The ETDRK4 scheme for the
intrusive PCE system is then given by Algorithm 5.4. In Section 4.3.3, we recalled a
contour integral method in order to avoid cancellation errors arising in the evaluation of the
expressions an, bn and cn in equations (4.3.28) to (4.3.30). In this scheme, we apply this
technique to each base function, i.e. the mean (4.3.32) is computed separately for each PCE
base function. Likewise, anti-aliasing is applied to each base function.

Remark 5.1.3 In order to deal with random PDEs of the form

∂u(x, t,ω)

∂ t
= D(ω)∆u(x, t,ω)+F(u(x, t,ω)),
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Algorithm 5.4: iPCE ETDRK4 scheme

ÛUU0 = Fcomp(UUU0),

ÛUUk+1 = exp
(

h
2

LLL
)

ÛUUk

+(h−2LLL−3)
{[

−4III −hLLL+ ehLLL(4III −3hLLL+h2LLL2)
]

F̂FF(ÛUUk)

+2[2III +hLLL+ ehLLL(−2III +hLLL)]
(

F̂FF(âaak)+ F̂FF(b̂bb
k
)
)

+
[
−4III −3hLLL−h2LLL2 + ehLLL(4III −hLLL)

]
F̂FF(ĉcck)

}
,

UUUM = F−1
comp(ÛUUM),

where III := I(N+1)p2 and

âaak = eLLLh/2ÛUUk +LLL−1(eLLLh/2 −III)F̂FF(ÛUUk),

b̂bb
k
= eLLLh/2ÛUUk +LLL−1(eLLLh/2 −III)F̂FF(âaak),

ĉcck = eLLLh/2âaak +LLL−1(eLLLh/2 −III)(2F̂FF(b̂bb
k
)− F̂FF(ÛUUk)).
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Runtimes for iPCE for different N compared to N = 0
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Figure 5.1.1: Relative runtimes RN for N = 0, . . . ,9, where R0 := 1. Each plot shows six
curves for six different equations investigated in Section 5.2: Equation (5.2.1) with linear,
quadratic or cubic F , with D = 0 or D = 1. Each data point is an average over the runtimes
of ten identical iPCE simulations with T = 0.1 and M = 10 time steps.

i.e. equations where D is random and the function F is not random, the ETDRK4 intrusive
PCE scheme described above is not very suitable, because in this case the discretized
Laplacian D∆ is not a tridiagonal matrix anymore (the shape of the matrix depends on the
distribution of the random variable D), and the Fourier transform LLL of the Laplacian is not
diagonal anymore, which can severely impact the performance of the scheme.

5.2 Numerical experiments.

We now apply non-intrusive PCE as explained in Section 4.2.1 and intrusive PCE as explained
in Section 5.1 to the equation (4.0.4) which we repeat here:

∂u(x,t,ω)
∂ t = D∆u(x, t,ω)+F(ω,u(x, t,ω)),

u(x,0,ω) = uinit(x).
(5.2.1)

For a random constant K ∼U [1,2], we will use F(ω,u(x, t,ω)) = K(ω)u(x, t,ω) in Section
5.2.1, F(ω,u(x, t,ω)) = K(ω)u(x, t,ω)2 in Section 5.2.2 and furthermore F(ω,u(x, t,ω)) =

K(ω)u(x, t,ω)3 in Section 5.2.3. In all three cases, we test the two cases D = 1 and D = 0, i.e.
a random ODE and a PDE with a diffusion term. In all three cases, we pick uinit(x) = cos(πx).
Finally, we will discuss a more complex problem, the Gray-Scott system, in Section 5.2.6.
Throughout all simulations, we work on the spatial domain (−1,1)d , and spatial resolution
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p = 128.
In all error plots, we show the relative L2 error which, for the exact mean or a reference
solution mean E[u] and the approximated solution E[u]approx, is given by erel(t)= ∥E[u](·, t)−
E[u]approx(·, t)∥L2/∥E[u](·, t)∥L2 . For the random equation with linear term in Section 5.2.1,
we know the exact solution, for the other equations in Sections 5.2.2, 5.2.3 and 5.2.6 we use
a reference solution obtained from using non-intrusive PCE with Gauß quadrature with a
high number of quadrature points (see Table 5.2.1). We also note that for the error of niPCE
with naive, randomly sampled MC, we ran ten simulations producing ten error graphs over
which we took the mean.

