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Abstract: The pressure dependence of structural behavior in the orthorhombic (Pccn, PI)
and monoclinic (P21/c, PII) polymorphs of the compound [Fe(PM-BiA),(NCS),], where
PM-BiA = (N—(2'-pyridylmethylene)—4-amino-bi—pheynyl), is studied with synchrotron
single-crystal X-ray diffraction and vibrational spectroscopy. Both polymorphs are stable up
to ~1.5 GPa, with a spin state transition occurring only in polymorph PII under hydrostatic
conditions as documented by single-crystal synchrotron diffraction. The diffraction data
also provide evidence of the formation of superstructures for both PI, with a doubled c axis,
and PII, with a doubled b axis, on applying pressures above 2 GPa. The LS and HS states
seem to coexist at high-pressures for both polymorphs studied with synchrotron infrared
spectroscopy at quasi-hydrostatic conditions. Such results indicate that the occurrence
of spin-crossover transformations in [Fe(PM-BiA),(NCS),] might strongly depend on the
stress in the sample.

Keywords: high-pressure studies; spin-crossover compounds; spectroscopy

1. Introduction

The search for novel caloric materials, which can be utilized as refrigerants in the new
generation of solid-state refrigerators with improved energy efficiency and less environ-
mental impact [1], is gaining continuous momentum [2-5]. Recently, the family of iron(II)
spin-crossover compounds has been discussed as a potential candidate based on their
substantial isothermal entropy (ASt) and adiabatic temperature (AT,;) changes associated
with the spin-state transition from the low-spin (LS) (S =0, tg o eg) to the high-spin (HS)
S=214 o ef,) state [6,7]. The spin-state transition primarily originates from the competing
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crystal field and electron pairing energies around the central metal ion, among which the
former can be tuned by using several external perturbations such as temperature [8,9],
pressure [10], light irradiation [11,12], magnetic [13] and electric fields [14], and guest
molecules [15,16]. This tunability allows for multiple applications [17,18].

In the spin-crossover (SCO) transition from the HS to the LS state, a redistribution
of the electron density on the bonding (ty¢) orbitals occurs, which leads to a shortening
of the metal-ligand bond distances [19]. This change at the molecular level is then trans-
mitted across the lattice via intermolecular contacts, such as hydrogen bridges and -7
interactions [20]. Therefore, the electronic re-configuration couples strongly with the lattice
and other physical properties of the system [8]. From a thermodynamic perspective, the
spin-crossover is driven by a competition between the enthalpy, which favors the low-spin
state present at low temperatures and high pressures, and the entropy, which favors the
high-spin state present at high temperatures and low pressures [21].

The nature of the transition between the HS and LS states can be abrupt or
gradual [20,22]. However, the prediction of the nature of SCO transition based solely
on the nature of ligands and the packing of the crystal structure remains impossible [21].
Therefore, apart from the ongoing search for suitable materials for barocaloric applications,
the investigation of spin-crossover transitions is also driven from a fundamental physics
perspective to better understand the complex nature of interactions governing the physical
properties and the nature of the spin transition of such systems [23].

We consider the well-known compound [Fe(PM-BiA),;(NCS),], where PM-BiA =
(N-(2'-pyridylme-thylene)—4-amino-bi—pheynyl) [20,24] crystallizes in two different poly-
morphs with significantly different characteristics of the spin-crossover transitions. In the
orthorhombic polymorph PI (space group Pccn) the temperature-induced spin transition
is abrupt (T, = 177 K; AT = 1 K), while in the monoclinic polymorph PII (space group
P2, /c) the spin state transition is gradual (T;,, = 210 K; AT = 100 K), where AT denotes
the temperature range of the compound’s mixed spin state (both spin states > 10%), and
Ty /5 is the temperature at which HS and LS states are equally populated. The structures
are described as being composed of molecular slabs, which extend in the (a,c) plane with b
as the stacking direction in PI, while the planes extend in the (b,c) plane and are stacked
along a in PII (Figure 1). As the molecular units in both polymorphs are basically identical,
they represent an ideal system to study the role of intermolecular interactions and their
relationship to the underlying dynamics. In this study, we do not provide a direct assess-
ment of the barocaloric potential of the compound; however, the pressure dependence of
structural and spin-state transitions is critical for the barocaloric effect, and the correlation
of temperature and pressure dependencies should thus provide insight for identifying
promising barocaloric candidates.

