001043302 001__ 1043302 001043302 005__ 20250724210254.0 001043302 037__ $$aFZJ-2025-02823 001043302 041__ $$aEnglish 001043302 1001_ $$0P:(DE-Juel1)188557$$aBehle, Eric$$b0$$eCorresponding author$$ufzj 001043302 1112_ $$aDPG Spring Meeting 2024$$cBerlin$$d2024-03-17 - 2024-03-22$$gSKM24$$wGermany 001043302 245__ $$aSimulating tumor-induced angiogenesis using Cells in Silico 001043302 260__ $$c2024 001043302 3367_ $$033$$2EndNote$$aConference Paper 001043302 3367_ $$2BibTeX$$aINPROCEEDINGS 001043302 3367_ $$2DRIVER$$aconferenceObject 001043302 3367_ $$2ORCID$$aCONFERENCE_POSTER 001043302 3367_ $$2DataCite$$aOutput Types/Conference Poster 001043302 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1753341106_25246$$xAfter Call 001043302 520__ $$aCancer remains an inadequately understood ailment affecting humanity. Its treatment poses a challenge due to tumor variability and a tumor’s impact on the surrounding environment. Tumor-induced angiogenesis is a concerning aspect of the disease. Here, a hypoxic tumor secretes growth factors, which prompts nearby blood vessel branching and successive growth toward the tumor. To study this process on a computational level, we turned to Cells in Silico (CiS), a high performance framework for large-scale tissue simulation previously developed by us. Combining a cellular Potts model and an agent-based layer, CiS is capable of simulating tissues composed of tens of millions of cells, while accurately representing many physical and biological properties. Our ultimate objective is to construct a cellular digital twin of a tumor, and integrating a realistically evolving nutrient environment is crucial. Hence, we have implemented tumor-induced blood vessel growth into CiS, and have studied the behavior of tumors placed in different environments. With this we aim to explore questions regarding hot spots for tumor growth within the body. 001043302 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0 001043302 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x1 001043302 7001_ $$0P:(DE-HGF)0$$aHerold, J. M.$$b1 001043302 7001_ $$0P:(DE-Juel1)173652$$aSchug, Alexander$$b2$$ufzj 001043302 8564_ $$uhttps://www.dpg-verhandlungen.de/year/2024/conference/berlin/part/bp/session/21/contribution/7 001043302 909CO $$ooai:juser.fz-juelich.de:1043302$$pVDB 001043302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188557$$aForschungszentrum Jülich$$b0$$kFZJ 001043302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173652$$aForschungszentrum Jülich$$b2$$kFZJ 001043302 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 001043302 920__ $$lyes 001043302 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 001043302 980__ $$aposter 001043302 980__ $$aVDB 001043302 980__ $$aI:(DE-Juel1)JSC-20090406 001043302 980__ $$aUNRESTRICTED