5.2.1 One-dimensional random equation with linear term

The equation

∂u(x, t,ω)

∂ t
= D∆u(x, t,ω)−K(ω)u(x, t,ω), u(x,0,ω) = cos(πx), (5.2.2)

x ∈ (−1,1), t ∈ (0,T ], has the exact solution u(x, t,ω) = exp(−(K(ω)+Dπ2)t)cos(πx). If
K ∼ U [a,b], the expected value is given by

E[u(x, t, ·)] = 1
b−a

∫ b

a
exp(−(ξ +Dπ

2)t)cos(πx) dξ

=
1

b−a
cos(πx)

t
exp(−(Dπ

2 +a)t)− exp(−(Dπ
2 +b)t), (5.2.3)

and in our tests we choose again a = 1 and b = 2. The variance is

Var[u(x, t, ·)] = E[u(x, t, ·)2]−E[u(x, t, ·)]2

=
1

b−a

∫ b

a
exp(−2(ξ +Dπ

2)t)cos2(πx) dξ −E[u(x, t, ·)]2

=
1

b−a
cos2(πx)

2t

[
exp(−2(Dπ

2 +a)t)− exp(−2(Dπ
2 +b)t)

]
−
[

1
b−a

cos(πx)
t

exp(−(Dπ
2 +a)t)− exp(−(Dπ

2 +b)t)
]2

. (5.2.4)

In Figure 5.2.1, we show the time-dependent error plots for solving (5.2.2) with D = 0,
comparing to the exact solution. For iPCE, it can be seen that both for EE and for ETD-RDP,
increasing the number of non-constant polynomials beyond N = 1 makes no difference. Due
to the greater accuracy of ETDRK4, the error keeps decreasing until N = 4, and the spectral
convergence of iPCE is clearly seen. In the plots for niPCE, it can be seen that the error
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strongly depends on the method of numerical quadrature to compute (4.2.3). By choice of the
quadrature points and weights alone, niPCE with GQ achieves better accuracy than iPCE in
all scenarios. While, therefore, niPCE is a clear winner in this case, the situation is different
for D = 1, where it can be seen in Figure 5.2.2 that for ETD-RDP and ETDRK4, a lower
error can be achieved with iPCE for comparable runtimes (see Table 5.2.1).
In Figure 5.2.3, the error plots for the variance are shown, computed according to formula
(4.2.4). In the case of iPCE, the iPCE scheme is run and ∑

N
i=1 |ui(x,T )|2 is computed. In the

case of niPCE, formula (4.2.3) is applied with q = 10. The EE, ETD-RDP and ETDRK4
schemes again form a clear hierarchy from least to most accurate. It can also be seen that the
error for ETDRK4 iPCE, N = 5, is very similar to that of ETDRK4 niPCE, indicating that the
remaining error might not be due to the choice of the numerical scheme ETDRK4 but rather
due to approximation steps regarding the gPCE, such as in (5.1.14). Also, MC and QMC
yield high errors, which is due to the fact that the norm of the variance is very low compared
to the mean, which makes the sampling error in (4.2.3) much more significant. For instance,
for the canonical normed Legendre polynomial P1, for a random sequence {xMC

j } j=1,...,100, a
Sobol sequence {xQMC

j } j=1,...,100 and Gauss-Legendre quadrature nodes {xGQ
j } j=1,...,100 it is

(with the corresponding weights as described in (4.2.3))

100

∑
j=1

wMC
j P1(xMC

j )≈−0.00898, (5.2.5)

100

∑
j=1

wQMC
j P1(x

QMC
j )≈−0.00622, (5.2.6)

100

∑
j=1

wGQ
j P1(x

GQ
j )≈ 2.02 ·10−17 (5.2.7)

(the first number is an average over 100 Monte Carlo samples) due to MC and QMC being
non-symmetric rules, while Gauss-Legendre quadrature nodes are symmetric about the origin.
In particular for small t, due to the deterministic initial condition the variance is very close to
zero, which, due to sampling errors as demonstrated in (5.2.5), leads to a very large relative
error.