While detailed temperature-dependent single-crystal investigations were already
carried out on both polymorphs [20,24,25] (and also on the closely related [Fe(PM-
PeA)>(NCSe)], [26]), only a limited number of experimental [10,27-29] and theoreti-
cal [30,31] studies were carried out under pressure. These studies suggest [27] that PI
undergoes a structural phase transition to polymorph PII at a pressure of ~0.75 GPa. It
should be noted, however, that these experimental studies were performed on polycrys-
talline samples, and the data were not sufficient to follow the structural evolution as a
function of pressure.

In this work, we present a comprehensive high-pressure investigation, utilizing syn-
chrotron single-crystal X-ray diffraction, as well as infrared and Raman spectroscopy, for
the PI and PII polymorphs of [Fe(PM-BiA),(NCS),]. Based on our data, we (i) examine the
correlation between structural changes and phonon modes during the spin-state transitions
as well as (ii) elucidate the pressure-induced phases.
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Figure 1. Schematic drawing of the molecules and crystal structures of the orthorhombic (PI, Pccn)
(left panel) and monoclinic (PII, P2;/c) (right panel) polymorphs, depicting the layered structure of
the molecules.
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2. Results and Discussion
2.1. Synchrotron X-Ray Diffraction

Reconstructions of reciprocal space of both polymorphs and subsequent refinements of
the structures show that polymorphs PI and PII remain stable up to 1.36 GPa and 1.46 GPa,
respectively (Figure 2; Tables S1 and S2 in the Supplementary Materials). With a further
increase in pressure, superstructure reflections appear in both polymorphs (starting from
2.02(6) GPa (PI) and 2.65(7) GPa (PII)). For polymorph PI, they indicate a doubling of the
c axis, while for polymorph PII, they indicate a doubling of the b axis (Figure 2). In both
superstructures, the doubling of the lattice parameters occurs within the molecular slabs,
albeit in different directions (Figure 2). Refinements of the superstructures using models
derived from the lower pressure structures were not successful, indicating that there are
substantial structural rearrangements. Several attempts to solve the superstructures using
Direct Methods, Charge Flipping, and Patterson Methods did not lead to a satisfactory
structure solution either. We attribute this to the low completeness of the data.
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Figure 2. Reconstructed reciprocal space sections: (top) (h0l) plane for the orthorhombic (PI, Pccn)
polymorph at (a) 0.44(7) GPa, (b) 0.85(8) GPa, and (c) 2.02(6) GPa and (bottom) (0kI) plane for the
monoclinic (PII, P2;/c) polymorph at (d) 0.46(5) GPa, (e) 1.46(5) GPa, and (f) 2.65(7) GPa.
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Both polymorphs exhibited a decrease in unit-cell volumes with comparable relative
changes dV/dP for polymorphs PI and PII up to 1.36 and 1.46 GPa, respectively (Figure 3).
No indication of a volume expansion in PI at 0.7 GPa, as reported in earlier studies [28],
was observed. Both polymorphs exhibited strong anisotropic compressibility. The largest
compressibility occurred along the stacking directions of the molecular planes (b and a
axes for PI and PII, respectively). Due to the significant problems in collecting consistent
high-pressure diffraction data on different beamlines and the resulting limited number of
data points, a fit of the unit cell volume with an equations of state [32] was not attempted.
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Figure 3. Pressure dependence of the normalized unit-cell parameters and volume of the orthorhom-
bic (P, Pccn) (a) and monoclinic (PII, P21 /c) polymorph (b) at 300 K. Data points at 2.02 and 2.64 GPa
correspond to the superstructures. Red and blue symbols represent values in the HS (PI: 300 K; PII:
270 K) and in the LS state (PI: 95 K; PII: 93K) at ambient pressure [20]. Lines are guides to the eyes.
The lattice parameters and unit-cell volumes indicated with red arrows at highest pressures are scaled
with a factor of (1/2). Error bars are smaller than symbols.