5.2.2 One-dimensional random equation with quadratic term

We consider the equation with a quadratic term

∂u(x, t,ω)

∂ t
= D∆u(x, t,ω)−K(ω)u(x, t,ω)2, u(x,0,ω) = cos(πx), (5.2.8)

93



Equation with linear term, D = 0, mean
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Figure 5.2.1: Plots showing the relative time-dependent error for iPCE schemes (Algorithms
5.1, 5.2, 5.4, left-hand side) and niPCE schemes (right-hand side) for equation (5.2.2) with
linear term with diffusion constant D = 0. The exact mean is given by (5.2.3).
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Equation with linear term, D = 1, mean
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Figure 5.2.2: Plots showing the relative time-dependent error for iPCE schemes (Algorithms
5.1, 5.2, 5.4, left-hand side) and niPCE schemes (right-hand side) for equation (5.2.2) with
linear term with diffusion constant D = 1. The exact mean is given by (5.2.3).
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Equation with linear term, D = 0, variance
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Figure 5.2.3: Plots showing the relative time-dependent error for the same setup as in Figure
5.2.1, but for the variance computed according to equation (4.2.4) with q = 10 coefficient
functions using formula (4.2.3). The large errors for MC and QMC are due to the variance
being close to zero, so that the sampling error introduced in (4.2.3) plays a much bigger role
(see (5.2.5)). The exact variance is given by (5.2.4).
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x ∈ (−1,1), t ∈ (0,T ]. Numerical simulations show that for D = 0, this equation’s solution
diverges as early as about t = 0.5 for K = 2, which is why the errors in Figure 5.2.4 also
show a sharp increase towards that point in time. In this case, despite the nonlinearity now
being quadratic, iPCE is competitive with niPCE for all three schemes. This is also true for
the case D = 1 for ETD-RDP and for ETDRK4, as can be seen in Figure 5.2.5.

5.2.3 One-dimensional random equation with cubic term

We consider the equation with a cubic term

∂u(x, t,ω)

∂ t
= D∆u(x, t,ω)−K(ω)u(x, t,ω)3, u(x,0,ω) = cos(πx), (5.2.9)

x ∈ (−1,1), t ∈ (0,T ]. The plots in Figure 5.2.6 show that in the case D = 0, the iPCE
schemes can produce somewhat competitive errors compared to the niPCE schemes for the
EE and ETD-RDP cases, but in the ETDRK4 scheme error stays small more consistently in
the niPCE case.
For the D = 1 case, it is seen in Figure 5.2.7 that both ETD-RDP and ETDRK4 schemes can
produce competitive errors in the iPCE case. However, this has to be put into context taking
into account the low stability of iPCE in this case: The step sizes for the iPCE schemes
have to be increased substantially in order to produce these errors, resulting in much larger
computation times (see Table 5.2.2, case D = 1, cubic).

5.2.4 Two-dimensional random equation with linear term

The equation

∂u(xxx, t,ω)

∂ t
= D∆u(xxx, t,ω)−K(ω)u(xxx, t,ω), u(xxx,0,ω) = cos(πx1)cos(πx2) (5.2.10)

with xxx = (x1,x2)
⊤ ∈ (−1,1)2, t ∈ (0,T ], has the exact solution u(xxx, t,ω) = exp(−(K(ω)+

2Dπ2)t)cos(πx1)cos(πx2). If K ∼ U [a,b], the expected value is given by

E[u(xxx, t, ·)] = 1
b−a

∫ b

a
exp(−(ξ +2Dπ

2)t)cos(πx1)cos(πx2) dξ

=
1

(b−a)t
cos(πx1)cos(πx2)exp(−(2Dπ

2 +a)t)− exp(−(2Dπ
2 +b)t).

(5.2.11)
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Equation with quadratic term, D = 0, mean
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Figure 5.2.4: Plots showing the relative time-dependent error for iPCE schemes (Algorithms
5.1, 5.2, 5.4, left-hand side) and niPCE schemes (right-hand side) for equation (5.2.8) with
quadratic term with diffusion constant D = 0.
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Equation with quadratic term, D = 1, mean
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Figure 5.2.5: Plots showing the relative time-dependent error for iPCE schemes (Algorithms
5.1, 5.2, 5.4, left-hand side) and niPCE schemes (right-hand side) for equation (5.2.8) with
quadratic term with diffusion constant D = 1.
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Figure 5.2.9 shows the time-dependent errors for the case D = 0, using the same parameters
and time step numbers as in the 1D cases shown in Figure 5.2.1 and 5.2.2.

5.2.5 Performance plots

In Figure 5.2.8, for the different equations we show how the error for iPCE and niPCE
compare for different numbers of time steps M. For the niPCE errors, q = 10 Gauss-
Legendre quadrature points were used. It can be seen that in most cases, the iPCE and niPCE
errors are very similar up to a certain M, where the error lines split up and iPCE does not go
below a certain threshold. This threshold can, in some cases, be higher than the niPCE error,
so that the iPCE error appears as a constant line, independent of M (as in the quadratic ad
cubic case for D = 0). This additional error for iPCE may be caused by the approximation of
the iPCE product terms given in (5.1.14).

5.2.6 Random Gray-Scott model

We consider the random Gray-Scott model
∂u(x,t,ω)

∂ t = Du∆u(x, t,ω)−u(x, t,ω)v(x, t,ω)2 +F(1−u(x, t,ω)),
∂v(x,t,ω)

∂ t = Dv∆v(x, t,ω)+u(x, t,ω)v(x, t,ω)2 − (F + k(ω))v(x, t,ω).
(5.2.12)

for x ∈ (−1,1), t ∈ (0,T ] for some T > 0, Du = 2 · 10−5, Dv = 10−5, a constant F and a
uniformly distributed random variable k. We take the initial condition from [40, Figure 9]
which is given by

uinit(x) = 1− 5
3
√

2π
exp
(
−6(x−µ)2) , vinit(x) = 0.37 · 7.5

2
√

2Γ(1
3)

exp
(
−7(x−µ)3

√
2

)
where µ = 0 is the midpoint of the interval. For the two-dimensional plots shown in Figures
5.2.11 and 5.2.12, we use as an initial condition a function with four off-center local extrema:

v(x,y,0) =
1
4

4

∑
i=1

exp
(
−150((x− xi)

2 +(y− yi)
2)
)
, u(x,y,0) = 1− v(x,y,0), (5.2.13)

where (x1,y1) = (2/7,2/7), (x2,y2) = (−2/7,2/7), (x3,y3) = (2/7,−2/7) and (x4,y4) =

(−2/7,−2/7).

Remark 5.2.1 The Gray-Scott model has been extensively studied and is known to show
a wide variety of pattern formation behavior. The patterns are called Turing patterns, for
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Equation with cubic term, D = 0, mean
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Figure 5.2.6: Plots showing the relative time-dependent error for iPCE schemes (Algorithms
5.1, 5.2, 5.4, left-hand side) and niPCE schemes (right-hand side) for equation (5.2.9) with
cubic term with diffusion constant D = 0.
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Equation with cubic term, D = 1, mean
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Figure 5.2.7: Plots showing the relative time-dependent error for iPCE schemes (Algorithms
5.1, 5.2, 5.4, left-hand side) and niPCE schemes (right-hand side) for equation (5.2.9) with
cubic term with diffusion constant D = 1.
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Performance plots for equations with linear, quadratic and cubic terms
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Figure 5.2.8: Plots showing the error for the different equations at time T = 2 (except for
equation 5.2.8 with the quadratic term and D = 0, where T = 0.4). The shorthands EEi, EEn
in the legend stand for EE iPCE and EE niPCE, respectively, and analogously with RDP
for ETD-RDP and RK4 for ETDRK4. For D = 1, only ETD-RDP and ETDRK4 are shown,
since EE requires higher M in order to be stable.
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an overview we refer to [84, 78]. Depending on the parameter values of k and F, u and
v may enter trivial or non-trivial homogeneous steady states, or non-homogeneous states
called Turing patterns. A necessary condition in the k-F parameter space in order for Turing
pattern formation to occur is [76, Eq. (19)]