An inspection of the pressure evolution of the averaged octahedral (Fe-Ng) bond
length, as obtained from the single-crystal structure refinements, shows that for polymorph
PI, the value remained approximately constant up to 1.4 GPa, while for polymorph PII, it
monotonously decreased up to 0.8 GPa, where it reached the value corresponding to the
low-spin state at ambient conditions and then became constant (Figure 4). This implies that
there is no pressure-induced spin-crossover transition in PI at pressures up to 1.36 GPa,
even though the unit-cell volumes on compression were lower than the one where the LS
state was formed at low temperatures and atmospheric pressure. Earlier powder neutron
diffraction [27,28] and first principles calculations [30] had suggested a phase transition to
polymorph PII at about 0.75 GPa at different temperatures including room temperature. At
least at room temperature, such a transition can be ruled out by our experiments. For PII, a
gradual pressure-induced spin-crossover transition occurred on compression to 0.8 GPa.
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Previously, the HS state in PII was found to be present to 0.135 GPa using reflectance
studies [29], which is consistent with our result only starting at a higher pressure.
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Figure 4. The change of the average (Fe-Ng) bond length for the (a) orthorhombic (P, Pccn) and
(b) and monoclinic (PII, P2y /c) polymorphs, as a function of pressure at ambient temperature. The
values in the HS and LS state at ambient pressure are shown as red and blue stars, respectively. They
are extrapolated to high pressures as dotted lines.

2.2. Vibrational Spectroscopy

The left panel in Figure 5 shows a comparison of the temperature and pressure
evolution (up to about 2 GPa) of infrared modes of the (Fe-Ng) unit in both polymorphs
in the wavenumber range from 545 to 600 cm ! [33,34]. In this wavenumber range, the
spectra for both polymorphs are very similar because the coordination of the Fe atoms to
the N atoms is quite alike. In the spectra measured as a function of temperature at ambient
pressure, we observed modes II} and IR in the HS state. In the LS state, the I'R mode
IR and IIR appeared. The I} doublet is due to the factor
group splitting [35]. The magnitude of this splitting could be considered as a measure of

vanished while additional modes

the influence that the crystal lattice exerts on the molecule. It is larger in the monoclinic PII
polymorph than in the higher symmetry one PI. On cooling, the IéR mode shifts to higher
energies but still exists in the LS state. Altogether, Figure 5 reveals that at atmospheric
pressure a sharp SCO transition in PI occurred between 180 and 170 K, while in PII, we
observed a coexistence of low LS and HS features in an extended temperature region of
160 K < T <230 K.

Part of the differences between the temperature- and pressure-dependent spectra,
collected from SOLEIL and KIT light sources shown in Figure 5, arises from the different
spectral resolutions utilized at the two facilities and the dependence of the spectral intensi-
ties on the crystal orientation. Apart from that, the CsI pressure-transmitting medium used
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in the pressure-dependent measurements is not exactly hydrostatic. It induces broadening
of the observed bands due to deviatoric stress in the samples [36].
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Figure 5. (left) Comparison of the temperature (KIT) and pressure (SOLEIL) evolution of Fe-N
vibrational phonon modes, obtained from the infrared spectra, normalized to the peak height at
670 cm~!. Data are offset vertically for clarity. (right) Comparison of the temperature and pressure
evolution of amine stretching vibrational modes obtained from the Raman spectra. Dashed lines
point to features in the LS state; dotted lines point to features in the HS state; dashed dotted lines
assign peaks present in both states.

A comparison with the pressure evolution of the phonon modes in the same wavenum-
ber range indicates that the onset of a gradual transition to the LS state in PII occurs at
about 0.4 GPa with the appearance of the I'R modes. The mode II? with very low intensity
could be observed above 0.6 GPa. A weak spectral feature I'R of the HS state could still
be traced up to 2 GPa. The persistence of a small phase fraction of the HS state at 2 GPa
may be attributed to short-range correlations of the HS state, which compete with the
dominant LS matrix, as reported in the literature for other compounds [37]. The IR data
for PII thus corroborate the structural data, depicting a smooth gradual transition with
increasing pressure.