[2(F + k)− (v2
0 +F)]2 > 8(F + k)(v2

0 −F), (5.2.14)

where v0 is either the trivial steady state (the ‘red state’) vR = 0 or, if d := 1−4(F +k)2/F >

0 holds, one of the two non-trivial steady states [76, Eqs. (7), (8)] (with vB also called the
‘blue state’)

vB =
1
2

α(1+
√

d), v1 =
1
2

α(1−
√

d).

Since now there are two coupled functions instead of one, the schemes need to take into
account these two functions, but for the sake of brevity we will not spell out all the schemes
again, but refer to [5, 62] (the intrusive PCE schemes given in Section 5.1 can then easily be
extended to two functions).
We pick for all simulations (1D and 2D) F = 0.04 and k(ω)∼ U [0.058,0.062], which falls
into the region of complex pattern formation described by (5.2.14). It is seen in Figure
5.2.10 that the iPCE schemes fail to compute correct solutions for the Gray-Scott model.
Furthermore, the needed time step numbers in order for the iPCE schemes are even higher
than for Equation 5.2.9 with a single cubic term. This leaves niPCE as the only viable option
to treat the random Gray-Scott system. We show an example of such a simulation in two
spatial dimensions for a mean E[u(x, t, ·)] in Figure 5.2.12 with the correct result produced
by niPCE juxtaposed by iPCE simulations which fail to reproduce the pattern. This is likely
due to the challenge of sharp dependency in the random variable, as in the seemingly small
interval k ∈ [0.058,0.062], a wide range of patterns emerge (see also [78]). Furthermore,
long-term integration of the Gray-Scott system is a challenge even in the deterministic case,
as show in Figure 5.2.11 for T = 5000, where it is seen that a high level of accuracy in both
space and time is needed in order to produce the correct pattern shown on the bottom right.
Especially in the cases of EE and ETD-RDP-IF, for p = 256 the error of the second-order
spatial finite difference approximation appears to dominate, causing the pattern to look rather
different.
Given the difficulties of long-term integration for the Gray-Scott model and the numerical
challenges and substantially increased computation time for iPCE, it appears to be advisable
to use niPCE for systems with strong nonlinearities such as Gray-Scott.
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iPCE errors for 2D random equation with linear term, D = 1
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Figure 5.2.9: Time-dependent L2 errors for equation (5.2.10), using the iPCE algorithms
5.1, 5.3 and 5.4. We used the same parameters and numbers of time steps as in the 1D case
from Figure 5.2.1 and Table 5.2.2. The exact expected value is given by (5.2.11). The spatial
resolution in the ETD-RDP case was picked in this simulation as p = 512. For lower p, the
error caused by the finite difference discretization dominates and the curves for different N
are identical.