In PI, mode IR, which is associated with the LS state, started to appear at about 0.5 GPa.
Both the HS and LS states seem to have coexisted up to 2 GPa. The fact that both were
observed in the spectroscopic data but not in the diffraction data could be explained with
the use of Csl as a pressure-transmitting medium in IR experiments. On the other hand,
the absence of the IR mode (Figure 5) also suggests that the emergence of the X mode
could be correlated with the formation of the superstructure detected in the X-ray data. In
this case, the superstructures would therefore happen in different spin states: HS for PI
and LS for PII. The presence of only the HS state for PI in the low-pressure structure, with
moderately increasing pressure at 300 K, would be consistent with the literature, including
high-pressure magnetization [10] and diffuse reflectance measurements [29].
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The vibrational modes that exhibit the maximum intensity in the Raman spectra are
associated with the a-dimine stretching vibrations [38]. We identified the modes 113{ and I}f
as markers for the LS state Figure 5. At ambient pressure and room temperature, the spectra
look very similar for both polymorphs. Upon cooling down to the LS state, the characteristic
features of the HS state re-appeared. We attribute it to the light-induced excited state spin-
trapping effect (LIESST) [39,40] induced by the blue laser (A = 488 nm) utilized during the
measurements. Similar effects were also observed in the low-spin state of other compounds,
in particular if they exhibited intermolecular interactions such as 77—t interactions [41].
The highest temperature at which LIESST can be observed depends on the scan rate
(Tripsst) [42]. In our study, the use of a scan rate of 10 K min ! shifted Ty pssT to higher
values, resulting in the formation of mixed HS-LS states at the lowest measured temper-
atures of 130 K and 100 K for PI and PII, respectively. The potential local heating of the
sample by the laser, which could lead to a thermally induced transition rather than a purely
photonic one, might also be related to this observation [43].

It might be possible that with further lowering of the temperature, a complete low-spin
state could occur in both the polymorphs. However, measurements at lower temperatures
were prevented by the thermosalient behavior [44,45] at approximately <100 K that made
it impossible to record the spectra. The pressure dependence of the a-diimine stretching
Raman-active vibrations for both polymorphs is also shown in Figure 5. In this experiment,
we probed a wider pressure range up to 5.9 GPa. To about 0.2 GPa, the spectra of both
polymorphs changed very little. At higher pressures, the additional bands 15 and IX
appeared in PI as well as I in PIL. The bands broadened on compression, precluding any
conclusive band assignment.

3. Materials and Methods
3.1. Single-Crystal X-Ray Diffraction

High-pressure single-crystal diffraction measurements were performed on a kappa
diffractometer at beamline P24 (A = 0.413(3) A, PETRAIII, Hamburg, Germany) [46] and on
the one-circle multipurpose diffractometer at the BM01 beamline of the Swiss—Norwegian
Beamlines (A = 0.720(4) A, SNBL, ESRF, Grenoble, France) [47]. The beamlines are equipped
with a Pilatus 1M CdTe and a Pilatus 2M detector (Dectris, Baden, Switzerland), respectively.
A Boehler—Almax-type diamond anvil cell (DAC) [48] was used at the P24 beamline for both
polymorphs, while at the SNBL, a Yao-DAC cell [49,50] (see Figure S1 in the supplementary
materials) with a wide opening angle of 120° was utilized for PI and a Boehler—Almax
DAC for PII. Isopropanol was used as the pressure-transmitting medium. The pressure was
determined with the ruby luminescence method [51,52]. It is noteworthy that the crystals
frequently broke while loading the DAC; however, data were collected in single runs on
individual crystals.

Data analysis and integration were performed with the CrysAlis PRO software (Ver-
sion 1.171.37.33) package [53]. Structures at ambient conditions [20] were used as starting
models for the refinements using JANA2006 [54]. Due to the low completeness of the
data (30%), displacement parameters were modeled only isotropically. For the monoclinic
polymorph, the atomic displacement parameters were constrained to be identical for (a)
sulfur atoms and (b) carbon atoms within one aromatic ring. Hydrogen atom positions
were calculated using the riding model with C—H bond distances set to 0.96 A.