Errors for a random Gray-Scott system
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Figure 5.2.10: Time-dependent error plot for a random 1D Gray-Scott system. None of the
iPCE schemes work in this case: Initially, the solution is relatively accurate, but as pattern
formation starts to occur, iPCE breaks down. For a visual example in two dimensions, see
Figure 5.2.12.
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Figure 5.2.11: Deterministic simulations of Gray-Scott patterns for different schemes and
resolutions for the same initial condition at T = 5000 (using Algorithms 4.1, 4.3, and 4.5).
It becomes apparent that after a long-term integration, Gray-Scott patterns are extremely
sensitive to the spatial resolution (and number of time steps), and for the correct solution, a
high spatial resolution is needed, along with a scheme such as ETDRK4 which performs a
spectral approximation in space. The numbers of time steps used are M = 100000 for EE
and M = 10000 for ETD-RDP-IF and ETDRK4.
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Figure 5.2.12: Simulations for E[u(x,T, ·)] of the random Gray-Scott system (5.2.12) with
F = 0.04 and k(ω)∼ U [0.058,0.062]. A niPCE simulation with ETDRK4 (left-hand side)
and GQ gives an impression of superimposed patterns for different k. Over time, the four off-
center bumps of the initial condition (5.2.13) expand and connect, forming intricate patterns
as observed on the left-hand side. The EE iPCE simulation fails to correctly propagate the
patterns, and the four rings from the initial condition stop expanding. For the ETDRK4 iPCE
simulation, the edges of the rings propagate too fast, and no pattern formation is observed.
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Figure 5.2.13: A diagram showing all the different MATLAB programs in the repository and
how they are connected. The error plots in Figures 5.2.1 to 5.2.7, as well as Figure 5.2.9 are
generated by PCE_time_errorplot.m for iPCE and by Nonintrusive_PCE.m for niPCE.
The program Performance_Plot.m generates the plots in Figure 5.2.8. The programs in the
repository contain more detailed descriptions.
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D = 0, linear

Intrusive Non-Intrusive

EE 0.3225 0.6717
ETD-RDP 0.4112 0.2256
ETDRK4 0.4322 0.4244

D = 1, linear

Intrusive Non-Intrusive

EE 0.4386 6.4825
ETD-RDP 0.2741 0.3698
ETDRK4 0.7304 0.4809

D = 0, quadratic

Intrusive Non-Intrusive

EE 0.5090 0.7563
ETD-RDP 0.3143 0.2550
ETDRK4 0.7242 0.6093

D = 1, quadratic

Intrusive Non-Intrusive

EE 3.5583 5.8424
ETD-RDP 0.4906 0.3265
ETDRK4 1.1047 0.4916

D = 0, cubic

Intrusive Non-Intrusive

EE 12.6065 0.4934
ETD-RDP 5.2208 0.4339
ETDRK4 6.1375 0.5221

D = 1, cubic

Intrusive Non-Intrusive

EE 247.6447 0.3319
ETD-RDP 9.8553 0.5722
ETDRK4 12.4297 0.5626

Table 5.2.1: Runtimes for the created plots, all times in seconds, for iPCE with N = 5 and
for niPCE with 50 realizations
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D = 0, linear

iPCE niPCE
M M q

EE 1000 2000 50
ETD-RDP 200 200 50
ETDRK4 100 100 50

ETDRK4 ref. - -

D = 1, linear

iPCE niPCE
M M q

EE 20000 20000 50
ETD-RDP 400 200 50
ETDRK4 200 100 50

ETDRK4 ref. 1000 200

D = 0, quadratic

iPCE niPCE
M M q

EE 1000 2000 50
ETD-RDP 200 200 50
ETDRK4 100 100 50

ETDRK4 ref. 1000 200

D = 1, quadratic

iPCE niPCE
M M q

EE 10000 20000 50
ETD-RDP 400 200 50
ETDRK4 200 100 50

ETDRK4 ref. 1000 200

D = 0, cubic

iPCE niPCE
M M q

EE 1000 500 50
ETD-RDP 200 200 50
ETDRK4 100 100 50

ETDRK4 ref. 1000 200

D = 1, cubic

iPCE niPCE
M M q

EE 20000 20000 50
ETD-RDP 400 200 50
ETDRK4 200 100 50

ETDRK4 ref. 1000 200

Table 5.2.2: Numbers of step sizes M and of samples (for niPCE) for each simulation shown
in Figures 5.2.1 to 5.2.7. ‘ETDRK4 ref.’ refers to the reference solution used for that
simulation. For the linear equation with D = 0, the exact solution is known.
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Chapter 6

Summary and Outlook

6.1 SPDEs on two-dimensional domains

After provinding the necessary mathematical framework in Chapter 2, in Chapter 3, we
implemented and derived error bounds for the exponential Euler scheme for semiliear
parabolic SPDEs on a curvilinear two-dimensional domain. For the spectral approximation in
space, the necessary Dirichlet eigenvalues and eigenfunctions were numerically approximated
using a boundary element method and Beyn’s contour integral algorithm.
The advantages of the presented method are its flexibility in choosing the two-dimensional
domain and the possibility to freely choose the points inside the domain at which the
eigenfunctions are computed. This renders the solution of SPDEs with high resolution on
a big class of domains possible. Due to the general setting of the spectral method, the
scheme could be extended to a larger class of differential operators such as general second-
order elliptic differential operators, whose Dirichlet eigenfunctions also form a complete
orthogonal basis in L2(D) (see [15]). Difficulties might arise while using a boundary integral
equation method, as explicit knowledge of the fundamental solution of the differential
operator is required. The scheme could also be applied to three-dimensional domains with a
C 2 boundary: In order to do this, the fundamental solution needs to be changed to the one
for the three-dimensional Helmholtz operator, the curved elements are now two-dimensional
(see [68, Section 5]) and the linear system resulting from applying Beyn’s contour integral
algorithm is larger. However, for a small error, a very large number of eigenfunctions would
have to be computed due to Weyl’s law (3.1.1) and the error bound (3.3.15).
The requirements on the nonlinear operator F could be relaxed by implementing a different
scheme like the one from [58], where the requirements on F are less strict. Future work
might also include deriving error bounds for higher moments such as E[∥U(tk)−V (4)

k ∥2]1/2.
Another avenue for future research could be the solution of SPDEs on general surfaces
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or Riemannian manifolds by a spectral method like the one used in this work. There are,
however, several obstacles: While the numerical approximation of eigenfunctions of the
Laplacian on manifolds (the Laplace-Beltrami operator) has been investigated (see e.g.
[80]), the approximations are not nearly as accurate as the ones used in this work for the
Laplacian on a planar domain. Therefore, a better error bound, more computing power or
more efficient approximation methods for Laplace-Beltrami eigenfunctions are needed. A
rigorous mathematical treatment in the context of Riemannian geometry is beyond the scope
of this thesis, for references on random fields and stochastic analysis on manifolds see [56].

6.2 Polynomial chaos with exponential time differencing

In Chapter 5, we investigated how the ETD-RDP-IF and ETDRK4 schemes can be imple-
mented in an iPCE scheme and compared the performance of these two schemes and an EE
scheme to a niPCE approach.
While niPCE using Monte Carlo methods or Gaussian quadrature is in most cases superior
to iPCE, we also found that in some cases such as the model equation with a quadratic
term, iPCE results in lower errors for comparable runtimes. For complex pattern formation
dynamics such as the Gray-Scott model, iPCE breaks down for all three schemes which
leaves only the non-intrusive variance as a viable option. While not implemented in full
detail, it is also apparent that the curse of dimensionality poses a bigger problem to iPCE
than it does to niPCE since solving bigger iPCE systems scales much worse than using sparse
grids for niPCE.
Future work could include methods to remedy the shortcomings of iPCE for complex dynam-
ical systems. In this work, it was seen that a direct iPCE implementation of algorithms which
are powerful in the deterministic case is not sufficient. Works such as [13] have introduced
an asynchronous time integration method for iPCE to deal with sharp dependencies in the
random variable. In [99], a multi-element PCE method is proposed to handle long-term
integration, which could be investigated in combination with the presented exponential time
differencing schemes. Recent work [34] also shows that B-splines can be used instead
of classical orthogonal polynomial bases to further reduce the error. One possibility for
achieving speedups for the ETD-RDP-IF scheme is the use of parallelization as has been
demonstrated in [5, pp. 8]. It could be carried out in an analogous fashion for the iPCE
scheme.
Another topic which could be investigated are non-polynomial nonlinear functions, which
can be handled using truncations of Taylor series [30].
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