3.2. Infrared Spectroscopy

Temperature dependent infrared spectroscopic measurements were conducted at
the IR2 beamline of the KIT light source (Karlsruhe Institute of Technology, Karlsruhe,
Germany). Spectra in the range 300-4000 cm ! were acquired using a Vertex80v FTIR
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spectrometer coupled to an IRscopell (Bruker, Billerica, MA, USA) microscope. Measure-
ments were performed in transmitted-light mode using Schwarzschild objectives (Thermo
Oriel, Stratford, CT, USA) (15x, 0.4 N.A.). Far infrared spectra were recorded with a liquid
He cooled bolometer detector and a broadband Mylar beamsplitter (Bruker Optik GmbH,
Ettlingen, Germany) whereas a liquid N> cooled MCT (HgCdTe) [55] detector and a KBr
beamsplitter were used for the mid-infrared region. Single crystals of the orthorhombic and
monoclinic polymorphs (~70 x 70 x 50 um?) were placed on a KBr pellet and loaded in a
LINKAM FTIR600 stage equipped with KBr lid windows (Linkam scientific instruments
Ltd., Salfords, UK). Prior to the measurements, the stage was purged with dry N gas to
remove humidity.

The infrared spectra were measured over the temperature range of 80-300 K in steps
of 20 K in both cooling and warming cycles, with smaller steps (5 K) in the vicinity of the
spin-crossover temperatures. The rate of change of temperature was kept at 10 K/min
with an equilibration time of 3 min at each temperature. The spectra were recorded with
128 accumulations (each of 1 s) with a spectral resolution of 1 cm~!. Background spectra
were recorded through the empty KBr sample holder prior to every sample measurement
and were subsequently used for the calculation of the absorbance data. The positions of the
IR bands were determined from the experimental data using the software OPUS v8.5 [56].

High-pressure infrared spectra up to 2 GPa were recorded at the SMIS beamline [57]
of the synchrotron SOLEIL (Saint-Aubin, France) using a homemade horizontal mi-
croscope with custom Schwarzschild objectives (N.A. = 0.5). Two membrane-driven
diamond anvil cells, having type-Ila diamonds with culets of 600 pm and 800 pum,
were utilized for collecting the high-pressure data of PI and PII, respectively. Pres-
sure was determined with the ruby luminescence method [51,52]. Finely ground Csl
powder served as pressure-transmitting media, making it possible to collect the trans-
mittance data in the broad spectral range of 150-10,000 cm~! by a Thermo-Fisher iS50
interferometer (Waltham, MA, USA) with KBr and solid substrate beamsplitters, us-
ing a MCT detector and liquid helium cooled bolometer. The data were collected in
steps of 0.1 GPa for PI and 0.2 GPa for PII at T = 300 K. The spectra were recorded

with 128 accumulations, with a spectral resolution of 2 cm™!.

The background was
recorded on bare Csl inside the DAC and subsequently used for the calculation of the
absorbance data. The positions of the IR bands were determined with the software

OMNIC v8.2 [58].

3.3. Raman Spectroscopy

Raman spectra were collected on single crystals of both polymorphs in a backscattering
geometry on a WITec alpha300 R micro-Raman spectrometer (WITec Wissenschaftliche
Instrumente und Technologie GmbH, Ulm, Germany) coupled to a 488 nm solid state laser
in the spectral range 60-2600 cm ! using an edge filter for Rayleigh line rejection, a Nikon
20x (Nikon Instruments Europe B.V., Amsterdam, The Netherlands) (N.A. 0.35) long-
working distance objective, a 1800 grooves mm ! grating, and a CCD detector, available at
the KIT light source. The laser power was kept at 40 uW during the measurements. The
same LINKAM stage that was utilized in the case of IR was used for the Raman experiments.
In total, 4 scans with an integration time of 128 s were collected at a spectral resolution
of ~0.9 cm~! with temperature steps of 20 K in the range 80-300 K. The temperature
variation and the equilibration time were the same as in the IR measurements. High-
pressure Raman spectra at 300 K were recorded in the same setup using Boehler-Almax
DAC filled with KBr as the pressure-transmitting medium. The data was recorded in steps
of 0.5 GPa, and the pressure was monitored by the ruby luminescence method [51,52]. It
should be noted that solid pressurizing media, such as KBr [59,60] and Csl [36], though
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quasi-hydrostatic in nature, are IR- and Raman-transparent [61], making them suitable
candidates for spectroscopic studies. On the other hand, liquid-pressurizing media, like
isopropanol [62], though hydrostatic in nature, exhibit numerous vibrational modes that
are both IR- and Raman-active [63], which obscure the signal originating from the sample,
thus making them unsuitable for spectroscopic investigations.

4. Conclusions

In this work, we have employed single-crystal synchrotron diffraction as well as
infrared and Raman spectroscopy measurements at extreme conditions in order to shed
light on the behavior of the orthorhombic (Pccn, PI) and monoclinic (P24/c, PII) polymorphs
of the spin-crossover compound [Fe(PM-BiA),(NCS);]. The vibrational data confirm the
previous observations [20] that the SCO in monoclinic PII is gradual, while it is very sharp
in orthorhombic PI as a function of temperature at atmospheric conditions.

Our studies demonstrate that with increasing pressure to about 1.5 GPa, both poly-
morphs remain stable, with a spin-crossover induced in PII but not in P, as seen with
X-ray diffraction, which was performed with an isopropanol hydrostatic pressure medium.
We only observe the shortening of the Fe-N bond distances, which is characteristic of
SCO [6] in PII but not in PI. To the best of our knowledge, a pressure-induced SCO at
300 K for PII was not previously reported. On the other hand, the LS and HS states are
suggested to coexist at high pressures for PI, as documented by the infrared spectroscopy
data collected with a Csl quasi-hydrostatic pressure medium. This indicates that the oc-
currence of SCO in PI might strongly depend on the stress in the sample. Above about
2 GPa, using single-crystal synchrotron diffraction, we observed superstructures which
correspond to the doubling of the c lattice parameter in polymorph PI and a doubling of
the b lattice parameter in polymorph PII. The doubled lattice parameters correspond to
directions of intra-plane molecular arrangements. Our studies reveal that a compound
having gradual SCO with temperature also displays a similar gradual SCO with pressure,
suggesting that such materials may be suitable candidates for barocaloric applications,
given their continuous response to external stimuli.

A single-crystal diffraction study carried out under uniaxial pressure could help to
shed more light on the structural features involved in the pressure-induced SCO. On the
other hand, by deuterating the materials, one can study the influence of the H(D)-bonding
network and 77— interactions on the SCO process. To address the issue of spin states in
the superstructures of both polymorphs, experiments such as Mossbauer spectroscopy or
nuclear forward scattering under high pressures could provide valuable insights, answering
in particular the question of whether the superstructures involve ordered HS and LS states,
as observed in other SCO compounds [64]. Additionally, a detailed DFT calculation on the
whole unit cell, at different pressures and taking dispersion forces into account, can lead to
a more comprehensive understanding of the different SCO behavior in both polymorphs.

Supplementary Materials: The following supporting information can be downloaded at
https:/ /www.mdpi.com/article/10.3390 /molecules30122651/s1. Figure S1: (left) Yao-DAC for
X-ray and neutron single-crystal diffraction. The diamond anvil cell with an opening of 120 (Yao-
DAC) is based on the design by Yao Cheng [50]. Its diameter is 40 mm. The body parts as well as the
seats are made of the NiCrAl alloy allowing for using it both for X-ray and neutron single-crystal
diffraction [49]. The body parts have matching crenel-like cuts. The screws (M4 and M1.6) and
the locking ring for the rocker seat are made of titanium (grade 2). Both parallel and translational
alignments of the diamonds are possible; Table S1: Selected experimental crystal data for the or-
thorhombic (PI, Pccn) polymorph of [Fe(PM-BiA),(NCS),] at different pressure points; Table S2:
Selected experimental crystal data for the monoclinic (PIL, P2;/c) polymorph of [Fe(PM-BiA),(NCS),]
at different pressure points.
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